2018-01-11 22:48:14 +00:00
\documentclass { ian}
\usepackage { largearray}
\begin { document}
\hbox { }
\hfil { \bf \LARGE
{ \tt nstrophy}
}
\vfill
\tableofcontents
\vfill
\eject
\setcounter { page} 1
\pagestyle { plain}
\section { Description of the computation}
\subsection { Irreversible equation}
2022-05-25 14:56:48 +00:00
\indent Consider the incompressible Navier-Stokes equation in 2 dimensions
2018-01-11 22:48:14 +00:00
\begin { equation}
2023-03-31 19:40:15 +00:00
\partial _ tU=\nu \Delta U+G-(U\cdot \nabla )U,\quad
\nabla \cdot U=0
2018-01-11 22:48:14 +00:00
\label { ins}
\end { equation}
2023-03-31 19:40:15 +00:00
in which $ G $ is the forcing term.
We take periodic boundary conditions, so, at every given time, $ U ( t, \cdot ) $ is a function on the torus $ \mathbb T ^ 2 : = \mathbb R ^ 2 / ( L \mathbb Z ) ^ 2 $ . We represent $ U ( t, \cdot ) $ using its Fourier series
2018-01-11 22:48:14 +00:00
\begin { equation}
2023-03-31 19:40:15 +00:00
\hat U_ k(t):=\frac 1{ L^ 2} \int _ { \mathbb T^ 2} dx\ e^ { i\frac { 2\pi } L kx} U(t,x)
2018-01-11 22:48:14 +00:00
\end { equation}
for $ k \in \mathbb Z ^ 2 $ , and rewrite~\- (\ref { ins} ) as
\begin { equation}
2023-03-31 19:40:15 +00:00
\partial _ t\hat U_ k=
-\frac { 4\pi ^ 2} { L^ 2} \nu k^ 2\hat U_ k+\hat G_ k
2022-05-25 14:56:48 +00:00
-i\frac { 2\pi } L\sum _ { \displaystyle \mathop { \scriptstyle p,q\in \mathbb Z^ 2} _ { p+q=k} }
2023-03-31 19:40:15 +00:00
(q\cdot \hat U_ p)\hat U_ q
2018-01-11 22:48:14 +00:00
,\quad
2023-03-31 19:40:15 +00:00
k\cdot \hat U_ k=0
2018-01-11 22:48:14 +00:00
\label { ins_ k}
\end { equation}
We then reduce the equation to a scalar one, by writing
\begin { equation}
2023-03-31 19:40:15 +00:00
\hat U_ k=\frac { i2\pi k^ \perp } { L|k|} \hat u_ k\equiv \frac { i2\pi } { L|k|} (-k_ y\hat u_ k,k_ x\hat u_ k)
\label { udef}
2018-01-11 22:48:14 +00:00
\end { equation}
2022-05-25 14:56:48 +00:00
in terms of which, multiplying both sides of the equation by $ \frac L { i 2 \pi } \frac { k ^ \perp } { |k| } $ ,
2018-01-11 22:48:14 +00:00
\begin { equation}
2023-03-31 19:40:15 +00:00
\partial _ t\hat u_ k=
-\frac { 4\pi ^ 2} { L^ 2} \nu k^ 2\hat u_ k
+\hat g_ k
2022-05-25 14:56:48 +00:00
+\frac { 4\pi ^ 2} { L^ 2|k|} \sum _ { \displaystyle \mathop { \scriptstyle p,q\in \mathbb Z^ 2} _ { p+q=k} }
2023-03-31 19:40:15 +00:00
\frac { (q\cdot p^ \perp )(k^ \perp \cdot q^ \perp )} { |q||p|} \hat u_ p\hat u_ q
2018-01-11 22:48:14 +00:00
\label { ins_ k}
\end { equation}
2023-03-31 19:40:15 +00:00
with
\begin { equation}
\hat g_ k:=\frac { Lk^ \perp } { 2i\pi |k|} \cdot \hat G_ k
.
\label { gdef}
\end { equation}
2018-01-12 19:20:59 +00:00
Furthermore
\begin { equation}
(q\cdot p^ \perp )(k^ \perp \cdot q^ \perp )
=
(q\cdot p^ \perp )(q^ 2+p\cdot q)
\end { equation}
and $ q \cdot p ^ \perp $ is antisymmetric under exchange of $ q $ and $ p $ . Therefore,
2018-01-11 22:48:14 +00:00
\begin { equation}
2023-03-31 19:40:15 +00:00
\partial _ t\hat u_ k=
-\frac { 4\pi ^ 2} { L^ 2} \nu k^ 2\hat u_ k+\hat g_ k
2023-03-31 20:58:52 +00:00
+\frac { 4\pi ^ 2} { L^ 2|k|} T(\hat u,k)
\label { ins_ k}
\end { equation}
with
\begin { equation}
T(\hat u,k):=
\sum _ { \displaystyle \mathop { \scriptstyle p,q\in \mathbb Z^ 2} _ { p+q=k} }
2023-03-31 19:40:15 +00:00
\frac { (q\cdot p^ \perp )|q|} { |p|} \hat u_ p\hat u_ q
2018-01-11 22:48:14 +00:00
.
2023-03-31 20:58:52 +00:00
\label { T}
2018-01-11 22:48:14 +00:00
\end { equation}
2023-03-31 19:40:15 +00:00
We truncate the Fourier modes and assume that $ \hat u _ k = 0 $ if $ |k _ 1 |>K _ 1 $ or $ |k _ 2 |>K _ 2 $ . Let
2018-01-11 22:48:14 +00:00
\begin { equation}
\mathcal K:=\{ (k_ 1,k_ 2),\ |k_ 1|\leqslant K_ 1,\ |k_ 2|\leqslant K_ 2\}
.
\end { equation}
\bigskip
2023-03-31 20:58:52 +00:00
\point { \bf Reality} .
Since $ U $ is real, $ \hat U _ { - k } = \hat U _ k ^ * $ , and so
2018-01-11 22:48:14 +00:00
\begin { equation}
2023-03-31 20:58:52 +00:00
\hat u_ { -k} =\hat u_ k^ *
.
\label { realu}
2018-01-11 22:48:14 +00:00
\end { equation}
2023-03-31 20:58:52 +00:00
Similarly,
\begin { equation}
\hat g_ { -k} =\hat g_ k^ *
.
\label { realg}
\end { equation}
Thus,
\begin { equation}
T(\hat u,-k)
=
T(\hat u,k)^ *
.
\label { realT}
\end { equation}
2023-04-11 22:45:45 +00:00
In order to keep the computation as quick as possible, we only compute and store the values for $ k _ 1 \geqslant 0 $ .
2023-03-31 20:58:52 +00:00
\bigskip
\point { \bf FFT} . We compute T using a fast Fourier transform, defined as
2018-01-11 22:48:14 +00:00
\begin { equation}
\mathcal F(f)(n):=\sum _ { m\in \mathcal N} e^ { -\frac { 2i\pi } { N_ 1} m_ 1n_ 1-\frac { 2i\pi } { N_ 2} m_ 2n_ 2} f(m_ 1,m_ 2)
\end { equation}
where
\begin { equation}
2022-05-12 07:32:58 +00:00
\mathcal N:=\{ (n_ 1,n_ 2),\ 0\leqslant n_ 1< N_ 1,\ 0\leqslant n_ 2< N_ 2\}
2018-01-11 22:48:14 +00:00
\end { equation}
for some fixed $ N _ 1 ,N _ 2 $ . The transform is inverted by
\begin { equation}
\frac 1{ N_ 1N_ 2} \mathcal F^ *(\mathcal F(f))(n)=f(n)
\end { equation}
in which $ \mathcal F ^ * $ is defined like $ \mathcal F $ but with the opposite phase.
\bigskip
\indent The condition $ p + q = k $ can be rewritten as
\begin { equation}
2023-03-31 19:40:15 +00:00
T(\hat u,k)
2018-01-11 22:48:14 +00:00
=
\sum _ { p,q\in \mathcal K}
\frac 1{ N_ 1N_ 2}
\sum _ { n\in \mathcal N} e^ { -\frac { 2i\pi } { N_ 1} n_ 1(p_ 1+q_ 1-k_ 1)-\frac { 2i\pi } { N_ 2} n_ 2(p_ 2+q_ 2-k_ 2)}
2023-03-31 19:40:15 +00:00
(q\cdot p^ \perp )\frac { |q|} { |p|} \hat u_ q\hat u_ p
2018-01-11 22:48:14 +00:00
\end { equation}
provided
\begin { equation}
2022-05-27 00:54:30 +00:00
N_ i>3K_ i.
2018-01-11 22:48:14 +00:00
\end { equation}
2022-05-27 00:54:30 +00:00
Indeed, $ \sum _ { n _ i = 0 } ^ { N _ i } e ^ { - \frac { 2 i \pi } { N _ i } n _ im _ i } $ vanishes unless $ m _ i = 0 \% N _ i $ (in which $ \% N _ i $ means `modulo $ N _ i $ '), and, if $ p,q,k \in \mathcal K $ , then $ |p _ i + q _ i - k _ i| \leqslant 3 K _ i $ , so, as long as $ N _ i> 3 K _ i $ , then $ ( p _ i + q _ i - k _ i ) = 0 \% N _ i $ implies $ p _ i + q _ i = k _ i $ .
2022-05-12 07:32:58 +00:00
Therefore,
2018-01-11 22:48:14 +00:00
\begin { equation}
2023-03-31 19:40:15 +00:00
T(\hat u,k)
2018-01-11 22:48:14 +00:00
=
\textstyle
2018-01-12 19:20:59 +00:00
\frac 1{ N_ 1N_ 2}
2018-01-11 22:48:14 +00:00
\mathcal F^ *\left (
2023-03-31 19:40:15 +00:00
\mathcal F\left (\frac { p_ x\hat u_ p} { |p|} \right )(n)
\mathcal F\left (q_ y|q|\hat u_ q\right )(n)
2018-01-12 19:20:59 +00:00
-
2023-03-31 19:40:15 +00:00
\mathcal F\left (\frac { p_ y\hat u_ p} { |p|} \right )(n)
\mathcal F\left (q_ x|q|\hat u_ q\right )(n)
2018-01-11 22:48:14 +00:00
\right )(k)
\end { equation}
2022-05-19 17:04:30 +00:00
\bigskip
2018-01-11 22:48:14 +00:00
2022-05-19 17:04:30 +00:00
\point { \bf Energy} .
We define the energy as
\begin { equation}
2023-03-31 19:40:15 +00:00
E(t)=\frac 12\int \frac { dx} { L^ 2} \ U^ 2(t,x)=\frac 12\sum _ { k\in \mathbb Z^ 2} |\hat U_ k|^ 2
2022-05-19 17:04:30 +00:00
.
\end { equation}
We have
\begin { equation}
2023-03-31 19:40:15 +00:00
\partial _ t E=\int \frac { dx} { L^ 2} \ U\partial tU
2022-05-19 17:04:30 +00:00
=
2023-03-31 19:40:15 +00:00
\nu \int \frac { dx} { L^ 2} \ U\Delta U
+\int \frac { dx} { L^ 2} \ UG
-\int \frac { dx} { L^ 2} \ U(U\cdot \nabla )U
2022-05-19 17:04:30 +00:00
.
\end { equation}
Since we have periodic boundary conditions,
\begin { equation}
2023-03-31 19:40:15 +00:00
\int dx\ U\Delta U=-\int dx\ |\nabla U|^ 2
2022-05-19 17:04:30 +00:00
.
\end { equation}
Furthermore,
\begin { equation}
2023-03-31 19:40:15 +00:00
I:=\int dx\ U(U\cdot \nabla )U
=\sum _ { i,j=1,2} \int dx\ U_ iU_ j\partial _ jU_ i
2022-05-19 17:04:30 +00:00
=
2023-03-31 19:40:15 +00:00
-\sum _ { i,j=1,2} \int dx\ (\partial _ jU_ i)U_ jU_ i
-\sum _ { i,j=1,2} \int dx\ U_ i(\partial _ jU_ j)U_ i
2022-05-19 17:04:30 +00:00
\end { equation}
2023-03-31 19:40:15 +00:00
and since $ \nabla \cdot U = 0 $ ,
2022-05-19 17:04:30 +00:00
\begin { equation}
I
=
-I
\end { equation}
and so $ I = 0 $ .
Thus,
\begin { equation}
\partial _ t E=
2023-03-31 19:40:15 +00:00
\int \frac { dx} { L^ 2} \ \left (-\nu |\nabla U|^ 2+UG\right )
2022-05-19 17:04:30 +00:00
=
2023-03-31 19:40:15 +00:00
\sum _ { k\in \mathbb Z^ 2} \left (-\frac { 4\pi ^ 2} { L^ 2} \nu k^ 2|\hat U_ k|^ 2+\hat U_ { -k} \hat G_ k\right )
2022-05-19 17:04:30 +00:00
.
\end { equation}
Furthermore,
\begin { equation}
2023-03-31 19:40:15 +00:00
\sum _ { k\in \mathbb Z^ 2} k^ 2|\hat U_ k|^ 2\geqslant
\sum _ { k\in \mathbb Z^ 2} |\hat U_ k|^ 2-|\hat U_ 0|^ 2
=2E-|\hat U_ 0|^ 2
2022-05-19 17:04:30 +00:00
\end { equation}
so
\begin { equation}
2023-03-31 19:40:15 +00:00
\partial _ t E\leqslant -\frac { 8\pi ^ 2} { L^ 2} \nu E+\frac { 4\pi ^ 2} { L^ 2} \nu \hat U_ 0^ 2+\sum _ { k\in \mathbb Z^ 2} \hat U_ { -k} \hat G_ k
2022-05-19 17:04:30 +00:00
\leqslant
2023-03-31 19:40:15 +00:00
-\frac { 8\pi ^ 2} { L^ 2} \nu E+\frac { 4\pi ^ 2} { L^ 2} \nu \hat U_ 0^ 2+
\| \hat G\| _ 2\sqrt { 2E}
2022-05-19 17:04:30 +00:00
.
\end { equation}
2023-03-31 19:40:15 +00:00
In particular, if $ \hat U _ 0 = 0 $ (which corresponds to keeping the center of mass fixed),
2022-05-19 17:04:30 +00:00
\begin { equation}
2023-03-31 19:40:15 +00:00
\partial _ t E\leqslant -\frac { 8\pi ^ 2} { L^ 2} \nu E+\| \hat G\| _ 2\sqrt { 2E}
2022-05-19 17:04:30 +00:00
.
\end { equation}
2023-03-31 19:40:15 +00:00
Now, if $ \frac { 8 \pi ^ 2 } { L ^ 2 } \nu \sqrt E< \sqrt 2 \| \hat G \| _ 2 $ , then
2022-05-19 17:04:30 +00:00
\begin { equation}
2023-03-31 19:40:15 +00:00
\frac { \partial _ t E} { -\frac { 8\pi ^ 2} { L^ 2} \nu E+\| \hat G\| _ 2\sqrt { 2E} } \leqslant 1
2022-05-19 17:04:30 +00:00
\end { equation}
and so
\begin { equation}
2023-03-31 19:40:15 +00:00
\frac { \log (1-\frac { 8\pi ^ 2\nu } { L^ 2\sqrt 2\| \hat G\| _ 2} \sqrt { E(t)} )} { -\frac { 4\pi ^ 2} { L^ 2} \nu } \leqslant t+
\frac { \log (1-\frac { 8\pi ^ 2\nu } { L^ 2\sqrt 2\| \hat G\| _ 2} \sqrt { E(0)} )} { -\frac { 4\pi ^ 2} { L^ 2} \nu }
2022-05-19 17:04:30 +00:00
\end { equation}
and
\begin { equation}
E(t)
\leqslant
\left (
2023-03-31 19:40:15 +00:00
\frac { L^ 2\sqrt 2\| \hat G\| _ 2} { 8\pi ^ 2\nu } (1-e^ { -\frac { 4\pi ^ 2} { L^ 2} \nu t} )
2022-05-25 14:56:48 +00:00
+e^ { -\frac { 4\pi ^ 2} { L^ 2} \nu t} \sqrt { E(0)}
2022-05-19 17:04:30 +00:00
\right )^ 2
.
\end { equation}
2023-03-31 19:40:15 +00:00
If $ \frac { 8 \pi ^ 2 } { L ^ 2 } \nu \sqrt E> \sqrt 2 \| \hat G \| _ 2 $ ,
2022-05-19 17:04:30 +00:00
\begin { equation}
2023-03-31 19:40:15 +00:00
\frac { \partial _ t E} { -\frac { 8\pi ^ 2} { L^ 2} \nu E+\| \hat G\| _ 2\sqrt { 2E} } \geqslant 1
2022-05-19 17:04:30 +00:00
\end { equation}
and so
\begin { equation}
2023-03-31 19:40:15 +00:00
\frac { \log (\frac { 8\pi ^ 2\nu } { L^ 2\sqrt 2\| \hat G\| _ 2} \sqrt { E(t)} -1)} { -\frac { 4\pi ^ 2} { L^ 2} \nu } \geqslant t+
\frac { \log (\frac { 8\pi ^ 2\nu } { L^ 2\sqrt 2\| \hat G\| _ 2} \sqrt { E(0)} )-1} { -\frac { 4\pi ^ 2} { L^ 2} \nu }
2022-05-19 17:04:30 +00:00
\end { equation}
and
\begin { equation}
E(t)
\leqslant
\left (
2023-03-31 19:40:15 +00:00
\frac { L^ 2\sqrt 2\| \hat G\| _ 2} { 8\pi ^ 2\nu } (1-e^ { -\frac { 4\pi ^ 2} { L^ 2} \nu t} )
2022-05-25 14:56:48 +00:00
+e^ { -\frac { 4\pi ^ 2} { L^ 2} \nu t} \sqrt { E(0)}
2022-05-19 17:04:30 +00:00
\right )^ 2
.
\end { equation}
\bigskip
\point { \bf Enstrophy} .
The enstrophy is defined as
\begin { equation}
2023-03-31 19:40:15 +00:00
\mathcal En(t)=\int \frac { dx} { L^ 2} \ |\nabla U|^ 2
=\frac { 4\pi ^ 2} { L^ 2} \sum _ { k\in \mathbb Z^ 2} k^ 2|\hat U_ k|^ 2
2022-05-19 17:04:30 +00:00
.
\end { equation}
2022-05-26 18:12:18 +00:00
\bigskip
\point { \bf Numerical instability} .
In order to prevent the algorithm from blowing up, it is necessary to impose the reality of $ u ( x ) $ by hand, otherwise, truncation errors build up, and lead to divergences.
2023-03-31 19:40:15 +00:00
It is sufficient to ensure that the convolution term $ T ( \hat u,k ) $ satisfies $ T ( \hat u, - k ) = T ( \hat u,k ) ^ * $ .
2022-05-26 18:12:18 +00:00
After imposing this condition, the algorithm no longer blows up, but it is still unstable (for instance, increasing $ K _ 1 $ or $ K _ 2 $ leads to very different results).
2018-01-11 22:48:14 +00:00
2023-03-31 19:40:15 +00:00
\subsection { Reversible equation}
\indent The reversible equation is similar to\- ~(\ref { ins} ) but instead of fixing the viscosity, we fix the enstrophy\- ~\cite { Ga22} .
It is defined directly in Fourier space:
\begin { equation}
\partial _ t\hat U_ k=
-\frac { 4\pi ^ 2} { L^ 2} \alpha (\hat U) k^ 2\hat U_ k+\hat G_ k
-i\frac { 2\pi } L\sum _ { \displaystyle \mathop { \scriptstyle p,q\in \mathbb Z^ 2} _ { p+q=k} }
(q\cdot \hat U_ p)\hat U_ q
,\quad
k\cdot \hat U_ k=0
\end { equation}
where $ \alpha $ is chosen such that the enstrophy is constant.
In terms of $ \hat u $ \- ~(\ref { udef} ), (\ref { gdef} ), (\ref { T} ):
\begin { equation}
\partial _ t\hat u_ k=
-\frac { 4\pi ^ 2} { L^ 2} \alpha (\hat u) k^ 2\hat u_ k
+\hat g_ k
+\frac { 4\pi ^ 2} { L^ 2|k|} T(\hat u,k)
.
\label { rns_ k}
\end { equation}
To compute $ \alpha $ , we use the constancy of the enstrophy:
\begin { equation}
\sum _ { k\in \mathbb Z^ 2} k^ 2\hat U_ k\cdot \partial _ t\hat U_ k
=0
\end { equation}
which, in terms of $ \hat u $ is
\begin { equation}
2023-03-31 20:58:52 +00:00
\sum _ { k\in \mathbb Z^ 2} k^ 2\hat u_ k^ *\partial _ t\hat u_ k
2023-03-31 19:40:15 +00:00
=0
\end { equation}
that is
\begin { equation}
2023-03-31 20:58:52 +00:00
\frac { 4\pi ^ 2} { L^ 2} \alpha (\hat u)\sum _ { k\in \mathbb Z^ 2} k^ 4|\hat u_ k|^ 2
2023-03-31 19:40:15 +00:00
=
2023-03-31 20:58:52 +00:00
\sum _ { k\in \mathbb Z^ 2} k^ 2\hat u_ k^ *\hat g_ k
+\frac { 4\pi ^ 2} { L^ 2} \sum _ { k\in \mathbb Z^ 2} |k|\hat u_ k^ *T(\hat u,k)
2023-03-31 19:40:15 +00:00
\end { equation}
and so
\begin { equation}
\alpha (\hat u)
2023-03-31 20:58:52 +00:00
=\frac { \frac { L^ 2} { 4\pi ^ 2} \sum _ k k^ 2\hat u_ k^ *\hat g_ k+\sum _ k|k|\hat u_ k^ *T(\hat u,k)} { \sum _ kk^ 4|\hat u_ k|^ 2}
.
\end { equation}
Note that, by\- ~(\ref { realu} )-(\ref { realT} ),
\begin { equation}
\alpha (\hat u)\in \mathbb R
2023-03-31 19:40:15 +00:00
.
\end { equation}
2018-01-11 22:48:14 +00:00
\vfill
\eject
\begin { thebibliography} { WWW99}
\small
\IfFileExists { bibliography/bibliography.tex} { \input bibliography/bibliography.tex} { }
\end { thebibliography}
\end { document}