Nstrophy/docs/nstrophy_doc/nstrophy_doc.tex

310 lines
9.1 KiB
TeX
Raw Normal View History

2018-01-11 22:48:14 +00:00
\documentclass{ian}
\usepackage{largearray}
\begin{document}
\hbox{}
\hfil{\bf\LARGE
{\tt nstrophy}
}
\vfill
\tableofcontents
\vfill
\eject
\setcounter{page}1
\pagestyle{plain}
\section{Description of the computation}
\subsection{Irreversible equation}
2022-05-25 14:56:48 +00:00
\indent Consider the incompressible Navier-Stokes equation in 2 dimensions
2018-01-11 22:48:14 +00:00
\begin{equation}
2023-03-31 19:40:15 +00:00
\partial_tU=\nu\Delta U+G-(U\cdot\nabla)U,\quad
\nabla\cdot U=0
2018-01-11 22:48:14 +00:00
\label{ins}
\end{equation}
2023-03-31 19:40:15 +00:00
in which $G$ is the forcing term.
We take periodic boundary conditions, so, at every given time, $U(t,\cdot)$ is a function on the torus $\mathbb T^2:=\mathbb R^2/(L\mathbb Z)^2$. We represent $U(t,\cdot)$ using its Fourier series
2018-01-11 22:48:14 +00:00
\begin{equation}
2023-03-31 19:40:15 +00:00
\hat U_k(t):=\frac1{L^2}\int_{\mathbb T^2}dx\ e^{i\frac{2\pi}L kx}U(t,x)
2018-01-11 22:48:14 +00:00
\end{equation}
for $k\in\mathbb Z^2$, and rewrite~\-(\ref{ins}) as
\begin{equation}
2023-03-31 19:40:15 +00:00
\partial_t\hat U_k=
-\frac{4\pi^2}{L^2}\nu k^2\hat U_k+\hat G_k
2022-05-25 14:56:48 +00:00
-i\frac{2\pi}L\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}}
2023-03-31 19:40:15 +00:00
(q\cdot\hat U_p)\hat U_q
2018-01-11 22:48:14 +00:00
,\quad
2023-03-31 19:40:15 +00:00
k\cdot\hat U_k=0
2018-01-11 22:48:14 +00:00
\label{ins_k}
\end{equation}
We then reduce the equation to a scalar one, by writing
\begin{equation}
2023-03-31 19:40:15 +00:00
\hat U_k=\frac{i2\pi k^\perp}{L|k|}\hat u_k\equiv\frac{i2\pi}{L|k|}(-k_y\hat u_k,k_x\hat u_k)
\label{udef}
2018-01-11 22:48:14 +00:00
\end{equation}
2022-05-25 14:56:48 +00:00
in terms of which, multiplying both sides of the equation by $\frac L{i2\pi}\frac{k^\perp}{|k|}$,
2018-01-11 22:48:14 +00:00
\begin{equation}
2023-03-31 19:40:15 +00:00
\partial_t\hat u_k=
-\frac{4\pi^2}{L^2}\nu k^2\hat u_k
+\hat g_k
2022-05-25 14:56:48 +00:00
+\frac{4\pi^2}{L^2|k|}\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}}
2023-03-31 19:40:15 +00:00
\frac{(q\cdot p^\perp)(k^\perp\cdot q^\perp)}{|q||p|}\hat u_p\hat u_q
2018-01-11 22:48:14 +00:00
\label{ins_k}
\end{equation}
2023-03-31 19:40:15 +00:00
with
\begin{equation}
\hat g_k:=\frac{Lk^\perp}{2i\pi|k|}\cdot\hat G_k
.
\label{gdef}
\end{equation}
2018-01-12 19:20:59 +00:00
Furthermore
\begin{equation}
(q\cdot p^\perp)(k^\perp\cdot q^\perp)
=
(q\cdot p^\perp)(q^2+p\cdot q)
\end{equation}
and $q\cdot p^\perp$ is antisymmetric under exchange of $q$ and $p$. Therefore,
2018-01-11 22:48:14 +00:00
\begin{equation}
2023-03-31 19:40:15 +00:00
\partial_t\hat u_k=
-\frac{4\pi^2}{L^2}\nu k^2\hat u_k+\hat g_k
2022-05-25 14:56:48 +00:00
+\frac{4\pi^2}{L^2|k|}\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}}
2023-03-31 19:40:15 +00:00
\frac{(q\cdot p^\perp)|q|}{|p|}\hat u_p\hat u_q
2018-01-11 22:48:14 +00:00
.
\label{ins_k}
\end{equation}
2023-03-31 19:40:15 +00:00
We truncate the Fourier modes and assume that $\hat u_k=0$ if $|k_1|>K_1$ or $|k_2|>K_2$. Let
2018-01-11 22:48:14 +00:00
\begin{equation}
\mathcal K:=\{(k_1,k_2),\ |k_1|\leqslant K_1,\ |k_2|\leqslant K_2\}
.
\end{equation}
\bigskip
\point{\bf FFT}. We compute the last term in~\-(\ref{ins_k})
\begin{equation}
2023-03-31 19:40:15 +00:00
T(\hat u,k):=
2018-01-11 22:48:14 +00:00
\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}}
2023-03-31 19:40:15 +00:00
\frac{(q\cdot p^\perp)|q|}{|p|}\hat u_q\hat u_p
\label{T}
2018-01-11 22:48:14 +00:00
\end{equation}
using a fast Fourier transform, defined as
\begin{equation}
\mathcal F(f)(n):=\sum_{m\in\mathcal N}e^{-\frac{2i\pi}{N_1}m_1n_1-\frac{2i\pi}{N_2}m_2n_2}f(m_1,m_2)
\end{equation}
where
\begin{equation}
2022-05-12 07:32:58 +00:00
\mathcal N:=\{(n_1,n_2),\ 0\leqslant n_1< N_1,\ 0\leqslant n_2< N_2\}
2018-01-11 22:48:14 +00:00
\end{equation}
for some fixed $N_1,N_2$. The transform is inverted by
\begin{equation}
\frac1{N_1N_2}\mathcal F^*(\mathcal F(f))(n)=f(n)
\end{equation}
in which $\mathcal F^*$ is defined like $\mathcal F$ but with the opposite phase.
\bigskip
\indent The condition $p+q=k$ can be rewritten as
\begin{equation}
2023-03-31 19:40:15 +00:00
T(\hat u,k)
2018-01-11 22:48:14 +00:00
=
\sum_{p,q\in\mathcal K}
\frac1{N_1N_2}
\sum_{n\in\mathcal N}e^{-\frac{2i\pi}{N_1}n_1(p_1+q_1-k_1)-\frac{2i\pi}{N_2}n_2(p_2+q_2-k_2)}
2023-03-31 19:40:15 +00:00
(q\cdot p^\perp)\frac{|q|}{|p|}\hat u_q\hat u_p
2018-01-11 22:48:14 +00:00
\end{equation}
provided
\begin{equation}
N_i>3K_i.
2018-01-11 22:48:14 +00:00
\end{equation}
Indeed, $\sum_{n_i=0}^{N_i}e^{-\frac{2i\pi}{N_i}n_im_i}$ vanishes unless $m_i=0\%N_i$ (in which $\%N_i$ means `modulo $N_i$'), and, if $p,q,k\in\mathcal K$, then $|p_i+q_i-k_i|\leqslant3K_i$, so, as long as $N_i>3K_i$, then $(p_i+q_i-k_i)=0\%N_i$ implies $p_i+q_i=k_i$.
2022-05-12 07:32:58 +00:00
Therefore,
2018-01-11 22:48:14 +00:00
\begin{equation}
2023-03-31 19:40:15 +00:00
T(\hat u,k)
2018-01-11 22:48:14 +00:00
=
\textstyle
2018-01-12 19:20:59 +00:00
\frac1{N_1N_2}
2018-01-11 22:48:14 +00:00
\mathcal F^*\left(
2023-03-31 19:40:15 +00:00
\mathcal F\left(\frac{p_x\hat u_p}{|p|}\right)(n)
\mathcal F\left(q_y|q|\hat u_q\right)(n)
2018-01-12 19:20:59 +00:00
-
2023-03-31 19:40:15 +00:00
\mathcal F\left(\frac{p_y\hat u_p}{|p|}\right)(n)
\mathcal F\left(q_x|q|\hat u_q\right)(n)
2018-01-11 22:48:14 +00:00
\right)(k)
\end{equation}
2022-05-19 17:04:30 +00:00
\bigskip
2018-01-11 22:48:14 +00:00
2022-05-19 17:04:30 +00:00
\point{\bf Energy}.
We define the energy as
\begin{equation}
2023-03-31 19:40:15 +00:00
E(t)=\frac12\int\frac{dx}{L^2}\ U^2(t,x)=\frac12\sum_{k\in\mathbb Z^2}|\hat U_k|^2
2022-05-19 17:04:30 +00:00
.
\end{equation}
We have
\begin{equation}
2023-03-31 19:40:15 +00:00
\partial_t E=\int\frac{dx}{L^2}\ U\partial tU
2022-05-19 17:04:30 +00:00
=
2023-03-31 19:40:15 +00:00
\nu\int\frac{dx}{L^2}\ U\Delta U
+\int\frac{dx}{L^2}\ UG
-\int\frac{dx}{L^2}\ U(U\cdot\nabla)U
2022-05-19 17:04:30 +00:00
.
\end{equation}
Since we have periodic boundary conditions,
\begin{equation}
2023-03-31 19:40:15 +00:00
\int dx\ U\Delta U=-\int dx\ |\nabla U|^2
2022-05-19 17:04:30 +00:00
.
\end{equation}
Furthermore,
\begin{equation}
2023-03-31 19:40:15 +00:00
I:=\int dx\ U(U\cdot\nabla)U
=\sum_{i,j=1,2}\int dx\ U_iU_j\partial_jU_i
2022-05-19 17:04:30 +00:00
=
2023-03-31 19:40:15 +00:00
-\sum_{i,j=1,2}\int dx\ (\partial_jU_i)U_jU_i
-\sum_{i,j=1,2}\int dx\ U_i(\partial_jU_j)U_i
2022-05-19 17:04:30 +00:00
\end{equation}
2023-03-31 19:40:15 +00:00
and since $\nabla\cdot U=0$,
2022-05-19 17:04:30 +00:00
\begin{equation}
I
=
-I
\end{equation}
and so $I=0$.
Thus,
\begin{equation}
\partial_t E=
2023-03-31 19:40:15 +00:00
\int\frac{dx}{L^2}\ \left(-\nu|\nabla U|^2+UG\right)
2022-05-19 17:04:30 +00:00
=
2023-03-31 19:40:15 +00:00
\sum_{k\in\mathbb Z^2}\left(-\frac{4\pi^2}{L^2}\nu k^2|\hat U_k|^2+\hat U_{-k}\hat G_k\right)
2022-05-19 17:04:30 +00:00
.
\end{equation}
Furthermore,
\begin{equation}
2023-03-31 19:40:15 +00:00
\sum_{k\in\mathbb Z^2}k^2|\hat U_k|^2\geqslant
\sum_{k\in\mathbb Z^2}|\hat U_k|^2-|\hat U_0|^2
=2E-|\hat U_0|^2
2022-05-19 17:04:30 +00:00
\end{equation}
so
\begin{equation}
2023-03-31 19:40:15 +00:00
\partial_t E\leqslant -\frac{8\pi^2}{L^2}\nu E+\frac{4\pi^2}{L^2}\nu\hat U_0^2+\sum_{k\in\mathbb Z^2}\hat U_{-k}\hat G_k
2022-05-19 17:04:30 +00:00
\leqslant
2023-03-31 19:40:15 +00:00
-\frac{8\pi^2}{L^2}\nu E+\frac{4\pi^2}{L^2}\nu\hat U_0^2+
\|\hat G\|_2\sqrt{2E}
2022-05-19 17:04:30 +00:00
.
\end{equation}
2023-03-31 19:40:15 +00:00
In particular, if $\hat U_0=0$ (which corresponds to keeping the center of mass fixed),
2022-05-19 17:04:30 +00:00
\begin{equation}
2023-03-31 19:40:15 +00:00
\partial_t E\leqslant -\frac{8\pi^2}{L^2}\nu E+\|\hat G\|_2\sqrt{2E}
2022-05-19 17:04:30 +00:00
.
\end{equation}
2023-03-31 19:40:15 +00:00
Now, if $\frac{8\pi^2}{L^2}\nu\sqrt E<\sqrt2\|\hat G\|_2$, then
2022-05-19 17:04:30 +00:00
\begin{equation}
2023-03-31 19:40:15 +00:00
\frac{\partial_t E}{-\frac{8\pi^2}{L^2}\nu E+\|\hat G\|_2\sqrt{2E}}\leqslant1
2022-05-19 17:04:30 +00:00
\end{equation}
and so
\begin{equation}
2023-03-31 19:40:15 +00:00
\frac{\log(1-\frac{8\pi^2\nu}{L^2\sqrt2\|\hat G\|_2}\sqrt{E(t)})}{-\frac{4\pi^2}{L^2}\nu}\leqslant t+
\frac{\log(1-\frac{8\pi^2\nu}{L^2\sqrt2\|\hat G\|_2}\sqrt{E(0)})}{-\frac{4\pi^2}{L^2}\nu}
2022-05-19 17:04:30 +00:00
\end{equation}
and
\begin{equation}
E(t)
\leqslant
\left(
2023-03-31 19:40:15 +00:00
\frac{L^2\sqrt2\|\hat G\|_2}{8\pi^2\nu}(1-e^{-\frac{4\pi^2}{L^2}\nu t})
2022-05-25 14:56:48 +00:00
+e^{-\frac{4\pi^2}{L^2}\nu t}\sqrt{E(0)}
2022-05-19 17:04:30 +00:00
\right)^2
.
\end{equation}
2023-03-31 19:40:15 +00:00
If $\frac{8\pi^2}{L^2}\nu\sqrt E>\sqrt2\|\hat G\|_2$,
2022-05-19 17:04:30 +00:00
\begin{equation}
2023-03-31 19:40:15 +00:00
\frac{\partial_t E}{-\frac{8\pi^2}{L^2}\nu E+\|\hat G\|_2\sqrt{2E}}\geqslant1
2022-05-19 17:04:30 +00:00
\end{equation}
and so
\begin{equation}
2023-03-31 19:40:15 +00:00
\frac{\log(\frac{8\pi^2\nu}{L^2\sqrt2\|\hat G\|_2}\sqrt{E(t)}-1)}{-\frac{4\pi^2}{L^2}\nu}\geqslant t+
\frac{\log(\frac{8\pi^2\nu}{L^2\sqrt2\|\hat G\|_2}\sqrt{E(0)})-1}{-\frac{4\pi^2}{L^2}\nu}
2022-05-19 17:04:30 +00:00
\end{equation}
and
\begin{equation}
E(t)
\leqslant
\left(
2023-03-31 19:40:15 +00:00
\frac{L^2\sqrt2\|\hat G\|_2}{8\pi^2\nu}(1-e^{-\frac{4\pi^2}{L^2}\nu t})
2022-05-25 14:56:48 +00:00
+e^{-\frac{4\pi^2}{L^2}\nu t}\sqrt{E(0)}
2022-05-19 17:04:30 +00:00
\right)^2
.
\end{equation}
\bigskip
\point{\bf Enstrophy}.
The enstrophy is defined as
\begin{equation}
2023-03-31 19:40:15 +00:00
\mathcal En(t)=\int\frac{dx}{L^2}\ |\nabla U|^2
=\frac{4\pi^2}{L^2}\sum_{k\in\mathbb Z^2}k^2|\hat U_k|^2
2022-05-19 17:04:30 +00:00
.
\end{equation}
2022-05-26 18:12:18 +00:00
\bigskip
\point{\bf Numerical instability}.
In order to prevent the algorithm from blowing up, it is necessary to impose the reality of $u(x)$ by hand, otherwise, truncation errors build up, and lead to divergences.
2023-03-31 19:40:15 +00:00
It is sufficient to ensure that the convolution term $T(\hat u,k)$ satisfies $T(\hat u,-k)=T(\hat u,k)^*$.
2022-05-26 18:12:18 +00:00
After imposing this condition, the algorithm no longer blows up, but it is still unstable (for instance, increasing $K_1$ or $K_2$ leads to very different results).
2018-01-11 22:48:14 +00:00
2023-03-31 19:40:15 +00:00
\subsection{Reversible equation}
\indent The reversible equation is similar to\-~(\ref{ins}) but instead of fixing the viscosity, we fix the enstrophy\-~\cite{Ga22}.
It is defined directly in Fourier space:
\begin{equation}
\partial_t\hat U_k=
-\frac{4\pi^2}{L^2}\alpha(\hat U) k^2\hat U_k+\hat G_k
-i\frac{2\pi}L\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}}
(q\cdot\hat U_p)\hat U_q
,\quad
k\cdot\hat U_k=0
\end{equation}
where $\alpha$ is chosen such that the enstrophy is constant.
In terms of $\hat u$\-~(\ref{udef}), (\ref{gdef}), (\ref{T}):
\begin{equation}
\partial_t\hat u_k=
-\frac{4\pi^2}{L^2}\alpha(\hat u) k^2\hat u_k
+\hat g_k
+\frac{4\pi^2}{L^2|k|}T(\hat u,k)
.
\label{rns_k}
\end{equation}
To compute $\alpha$, we use the constancy of the enstrophy:
\begin{equation}
\sum_{k\in\mathbb Z^2}k^2\hat U_k\cdot\partial_t\hat U_k
=0
\end{equation}
which, in terms of $\hat u$ is
\begin{equation}
\sum_{k\in\mathbb Z^2}k^2\hat u_k\partial_t\hat u_k
=0
\end{equation}
that is
\begin{equation}
\frac{4\pi^2}{L^2}\alpha(\hat u)\sum_{k\in\mathbb Z^2}k^4\hat u_k^2
=
\sum_{k\in\mathbb Z^2}k^2\hat u_k\hat g_k
+\frac{4\pi^2}{L^2}\sum_{k\in\mathbb Z^2}|k|\hat u_kT(\hat u,k)
\end{equation}
and so
\begin{equation}
\alpha(\hat u)
=\frac{\frac{L^2}{4\pi^2}\sum_k k^2\hat u_k\hat g_k+\sum_k|k|\hat u_kT(\hat u,k)}{\sum_kk^4\hat u_k^2}
.
\end{equation}
2018-01-11 22:48:14 +00:00
\vfill
\eject
\begin{thebibliography}{WWW99}
\small
\IfFileExists{bibliography/bibliography.tex}{\input bibliography/bibliography.tex}{}
\end{thebibliography}
\end{document}