Energy ineuqalities in doc
This commit is contained in:
		@@ -125,7 +125,117 @@ Therefore,
 | 
			
		||||
    \mathcal F\left(q_x|q|\hat\varphi_q\right)(n)
 | 
			
		||||
  \right)(k)
 | 
			
		||||
\end{equation}
 | 
			
		||||
\bigskip
 | 
			
		||||
 | 
			
		||||
\point{\bf Energy}.
 | 
			
		||||
We define the energy as
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  E(t)=\frac12\int dx\ u^2(t,x)=\frac12\sum_{k\in\mathbb Z^2}|\hat u_k|^2
 | 
			
		||||
  .
 | 
			
		||||
\end{equation}
 | 
			
		||||
We have
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \partial_t E=\int dx\ u\partial tu
 | 
			
		||||
  =
 | 
			
		||||
  \nu\int dx\ u\Delta u
 | 
			
		||||
  +\int dx\ ug
 | 
			
		||||
  -\int dx\ u(u\cdot\nabla)u
 | 
			
		||||
  .
 | 
			
		||||
\end{equation}
 | 
			
		||||
Since we have periodic boundary conditions,
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \int dx\ u\Delta u=-\int dx\ |\nabla u|^2
 | 
			
		||||
  .
 | 
			
		||||
\end{equation}
 | 
			
		||||
Furthermore,
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  I:=\int dx\ u(u\cdot\nabla)u
 | 
			
		||||
  =\sum_{i,j=1,2}\int dx\ u_iu_j\partial_ju_i
 | 
			
		||||
  =
 | 
			
		||||
  -\sum_{i,j=1,2}\int dx\ (\partial_ju_i)u_ju_i
 | 
			
		||||
  -\sum_{i,j=1,2}\int dx\ u_i(\partial_ju_j)u_i
 | 
			
		||||
\end{equation}
 | 
			
		||||
and since $\nabla\cdot u=0$,
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  I
 | 
			
		||||
  =
 | 
			
		||||
  -I
 | 
			
		||||
\end{equation}
 | 
			
		||||
and so $I=0$.
 | 
			
		||||
Thus,
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \partial_t E=
 | 
			
		||||
  \int dx\ \left(-\nu|\nabla u|^2+ug\right)
 | 
			
		||||
  =
 | 
			
		||||
  \sum_{k\in\mathbb Z^2}\left(-4\pi^2\nu k^2|\hat u_k|^2+\hat u_{-k}\hat g_k\right)
 | 
			
		||||
  .
 | 
			
		||||
\end{equation}
 | 
			
		||||
Furthermore,
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \sum_{k\in\mathbb Z^2}k^2|\hat u_k|^2\geqslant
 | 
			
		||||
  \sum_{k\in\mathbb Z^2}|\hat u_k|^2-|\hat u_0|^2
 | 
			
		||||
  =2E-|\hat u_0|^2
 | 
			
		||||
\end{equation}
 | 
			
		||||
so
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \partial_t E\leqslant -8\pi^2\nu E+4\pi^2\nu\hat u_0^2+\sum_{k\in\mathbb Z^2}\hat u_{-k}\hat g_k
 | 
			
		||||
  \leqslant
 | 
			
		||||
  -8\pi^2\nu E+4\pi^2\nu\hat u_0^2+
 | 
			
		||||
  \|\hat g\|_2\sqrt{2E}
 | 
			
		||||
  .
 | 
			
		||||
\end{equation}
 | 
			
		||||
In particular, if $\hat u_0=0$ (which corresponds to keeping the center of mass fixed),
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \partial_t E\leqslant -8\pi^2\nu E+\|\hat g\|_2\sqrt{2E}
 | 
			
		||||
  .
 | 
			
		||||
\end{equation}
 | 
			
		||||
Now, if $8\pi^2\nu\sqrt E<\sqrt2\|\hat g\|_2$, then
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \frac{\partial_t E}{-8\pi^2\nu E+\|\hat g\|_2\sqrt{2E}}\leqslant1
 | 
			
		||||
\end{equation}
 | 
			
		||||
and so
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \frac{\log(1-\frac{8\pi^2\nu}{\sqrt2\|\hat g\|_2}\sqrt{E(t)})}{-4\pi^2\nu}\leqslant t+
 | 
			
		||||
  \frac{\log(1-\frac{8\pi^2\nu}{\sqrt2\|\hat g\|_2}\sqrt{E(0)})}{-4\pi^2\nu}
 | 
			
		||||
\end{equation}
 | 
			
		||||
and
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  E(t)
 | 
			
		||||
  \leqslant
 | 
			
		||||
  \left(
 | 
			
		||||
    \frac{\sqrt2\|\hat g\|_2}{8\pi^2\nu}(1-e^{-4\pi^2\nu t})
 | 
			
		||||
    +e^{-4\pi^2\nu t}\sqrt{E(0)}
 | 
			
		||||
  \right)^2
 | 
			
		||||
  .
 | 
			
		||||
\end{equation}
 | 
			
		||||
If $8\pi^2\nu\sqrt E>\sqrt2\|\hat g\|_2$,
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \frac{\partial_t E}{-8\pi^2\nu E+\|\hat g\|_2\sqrt{2E}}\geqslant1
 | 
			
		||||
\end{equation}
 | 
			
		||||
and so
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \frac{\log(\frac{8\pi^2\nu}{\sqrt2\|\hat g\|_2}\sqrt{E(t)}-1)}{-4\pi^2\nu}\geqslant t+
 | 
			
		||||
  \frac{\log(\frac{8\pi^2\nu}{\sqrt2\|\hat g\|_2}\sqrt{E(0)})-1}{-4\pi^2\nu}
 | 
			
		||||
\end{equation}
 | 
			
		||||
and
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  E(t)
 | 
			
		||||
  \leqslant
 | 
			
		||||
  \left(
 | 
			
		||||
    \frac{\sqrt2\|\hat g\|_2}{8\pi^2\nu}(1-e^{-4\pi^2\nu t})
 | 
			
		||||
    +e^{-4\pi^2\nu t}\sqrt{E(0)}
 | 
			
		||||
  \right)^2
 | 
			
		||||
  .
 | 
			
		||||
\end{equation}
 | 
			
		||||
\bigskip
 | 
			
		||||
 | 
			
		||||
\point{\bf Enstrophy}.
 | 
			
		||||
The enstrophy is defined as
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \mathcal En(t)=\int dx\ |\nabla u|^2
 | 
			
		||||
  =4\pi^2\sum_{k\in\mathbb Z^2}k^2|\hat u_k|^2
 | 
			
		||||
  .
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
\eject
 | 
			
		||||
@@ -135,5 +245,4 @@ Therefore,
 | 
			
		||||
\IfFileExists{bibliography/bibliography.tex}{\input bibliography/bibliography.tex}{}
 | 
			
		||||
\end{thebibliography}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\end{document}
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user