Correctly deal with complex values in lyapunov exponents documentation

This commit is contained in:
Ian Jauslin 2025-01-27 17:14:46 -05:00
parent 328f3bd99c
commit fa52397e87

View File

@ -446,18 +446,32 @@ Consider an equation of the form
\dot u=f(t;u)
.
\end{equation}
Now, the flow may not be complex-differentiable, so the tangent flow should be computed on the real and imaginary parts.
Let
\begin{equation}
u=\zeta+i\xi
,\quad
f(t;u)=\theta(t;\zeta,\xi)+i\psi(t;\zeta,\xi)
.
\end{equation}
The tangent flow is given by
\begin{equation}
\dot\delta=Df(t;u(t))\delta
\dot\delta=\left(\begin{array}{cc}
D_\zeta\theta&D_\xi\theta\\
D_\zeta\psi&D_\xi\psi
\end{array}\right)\delta
\end{equation}
where $Df$ is the Jacobian of $f$ with respect to $u$.
where $D_\zeta\theta$ is the Jacobian of $\theta$ with respect to $\zeta$ and so forth...
The flow of this equation is denoted by
\begin{equation}
\varphi_{t_0,t_1}(\delta_0)
\end{equation}
and defined by
\begin{equation}
\frac d{dt}\varphi_{t_0,t}(\delta_0)=Df(t;\varphi_{t_0,t}(\delta_0))\varphi_{t_0,t}(\delta_0)
\frac d{dt}\varphi_{t_0,t}(\delta_0)=\left(\begin{array}{cc}
D_\zeta\theta(t;\zeta,\xi)&D_\xi\theta(t;\zeta,\xi)\\
D_\zeta\psi(t;\zeta,\xi)&D_\xi\psi(t;\zeta,\xi)
\end{array}\right)\varphi_{t_0,t}(\delta_0)
,\quad
\varphi_{t_0,t_0}(\delta_0)=\delta_0
.
@ -510,26 +524,36 @@ The choice of the times $t_i$ can be done either by fixed-length intervals, spec
\bigskip
\indent
To compute the Lyapunov exponents, we thus need the Jacobian of $f$.
To compute the Lyapunov exponents, we thus need the Jacobians of $\theta$ and $\psi$.
Note that, by the linearity of the tangent flow equation,
\begin{equation}
((D \theta(\hat u))\delta)_{k}
=
\mathcal Re(Df(\hat u)(\delta_{\mathrm r}+i\delta_{\mathrm i}))
,\quad
((D \psi(\hat u))\delta)_{k}
=
\mathcal Im(Df(\hat u)(\delta_{\mathrm r}+i\delta_{\mathrm i}))
.
\end{equation}
For the irreversible equation,
\begin{equation}
f(\hat u)=
-\frac{4\pi^2}{L^2}\nu k^2\hat u_k+\hat g_k
+\frac{4\pi^2}{L^2|k|}T(\hat u,k)
\end{equation}
and so
and
\begin{equation}
((D f(\hat u))\delta)_k
((D f(\hat u))\delta)_{k}
=
-\frac{4\pi^2}{L^2}\nu k^2\delta_k
-\frac{4\pi^2}{L^2}\nu k^2\delta_{k}
+\frac{4\pi^2}{L^2|k|}DT(\hat u,k)\delta
\end{equation}
where
\begin{equation}
DT(\hat u,k)\delta
=
\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}}
\left(\frac{(q\cdot p^\perp)|q|}{|p|}+\frac{(p\cdot q^\perp)|p|}{|q|}\right)\hat u_p\hat \delta_q
\left(\frac{(q\cdot p^\perp)|q|}{|p|}+\frac{(p\cdot q^\perp)|p|}{|q|}\right)\hat u_p(\delta_{q,\mathrm r}+i\delta_{q,\mathrm i})
.
\end{equation}
%and, by\-~(\ref{T}),
@ -575,26 +599,6 @@ where
\end{equation}
%\indent
%To compute the Lyapunov exponents, we must first compute the Jacobian of $\hat u^{(n)}\mapsto\hat u^{(n+1)}$.
%This map is always of Runge-Kutta type, that is,
%\begin{equation}
% \hat u(t_{n+1})=\mathfrak F_{t_n}(\hat u(t_n))
% .
%\end{equation}
%Let $D\mathfrak F_{t_{n}}$ be the Jacobian of this map, in which we split the real and imaginary parts: if
%\begin{equation}
% \hat u_k(t_n)=:\rho_k+i\iota_k
% ,\quad
% \mathfrak F_{t_n}(\hat u(t_n))_k=:\phi_k+i\psi_k
%\end{equation}
%then
%\begin{equation}
% (D\mathfrak F_{t_n})_{k,p}:=\left(\begin{array}{cc}
% \partial_{\rho_p}\phi_k&\partial_{\iota_p}\phi_k\\
% \partial_{\rho_p}\psi_k&\partial_{\iota_p}\psi_k
% \end{array}\right)
%\end{equation}
%We compute this Jacobian numerically using a finite difference, by computing
%\begin{equation}
% (D\mathfrak F_{t_n})_{k,p}:=\frac1\epsilon