diff --git a/docs/nstrophy_doc.tex b/docs/nstrophy_doc.tex index 478a4c9..d68bd4e 100644 --- a/docs/nstrophy_doc.tex +++ b/docs/nstrophy_doc.tex @@ -446,18 +446,32 @@ Consider an equation of the form \dot u=f(t;u) . \end{equation} +Now, the flow may not be complex-differentiable, so the tangent flow should be computed on the real and imaginary parts. +Let +\begin{equation} + u=\zeta+i\xi + ,\quad + f(t;u)=\theta(t;\zeta,\xi)+i\psi(t;\zeta,\xi) + . +\end{equation} The tangent flow is given by \begin{equation} - \dot\delta=Df(t;u(t))\delta + \dot\delta=\left(\begin{array}{cc} + D_\zeta\theta&D_\xi\theta\\ + D_\zeta\psi&D_\xi\psi + \end{array}\right)\delta \end{equation} -where $Df$ is the Jacobian of $f$ with respect to $u$. +where $D_\zeta\theta$ is the Jacobian of $\theta$ with respect to $\zeta$ and so forth... The flow of this equation is denoted by \begin{equation} \varphi_{t_0,t_1}(\delta_0) \end{equation} and defined by \begin{equation} - \frac d{dt}\varphi_{t_0,t}(\delta_0)=Df(t;\varphi_{t_0,t}(\delta_0))\varphi_{t_0,t}(\delta_0) + \frac d{dt}\varphi_{t_0,t}(\delta_0)=\left(\begin{array}{cc} + D_\zeta\theta(t;\zeta,\xi)&D_\xi\theta(t;\zeta,\xi)\\ + D_\zeta\psi(t;\zeta,\xi)&D_\xi\psi(t;\zeta,\xi) + \end{array}\right)\varphi_{t_0,t}(\delta_0) ,\quad \varphi_{t_0,t_0}(\delta_0)=\delta_0 . @@ -510,26 +524,36 @@ The choice of the times $t_i$ can be done either by fixed-length intervals, spec \bigskip \indent -To compute the Lyapunov exponents, we thus need the Jacobian of $f$. +To compute the Lyapunov exponents, we thus need the Jacobians of $\theta$ and $\psi$. +Note that, by the linearity of the tangent flow equation, +\begin{equation} + ((D \theta(\hat u))\delta)_{k} + = + \mathcal Re(Df(\hat u)(\delta_{\mathrm r}+i\delta_{\mathrm i})) + ,\quad + ((D \psi(\hat u))\delta)_{k} + = + \mathcal Im(Df(\hat u)(\delta_{\mathrm r}+i\delta_{\mathrm i})) + . +\end{equation} For the irreversible equation, \begin{equation} f(\hat u)= -\frac{4\pi^2}{L^2}\nu k^2\hat u_k+\hat g_k +\frac{4\pi^2}{L^2|k|}T(\hat u,k) \end{equation} -and so +and \begin{equation} - ((D f(\hat u))\delta)_k + ((D f(\hat u))\delta)_{k} = - -\frac{4\pi^2}{L^2}\nu k^2\delta_k + -\frac{4\pi^2}{L^2}\nu k^2\delta_{k} +\frac{4\pi^2}{L^2|k|}DT(\hat u,k)\delta \end{equation} -where \begin{equation} DT(\hat u,k)\delta = \sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}} - \left(\frac{(q\cdot p^\perp)|q|}{|p|}+\frac{(p\cdot q^\perp)|p|}{|q|}\right)\hat u_p\hat \delta_q + \left(\frac{(q\cdot p^\perp)|q|}{|p|}+\frac{(p\cdot q^\perp)|p|}{|q|}\right)\hat u_p(\delta_{q,\mathrm r}+i\delta_{q,\mathrm i}) . \end{equation} %and, by\-~(\ref{T}), @@ -575,26 +599,6 @@ where \end{equation} -%\indent -%To compute the Lyapunov exponents, we must first compute the Jacobian of $\hat u^{(n)}\mapsto\hat u^{(n+1)}$. -%This map is always of Runge-Kutta type, that is, -%\begin{equation} -% \hat u(t_{n+1})=\mathfrak F_{t_n}(\hat u(t_n)) -% . -%\end{equation} -%Let $D\mathfrak F_{t_{n}}$ be the Jacobian of this map, in which we split the real and imaginary parts: if -%\begin{equation} -% \hat u_k(t_n)=:\rho_k+i\iota_k -% ,\quad -% \mathfrak F_{t_n}(\hat u(t_n))_k=:\phi_k+i\psi_k -%\end{equation} -%then -%\begin{equation} -% (D\mathfrak F_{t_n})_{k,p}:=\left(\begin{array}{cc} -% \partial_{\rho_p}\phi_k&\partial_{\iota_p}\phi_k\\ -% \partial_{\rho_p}\psi_k&\partial_{\iota_p}\psi_k -% \end{array}\right) -%\end{equation} %We compute this Jacobian numerically using a finite difference, by computing %\begin{equation} % (D\mathfrak F_{t_n})_{k,p}:=\frac1\epsilon