Correctly deal with complex values in lyapunov exponents documentation
This commit is contained in:
parent
328f3bd99c
commit
fa52397e87
@ -446,18 +446,32 @@ Consider an equation of the form
|
|||||||
\dot u=f(t;u)
|
\dot u=f(t;u)
|
||||||
.
|
.
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
Now, the flow may not be complex-differentiable, so the tangent flow should be computed on the real and imaginary parts.
|
||||||
|
Let
|
||||||
|
\begin{equation}
|
||||||
|
u=\zeta+i\xi
|
||||||
|
,\quad
|
||||||
|
f(t;u)=\theta(t;\zeta,\xi)+i\psi(t;\zeta,\xi)
|
||||||
|
.
|
||||||
|
\end{equation}
|
||||||
The tangent flow is given by
|
The tangent flow is given by
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\dot\delta=Df(t;u(t))\delta
|
\dot\delta=\left(\begin{array}{cc}
|
||||||
|
D_\zeta\theta&D_\xi\theta\\
|
||||||
|
D_\zeta\psi&D_\xi\psi
|
||||||
|
\end{array}\right)\delta
|
||||||
\end{equation}
|
\end{equation}
|
||||||
where $Df$ is the Jacobian of $f$ with respect to $u$.
|
where $D_\zeta\theta$ is the Jacobian of $\theta$ with respect to $\zeta$ and so forth...
|
||||||
The flow of this equation is denoted by
|
The flow of this equation is denoted by
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\varphi_{t_0,t_1}(\delta_0)
|
\varphi_{t_0,t_1}(\delta_0)
|
||||||
\end{equation}
|
\end{equation}
|
||||||
and defined by
|
and defined by
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\frac d{dt}\varphi_{t_0,t}(\delta_0)=Df(t;\varphi_{t_0,t}(\delta_0))\varphi_{t_0,t}(\delta_0)
|
\frac d{dt}\varphi_{t_0,t}(\delta_0)=\left(\begin{array}{cc}
|
||||||
|
D_\zeta\theta(t;\zeta,\xi)&D_\xi\theta(t;\zeta,\xi)\\
|
||||||
|
D_\zeta\psi(t;\zeta,\xi)&D_\xi\psi(t;\zeta,\xi)
|
||||||
|
\end{array}\right)\varphi_{t_0,t}(\delta_0)
|
||||||
,\quad
|
,\quad
|
||||||
\varphi_{t_0,t_0}(\delta_0)=\delta_0
|
\varphi_{t_0,t_0}(\delta_0)=\delta_0
|
||||||
.
|
.
|
||||||
@ -510,26 +524,36 @@ The choice of the times $t_i$ can be done either by fixed-length intervals, spec
|
|||||||
\bigskip
|
\bigskip
|
||||||
|
|
||||||
\indent
|
\indent
|
||||||
To compute the Lyapunov exponents, we thus need the Jacobian of $f$.
|
To compute the Lyapunov exponents, we thus need the Jacobians of $\theta$ and $\psi$.
|
||||||
|
Note that, by the linearity of the tangent flow equation,
|
||||||
|
\begin{equation}
|
||||||
|
((D \theta(\hat u))\delta)_{k}
|
||||||
|
=
|
||||||
|
\mathcal Re(Df(\hat u)(\delta_{\mathrm r}+i\delta_{\mathrm i}))
|
||||||
|
,\quad
|
||||||
|
((D \psi(\hat u))\delta)_{k}
|
||||||
|
=
|
||||||
|
\mathcal Im(Df(\hat u)(\delta_{\mathrm r}+i\delta_{\mathrm i}))
|
||||||
|
.
|
||||||
|
\end{equation}
|
||||||
For the irreversible equation,
|
For the irreversible equation,
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
f(\hat u)=
|
f(\hat u)=
|
||||||
-\frac{4\pi^2}{L^2}\nu k^2\hat u_k+\hat g_k
|
-\frac{4\pi^2}{L^2}\nu k^2\hat u_k+\hat g_k
|
||||||
+\frac{4\pi^2}{L^2|k|}T(\hat u,k)
|
+\frac{4\pi^2}{L^2|k|}T(\hat u,k)
|
||||||
\end{equation}
|
\end{equation}
|
||||||
and so
|
and
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
((D f(\hat u))\delta)_k
|
((D f(\hat u))\delta)_{k}
|
||||||
=
|
=
|
||||||
-\frac{4\pi^2}{L^2}\nu k^2\delta_k
|
-\frac{4\pi^2}{L^2}\nu k^2\delta_{k}
|
||||||
+\frac{4\pi^2}{L^2|k|}DT(\hat u,k)\delta
|
+\frac{4\pi^2}{L^2|k|}DT(\hat u,k)\delta
|
||||||
\end{equation}
|
\end{equation}
|
||||||
where
|
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
DT(\hat u,k)\delta
|
DT(\hat u,k)\delta
|
||||||
=
|
=
|
||||||
\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}}
|
\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}}
|
||||||
\left(\frac{(q\cdot p^\perp)|q|}{|p|}+\frac{(p\cdot q^\perp)|p|}{|q|}\right)\hat u_p\hat \delta_q
|
\left(\frac{(q\cdot p^\perp)|q|}{|p|}+\frac{(p\cdot q^\perp)|p|}{|q|}\right)\hat u_p(\delta_{q,\mathrm r}+i\delta_{q,\mathrm i})
|
||||||
.
|
.
|
||||||
\end{equation}
|
\end{equation}
|
||||||
%and, by\-~(\ref{T}),
|
%and, by\-~(\ref{T}),
|
||||||
@ -575,26 +599,6 @@ where
|
|||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
|
|
||||||
%\indent
|
|
||||||
%To compute the Lyapunov exponents, we must first compute the Jacobian of $\hat u^{(n)}\mapsto\hat u^{(n+1)}$.
|
|
||||||
%This map is always of Runge-Kutta type, that is,
|
|
||||||
%\begin{equation}
|
|
||||||
% \hat u(t_{n+1})=\mathfrak F_{t_n}(\hat u(t_n))
|
|
||||||
% .
|
|
||||||
%\end{equation}
|
|
||||||
%Let $D\mathfrak F_{t_{n}}$ be the Jacobian of this map, in which we split the real and imaginary parts: if
|
|
||||||
%\begin{equation}
|
|
||||||
% \hat u_k(t_n)=:\rho_k+i\iota_k
|
|
||||||
% ,\quad
|
|
||||||
% \mathfrak F_{t_n}(\hat u(t_n))_k=:\phi_k+i\psi_k
|
|
||||||
%\end{equation}
|
|
||||||
%then
|
|
||||||
%\begin{equation}
|
|
||||||
% (D\mathfrak F_{t_n})_{k,p}:=\left(\begin{array}{cc}
|
|
||||||
% \partial_{\rho_p}\phi_k&\partial_{\iota_p}\phi_k\\
|
|
||||||
% \partial_{\rho_p}\psi_k&\partial_{\iota_p}\psi_k
|
|
||||||
% \end{array}\right)
|
|
||||||
%\end{equation}
|
|
||||||
%We compute this Jacobian numerically using a finite difference, by computing
|
%We compute this Jacobian numerically using a finite difference, by computing
|
||||||
%\begin{equation}
|
%\begin{equation}
|
||||||
% (D\mathfrak F_{t_n})_{k,p}:=\frac1\epsilon
|
% (D\mathfrak F_{t_n})_{k,p}:=\frac1\epsilon
|
||||||
|
Loading…
x
Reference in New Issue
Block a user