Split real and imag part in jacobian
This commit is contained in:
parent
9059a24c23
commit
198867751d
@ -382,62 +382,81 @@ The enstrophy is defined as
|
||||
To compute the Lyapunov exponents, we must first compute the Jacobian of $\hat u^{(n)}\mapsto\hat u^{(n+1)}$.
|
||||
This map is always of Runge-Kutta type, that is,
|
||||
\begin{equation}
|
||||
\hat u^{(n+1)}=\hat u^{(n)}+\delta\sum_{i=1}^q w_i\mathfrak F(\hat u^{(n)})
|
||||
\end{equation}
|
||||
(see\-~(\ref{ins_k})), so
|
||||
\begin{equation}
|
||||
D\hat u^{(n+1)}=\mathds 1+\delta\sum_{i=1}^q w_iD\mathfrak F(\hat u^{(n)})
|
||||
\hat u(t_{n+1})=\mathfrak F_{t_n}(\hat u(t_n))
|
||||
.
|
||||
\end{equation}
|
||||
We then compute
|
||||
Let $D\mathfrak F_{t_{n}}$ be the Jacobian of this map, in which we split the real and imaginary parts: if
|
||||
\begin{equation}
|
||||
(D\mathfrak F(\hat u))_{k,\ell}
|
||||
=
|
||||
-\frac{4\pi^2}{L^2}\nu k^2\delta_{k,\ell}
|
||||
+\frac{4\pi^2}{L^2|k|}\partial_{\hat u_\ell}T(\hat u,k)
|
||||
\hat u_k(t_n)=:\rho_k+i\iota_k
|
||||
,\quad
|
||||
\mathfrak F_{t_n}(\hat u(t_n))_k=:\phi_k+i\psi_k
|
||||
\end{equation}
|
||||
and, by\-~(\ref{T}),
|
||||
then
|
||||
\begin{equation}
|
||||
\partial_{\hat u_\ell}T(\hat u,k)
|
||||
=
|
||||
\sum_{\displaystyle\mathop{\scriptstyle q\in\mathbb Z^2}_{\ell+q=k}}
|
||||
\left(
|
||||
\frac{(q\cdot \ell^\perp)|q|}{|\ell|}
|
||||
+
|
||||
\frac{(\ell\cdot q^\perp)|\ell|}{|q|}
|
||||
\right)\hat u_q
|
||||
=
|
||||
(k\cdot \ell^\perp)\left(
|
||||
\frac{|k-\ell|}{|\ell|}
|
||||
-
|
||||
\frac{|\ell|}{|k-\ell|}
|
||||
\right)\hat u_{k-\ell}
|
||||
(D\mathfrak F_{t_n})_{k,p}:=\left(\begin{array}{cc}
|
||||
\partial_{\rho_p}\phi_k&\partial_{\iota_p}\phi_k\\
|
||||
\partial_{\rho_p}\psi_k&\partial_{\iota_p}\psi_k
|
||||
\end{array}\right)
|
||||
\end{equation}
|
||||
We compute this Jacobian numerically using a finite difference, by computing
|
||||
\begin{equation}
|
||||
(D\mathfrak F_{t_n})_{k,p}:=\frac1\epsilon
|
||||
\left(\begin{array}{cc}
|
||||
\phi_k(\hat u+\epsilon\delta_p)-\phi_k(\hat u)&\phi_k(\hat u+i\epsilon\delta_p)-\phi_k(\hat u)\\
|
||||
\psi_k(\hat u+\epsilon\delta_p)-\psi_k(\hat u)&\psi_k(\hat u+i\epsilon\delta_p)-\psi_k(\hat u)
|
||||
\end{array}\right)
|
||||
.
|
||||
\end{equation}
|
||||
The parameter $\epsilon$ can be set using the parameter {\tt D\_epsilon}.
|
||||
%, so
|
||||
%\begin{equation}
|
||||
% D\hat u^{(n+1)}=\mathds 1+\delta\sum_{i=1}^q w_iD\mathfrak F(\hat u^{(n)})
|
||||
% .
|
||||
%\end{equation}
|
||||
%We then compute
|
||||
%\begin{equation}
|
||||
% (D\mathfrak F(\hat u))_{k,\ell}
|
||||
% =
|
||||
% -\frac{4\pi^2}{L^2}\nu k^2\delta_{k,\ell}
|
||||
% +\frac{4\pi^2}{L^2|k|}\partial_{\hat u_\ell}T(\hat u,k)
|
||||
%\end{equation}
|
||||
%and, by\-~(\ref{T}),
|
||||
%\begin{equation}
|
||||
% \partial_{\hat u_\ell}T(\hat u,k)
|
||||
% =
|
||||
% \sum_{\displaystyle\mathop{\scriptstyle q\in\mathbb Z^2}_{\ell+q=k}}
|
||||
% \left(
|
||||
% \frac{(q\cdot \ell^\perp)|q|}{|\ell|}
|
||||
% +
|
||||
% \frac{(\ell\cdot q^\perp)|\ell|}{|q|}
|
||||
% \right)\hat u_q
|
||||
% =
|
||||
% (k\cdot \ell^\perp)\left(
|
||||
% \frac{|k-\ell|}{|\ell|}
|
||||
% -
|
||||
% \frac{|\ell|}{|k-\ell|}
|
||||
% \right)\hat u_{k-\ell}
|
||||
% .
|
||||
%\end{equation}
|
||||
\bigskip
|
||||
|
||||
\indent
|
||||
The Lyapunov exponents are then defined as
|
||||
\begin{equation}
|
||||
\frac1n\log\mathrm{spec}(\pi_i)
|
||||
\frac1{t_n}\log\mathrm{spec}(\pi_{t_n})
|
||||
,\quad
|
||||
\pi_i:=\prod_{i=1}^nD\hat u^{(i)}
|
||||
\pi_{t_n}:=\prod_{i=1}^nD\hat u(t_i)
|
||||
.
|
||||
\end{equation}
|
||||
However, the product of $D\hat u$ may become quite large or quite small (if the exponents are not all 1).
|
||||
To avoid this, we periodically rescale the product.
|
||||
We set $\mathfrak L_r\in\mathbb N_*$ (set by adjusting the {\tt lyanpunov\_reset} parameter), and, when $n$ is a multiple of $\mathfrak L_r$, we rescale the eigenvalues of $\pi_i$ to 1.
|
||||
We set $\mathfrak L_r>0$ (set by adjusting the {\tt lyanpunov\_reset} parameter), and, when $t_n$ crosses a multiple of $\mathfrak L_r$, we rescale the eigenvalues of $\pi_i$ to 1.
|
||||
To do so, we perform a $QR$ decomposition:
|
||||
\begin{equation}
|
||||
\pi_{\alpha\mathfrak L_r}
|
||||
=Q^{(\alpha)}R^{(\alpha)}
|
||||
\end{equation}
|
||||
where $Q^{(\alpha)}$ is diagonal and $R^{(\alpha)}$ is an orthogonal matrix, and we divide by $Q^{(\alpha)}$ (thus only keeping $R^{(\alpha)}$).
|
||||
Thus, we replace
|
||||
\begin{equation}
|
||||
\pi_{\alpha\mathfrak L_r+i}\mapsto R^{(\alpha)}\prod_{j=1}^iD\hat u^{(j)}
|
||||
.
|
||||
=R^{(\alpha)}Q^{(\alpha)}
|
||||
\end{equation}
|
||||
where $Q^{(\alpha)}$ is orthogonal and $R^{(\alpha)}$ is a diagonal matrix, and we divide by $R^{(\alpha)}$ (thus only keeping $Q^{(\alpha)}$).
|
||||
The Lyapunov exponents at time $\alpha\mathfrak L_r$ are then
|
||||
\begin{equation}
|
||||
\frac1{\alpha\mathfrak L_r}\sum_{\beta=1}^\alpha\log\mathrm{spec}(Q^{(\beta)})
|
||||
|
@ -21,7 +21,8 @@ limitations under the License.
|
||||
#include <math.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#define MATSIZE (K1*(2*K2+1)+K2)
|
||||
#define MATSIZE (2*(K1*(2*K2+1)+K2))
|
||||
#define USIZE (K1*(2*K2+1)+K2)
|
||||
|
||||
// compute Lyapunov exponents
|
||||
int lyapunov(
|
||||
@ -50,8 +51,8 @@ int lyapunov(
|
||||
){
|
||||
double* lyapunov;
|
||||
double* lyapunov_avg;
|
||||
_Complex double* Du_prod;
|
||||
_Complex double* Du;
|
||||
double* Du_prod;
|
||||
double* Du;
|
||||
_Complex double* u;
|
||||
_Complex double* prevu;
|
||||
_Complex double* tmp1;
|
||||
@ -63,7 +64,7 @@ int lyapunov(
|
||||
_Complex double* tmp7;
|
||||
_Complex double* tmp8;
|
||||
_Complex double* tmp9;
|
||||
_Complex double* tmp10;
|
||||
double* tmp10;
|
||||
double time;
|
||||
fft_vect fft1;
|
||||
fft_vect fft2;
|
||||
@ -82,9 +83,6 @@ int lyapunov(
|
||||
double step=delta;
|
||||
double next_step=step;
|
||||
|
||||
const _Complex double one=1;
|
||||
const _Complex double zero=0;
|
||||
|
||||
int i;
|
||||
// init average
|
||||
for (i=0; i<MATSIZE; i++){
|
||||
@ -109,9 +107,9 @@ int lyapunov(
|
||||
|
||||
// multiply Jacobian
|
||||
// switch to column major order, so transpose Du
|
||||
cblas_zgemm(CblasColMajor, CblasNoTrans, CblasTrans, MATSIZE, MATSIZE, MATSIZE, &one, Du_prod, MATSIZE, Du, MATSIZE, &zero, tmp10, MATSIZE);
|
||||
cblas_dgemm(CblasColMajor, CblasNoTrans, CblasTrans, MATSIZE, MATSIZE, MATSIZE, 1., Du_prod, MATSIZE, Du, MATSIZE, 0., tmp10, MATSIZE);
|
||||
// copy back to Du_prod
|
||||
_Complex double* move=tmp10;
|
||||
double* move=tmp10;
|
||||
tmp10=Du_prod;
|
||||
Du_prod=move;
|
||||
|
||||
@ -124,10 +122,10 @@ int lyapunov(
|
||||
|
||||
// QR decomposition
|
||||
// do not touch tmp1, it might be used in the next step
|
||||
LAPACKE_zgerqf(LAPACK_COL_MAJOR, MATSIZE, MATSIZE, Du_prod, MATSIZE, tmp2);
|
||||
LAPACKE_dgerqf(LAPACK_COL_MAJOR, MATSIZE, MATSIZE, Du_prod, MATSIZE, tmp10);
|
||||
// extract eigenvalues (diagonal elements of Du_prod)
|
||||
for(i=0; i<MATSIZE; i++){
|
||||
lyapunov[i]=log(cabs(Du_prod[i*MATSIZE+i]))/(time-prevtime);
|
||||
lyapunov[i]=log(fabs(Du_prod[i*MATSIZE+i]))/(time-prevtime);
|
||||
}
|
||||
|
||||
// sort lyapunov exponents
|
||||
@ -153,7 +151,7 @@ int lyapunov(
|
||||
}
|
||||
|
||||
// set Du_prod to Q:
|
||||
LAPACKE_zungrq(LAPACK_COL_MAJOR, MATSIZE, MATSIZE, MATSIZE, Du_prod, MATSIZE, tmp2);
|
||||
LAPACKE_dorgrq(LAPACK_COL_MAJOR, MATSIZE, MATSIZE, MATSIZE, Du_prod, MATSIZE, tmp10);
|
||||
|
||||
// reset prevtime
|
||||
prevtime=time;
|
||||
@ -177,7 +175,7 @@ int compare_double(const void* x, const void* y) {
|
||||
|
||||
// Jacobian of u_n -> u_{n+1}
|
||||
int ns_D_step(
|
||||
_Complex double* out,
|
||||
double* out,
|
||||
_Complex double* un,
|
||||
_Complex double* un_next,
|
||||
int K1,
|
||||
@ -218,7 +216,7 @@ int ns_D_step(
|
||||
for(ly=(lx>0 ? -K2 : 1);ly<=K2;ly++){
|
||||
// derivative in the real direction
|
||||
// finite difference vector
|
||||
for (i=0;i<MATSIZE;i++){
|
||||
for (i=0;i<USIZE;i++){
|
||||
if(i==klookup_sym(lx,ly,K2)){
|
||||
tmp1[i]=un[i]+epsilon;
|
||||
}else{
|
||||
@ -230,15 +228,16 @@ int ns_D_step(
|
||||
step=delta;
|
||||
next_step=delta;
|
||||
ns_step(algorithm, tmp1, K1, K2, N1, N2, nu, &step, &next_step, adaptive_tolerance, adaptive_factor, max_delta, adaptive_norm, L, g, time, time, fft1, fft2, ifft, &tmp2, &tmp3, tmp4, tmp5, tmp6, tmp7, tmp8, irreversible, keep_en_cst, target_en);
|
||||
// compute derivative
|
||||
for (i=0;i<MATSIZE;i++){
|
||||
// derivative
|
||||
for (i=0;i<USIZE;i++){
|
||||
// use row major order
|
||||
out[klookup_sym(lx,ly,K2)*MATSIZE+i]=(tmp1[i]-un_next[i])/epsilon;
|
||||
out[2*klookup_sym(lx,ly,K2)*USIZE+2*i]=(__real__ (tmp1[i]-un_next[i]))/epsilon;
|
||||
out[(2*klookup_sym(lx,ly,K2)+1)*USIZE+2*i]=(__imag__ (tmp1[i]-un_next[i]))/epsilon;
|
||||
}
|
||||
|
||||
// derivative in the imaginary direction
|
||||
// finite difference vector
|
||||
for (i=0;i<MATSIZE;i++){
|
||||
for (i=0;i<USIZE;i++){
|
||||
if(i==klookup_sym(lx,ly,K2)){
|
||||
tmp1[i]=un[i]+epsilon*I;
|
||||
}else{
|
||||
@ -251,9 +250,10 @@ int ns_D_step(
|
||||
next_step=delta;
|
||||
ns_step(algorithm, tmp1, K1, K2, N1, N2, nu, &step, &next_step, adaptive_tolerance, adaptive_factor, max_delta, adaptive_norm, L, g, time, time, fft1, fft2, ifft, &tmp2, &tmp3, tmp4, tmp5, tmp6, tmp7, tmp8, irreversible, keep_en_cst, target_en);
|
||||
// compute derivative
|
||||
for (i=0;i<MATSIZE;i++){
|
||||
for (i=0;i<USIZE;i++){
|
||||
// use row major order
|
||||
out[klookup_sym(lx,ly,K2)*MATSIZE+i]=-(tmp1[i]-un_next[i])/epsilon*I;
|
||||
out[2*klookup_sym(lx,ly,K2)*USIZE+2*i+1]=(__real__ (tmp1[i]-un_next[i]))/epsilon;
|
||||
out[(2*klookup_sym(lx,ly,K2)+1)*USIZE+2*i+1]=(__imag__ (tmp1[i]-un_next[i]))/epsilon;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -265,8 +265,8 @@ int ns_D_step(
|
||||
int lyapunov_init_tmps(
|
||||
double ** lyapunov,
|
||||
double ** lyapunov_avg,
|
||||
_Complex double ** Du_prod,
|
||||
_Complex double ** Du,
|
||||
double ** Du_prod,
|
||||
double ** Du,
|
||||
_Complex double ** u,
|
||||
_Complex double ** prevu,
|
||||
_Complex double ** tmp1,
|
||||
@ -278,7 +278,7 @@ int lyapunov_init_tmps(
|
||||
_Complex double ** tmp7,
|
||||
_Complex double ** tmp8,
|
||||
_Complex double ** tmp9,
|
||||
_Complex double ** tmp10,
|
||||
double ** tmp10,
|
||||
fft_vect* fft1,
|
||||
fft_vect* fft2,
|
||||
fft_vect* ifft,
|
||||
@ -293,12 +293,12 @@ int lyapunov_init_tmps(
|
||||
|
||||
*lyapunov=calloc(sizeof(double),MATSIZE);
|
||||
*lyapunov_avg=calloc(sizeof(double),MATSIZE);
|
||||
*Du_prod=calloc(sizeof(_Complex double),MATSIZE*MATSIZE);
|
||||
*Du=calloc(sizeof(_Complex double),MATSIZE*MATSIZE);
|
||||
*prevu=calloc(sizeof(_Complex double),MATSIZE);
|
||||
*tmp1=calloc(sizeof(_Complex double),MATSIZE);
|
||||
*tmp2=calloc(sizeof(_Complex double),MATSIZE);
|
||||
*tmp10=calloc(sizeof(_Complex double),MATSIZE*MATSIZE);
|
||||
*Du_prod=calloc(sizeof(double),MATSIZE*MATSIZE);
|
||||
*Du=calloc(sizeof(double),MATSIZE*MATSIZE);
|
||||
*prevu=calloc(sizeof(_Complex double),USIZE);
|
||||
*tmp1=calloc(sizeof(_Complex double),USIZE);
|
||||
*tmp2=calloc(sizeof(_Complex double),USIZE);
|
||||
*tmp10=calloc(sizeof(double),MATSIZE*MATSIZE);
|
||||
|
||||
return(0);
|
||||
}
|
||||
@ -307,8 +307,8 @@ int lyapunov_init_tmps(
|
||||
int lyapunov_free_tmps(
|
||||
double* lyapunov,
|
||||
double* lyapunov_avg,
|
||||
_Complex double* Du_prod,
|
||||
_Complex double* Du,
|
||||
double* Du_prod,
|
||||
double* Du,
|
||||
_Complex double* u,
|
||||
_Complex double* prevu,
|
||||
_Complex double* tmp1,
|
||||
@ -320,7 +320,7 @@ int lyapunov_free_tmps(
|
||||
_Complex double* tmp7,
|
||||
_Complex double* tmp8,
|
||||
_Complex double* tmp9,
|
||||
_Complex double* tmp10,
|
||||
double* tmp10,
|
||||
fft_vect fft1,
|
||||
fft_vect fft2,
|
||||
fft_vect ifft,
|
||||
|
@ -26,12 +26,12 @@ int lyapunov( int K1, int K2, int N1, int N2, double final_time, double lyapunov
|
||||
int compare_double(const void* x, const void* y);
|
||||
|
||||
// Jacobian of step
|
||||
int ns_D_step( _Complex double* out, _Complex double* un, _Complex double* un_next, int K1, int K2, int N1, int N2, double nu, double epsilon, double delta, unsigned int algorithm, double adaptive_tolerance, double adaptive_factor, double max_delta, unsigned int adaptive_norm, double L, _Complex double* g, double time, fft_vect fft1, fft_vect fft2, fft_vect ifft, _Complex double* tmp1, _Complex double* tmp2, _Complex double* tmp3, _Complex double* tmp4, _Complex double* tmp5, _Complex double* tmp6, _Complex double* tmp7, _Complex double* tmp8, bool irreversible, bool keep_en_cst, double target_en);
|
||||
int ns_D_step( double* out, _Complex double* un, _Complex double* un_next, int K1, int K2, int N1, int N2, double nu, double epsilon, double delta, unsigned int algorithm, double adaptive_tolerance, double adaptive_factor, double max_delta, unsigned int adaptive_norm, double L, _Complex double* g, double time, fft_vect fft1, fft_vect fft2, fft_vect ifft, _Complex double* tmp1, _Complex double* tmp2, _Complex double* tmp3, _Complex double* tmp4, _Complex double* tmp5, _Complex double* tmp6, _Complex double* tmp7, _Complex double* tmp8, bool irreversible, bool keep_en_cst, double target_en);
|
||||
|
||||
// init vectors
|
||||
int lyapunov_init_tmps(double** lyapunov, double** lyapunov_avg, _Complex double ** Du_prod, _Complex double ** Du, _Complex double ** u, _Complex double ** prevu, _Complex double ** tmp1, _Complex double ** tmp2, _Complex double ** tmp3, _Complex double ** tmp4, _Complex double ** tmp5, _Complex double ** tmp6, _Complex double ** tmp7, _Complex double ** tmp8, _Complex double ** tmp9, _Complex double** tmp10, fft_vect* fft1, fft_vect* fft2, fft_vect* ifft, int K1, int K2, int N1, int N2, unsigned int nthreads, unsigned int algorithm);
|
||||
int lyapunov_init_tmps(double** lyapunov, double** lyapunov_avg, double ** Du_prod, double ** Du, _Complex double ** u, _Complex double ** prevu, _Complex double ** tmp1, _Complex double ** tmp2, _Complex double ** tmp3, _Complex double ** tmp4, _Complex double ** tmp5, _Complex double ** tmp6, _Complex double ** tmp7, _Complex double ** tmp8, _Complex double ** tmp9, double** tmp10, fft_vect* fft1, fft_vect* fft2, fft_vect* ifft, int K1, int K2, int N1, int N2, unsigned int nthreads, unsigned int algorithm);
|
||||
// release vectors
|
||||
int lyapunov_free_tmps(double* lyapunov, double* lyapunov_avg, _Complex double* Du_prod, _Complex double* Du, _Complex double* u, _Complex double* prevu, _Complex double* tmp1, _Complex double* tmp2, _Complex double* tmp3, _Complex double* tmp4, _Complex double* tmp5, _Complex double* tmp6, _Complex double* tmp7, _Complex double* tmp8, _Complex double* tmp9, _Complex double* tmp10, fft_vect fft1, fft_vect fft2, fft_vect ifft, unsigned int algorithm);
|
||||
int lyapunov_free_tmps(double* lyapunov, double* lyapunov_avg, double* Du_prod, double* Du, _Complex double* u, _Complex double* prevu, _Complex double* tmp1, _Complex double* tmp2, _Complex double* tmp3, _Complex double* tmp4, _Complex double* tmp5, _Complex double* tmp6, _Complex double* tmp7, _Complex double* tmp8, _Complex double* tmp9, double* tmp10, fft_vect fft1, fft_vect fft2, fft_vect ifft, unsigned int algorithm);
|
||||
|
||||
#endif
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user