Compare commits

...

33 Commits
master ... dev

Author SHA1 Message Date
ea1ac6490a Fix write: color 2024-02-26 10:26:16 -05:00
3d681da551 Export other shapes 2024-02-26 10:04:57 -05:00
5864dc5c06 Coarse grain mouse input with lattice 2024-02-26 10:01:50 -05:00
a152af6bac Fix open empty file 2024-02-24 10:44:11 -05:00
121b8fe4b0 2squares 2024-02-22 17:19:52 -05:00
1cd4e0fdc6 Fix lattice_points for disk 2024-02-22 17:08:42 -05:00
a48457de29 Adjust color of voronoi depending on number of neighbors 2024-02-22 16:50:04 -05:00
4a6d2a1758 More visible Voronoi cells 2024-02-22 16:42:57 -05:00
29355191d6 Staircases 2024-02-22 16:41:45 -05:00
7e44418829 voronoi cells for disks 2024-02-22 16:31:10 -05:00
fd61a4620f Compute discrete Voronoi cell 2024-02-21 19:12:07 -05:00
0070094b94 Save lattice in conf file 2024-02-21 17:10:33 -05:00
37f8d181c2 Error and warning messages 2024-02-21 17:01:52 -05:00
5384d9a964 Save color in conf 2024-02-21 16:56:53 -05:00
ff11c1ce84 Set color of next particle 2024-02-21 16:49:48 -05:00
0a8a0e3c53 Save shape and zoom level to conf 2024-02-21 16:00:15 -05:00
b1d56fea04 Set shape from command 2024-02-21 15:30:52 -05:00
955aa8f10a README and license 2023-05-10 15:28:22 -04:00
e5b6019606 Allow square element to be a rectangle 2022-09-28 19:21:13 -04:00
dd5917cd45 read/write disks 2022-09-27 19:13:44 -04:00
c2ebf92a0e disk polyominoes 2022-09-27 19:01:17 -04:00
c13b0f4556 drawing and stroking elements done in elements.py 2022-09-27 18:50:21 -04:00
383cb5c462 circular element (cannot interact with squares) 2022-09-27 18:42:11 -04:00
7a044a1619 Cleanup imports and add file-wide comments 2022-09-23 21:21:38 -04:00
c09600cd10 Split element into their own file 2022-09-23 21:17:53 -04:00
5835c9003c Implement interaction between squares of different sizes 2022-09-23 20:49:58 -04:00
b9be36b4e0 move Square_element.size to painter, and allow for squares to determine their own size 2022-09-23 19:33:05 -04:00
fba87c564a Change Square_lattice to Lattice_square 2022-09-23 14:47:07 -04:00
36f5226107 optional arguments in lattice spec 2022-09-23 14:45:20 -04:00
5d40050580 Set lattice on open 2022-09-23 14:22:44 -04:00
267c5e5c5c cli passing 2022-09-23 13:41:26 -04:00
42e9f60c4e Fix grid drawing 2022-09-23 13:17:35 -04:00
9cb25730eb lattice 2022-09-23 12:58:48 -04:00
12 changed files with 968 additions and 238 deletions

View File

@ -9,11 +9,18 @@ particles overlap.
Run with
```bash
./src/jam [configuration_file]
./src/jam [configuration_file] [-L lattice]
```
where `[configuration_file]` is an optional argument that specifies a file with
* `[configuration_file]` is an optional argument that specifies a file with
a list of particle positions that will be loaded on initial execution.
* `[-L lattice]` is an optional argument that specifies a background grid that
constrains the position of the particles. So far, the `lattice` argument must
be `square` for the square lattice, or, to specify the unit length of the
lattice: `square:<unit_length>`.
# Dependencies
@ -59,11 +66,8 @@ Commands can be executed by typing `:` (similarly to vim).
# Current developments
So far, Jam only supports cross-shaped particles, but work is in progress to
support arbitrary shapes consisting of rectangles, circle arcs and triangles
(check out the `dev` branch to follow the progress).
Support for lattice configurations is also ongoing.
So far, Jam supports particles made of combinations of rectangles, but there is
no infrastructure to set the shape of the particle at runtime.
# License

View File

@ -28,3 +28,21 @@
\fill[color=#1]#2++(0.5,0.5)--++(0,1)--++(-1,0)--++(0,-1)--++(-1,0)--++(0,-1)--++(1,0)--++(0,-1)--++(1,0)--++(0,1)--++(1,0)--++(0,1)--++(-1,0);
\draw[color=black]#2++(0.5,0.5)--++(0,1)--++(-1,0)--++(0,-1)--++(-1,0)--++(0,-1)--++(1,0)--++(0,-1)--++(1,0)--++(0,1)--++(1,0)--++(0,1)--++(-1,0);
}
% 3-staircase (color #1, position #2)
\def\staircase#1#2{
\fill[color=#1]#2++(-0.5,-0.5)--++(3,0)--++(0,1)--++(-1,0)--++(0,1)--++(-1,0)--++(0,1)--++(-1,0)--++(0,-3);
\draw[color=black]#2++(-0.5,-0.5)--++(3,0)--++(0,1)--++(-1,0)--++(0,1)--++(-1,0)--++(0,1)--++(-1,0)--++(0,-3);
}
% disk (color #1, position #2)
\def\disk#1#2{
\fill[color=#1]#2circle(2.5);
\draw[color=black]#2circle(2.5);
}
% square (color #1, position #2)
\def\square#1#2{
\fill[color=#1]#2++(-1,-1)--++(0,2)--++(2,0)--++(0,-2)--cycle;
\draw[color=black]#2++(-1,-1)--++(0,2)--++(2,0)--++(0,-2)--cycle;
}

View File

@ -20,6 +20,7 @@ import os.path
import filecheck
import colors
from polyomino import Cross,Disk,Staircase,Square2
class Command_prompt(Label):
@ -338,9 +339,15 @@ class Command_prompt(Label):
if argv[1]=="color":
self.run_set_color(argv)
return
elif argv[1]=="shape":
self.run_set_shape(argv)
return
elif argv[1]=="grid":
self.run_set_grid(argv)
return
elif argv[1]=="voronoi":
self.run_set_voronoi(argv)
return
elif argv[1]=="zoom":
self.run_set_zoom(argv)
else:
@ -372,6 +379,23 @@ class Command_prompt(Label):
return
self.app.painter.set_color(color)
# set particle shape
def run_set_shape(self,argv):
if len(argv)<3:
self.message="error: 'set shape' command was run with without an argument -- usage: 'set shape <shape_descriptor>'"
return
elif argv[2]=="cross":
self.app.painter.shape=Cross
elif argv[2]=="disk":
self.app.painter.shape=Disk
elif argv[2]=="staircase":
self.app.painter.shape=Staircase
elif argv[2]=="2square":
self.app.painter.shape=Square2
else:
self.message="error: unrecognized shape '"+argv[2]+"'; supported shapes are cross|disk"
return
# toggle grid
def run_set_grid(self,argv):
if len(argv)==2:
@ -392,6 +416,19 @@ class Command_prompt(Label):
return
self.app.painter.set_grid(mesh)
# toggle Voronoi cells
def run_set_voronoi(self,argv):
if len(argv)==2:
# no argument: set to toggle
self.app.painter.set_voronoi(-1)
elif argv[2]=="on":
self.app.painter.set_voronoi(1)
elif argv[2]=="off":
self.app.painter.set_voronoi(0)
else:
self.message="error: unrecognized argument '"+argv[2]+"' -- usage 'set voronoi [on|off]'"
return
# set zoom level (changes size of elements)
def run_set_zoom(self,argv):
if len(argv)==2:

297
src/element.py Normal file
View File

@ -0,0 +1,297 @@
# Copyright 2021-2023 Ian Jauslin
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
## elements that polyominoes are made of
import math
import sys
from point import Point,l_infinity,l_2
from tools import isint_nonzero,sgn,in_interval,ceil_grid,floor_grid
from kivy.graphics import Rectangle,Ellipse,Line
# parent class of all elements
class Element():
def __init__(self,x,y,size,**kwargs):
self.pos=Point(x,y)
self.size=size
# set position
def setpos(self,x,y):
self.pos.x=x
self.pos.y=y
# override in each subclass
# draw element
def draw(self,painter):
return
# override in each subclass
# draw boundary
def stroke(self,painter):
return
# override in each subclass
# check whether an element interacts with square
def check_interaction(self,element):
return False
# override in each subclass
# whether x is in the support of the element
def in_support(self,x):
return False
# override in each subclass
# check whether an element is touching self
def check_touch(self,element):
return False
# override in each subclass
# find position along a line that comes in contact with the line going through element.pos in direction v
def move_on_line_to_stick(self,element,v):
return Point(0,0)
# override in each subclass
# move along edge of element
# delta is the impossible move that was asked for
def move_along(self,delta,element):
return element
# rectangular element
# the size of the y component is specified by an aspect ratio: size_x=size, size_y=size*aspect
class Element_square(Element):
def __init__(self,x,y,size,**kwargs):
self.pos=Point(x,y)
self.size=size
self.aspect=kwargs.get("aspect",1.0)
# draw element
def draw(self,painter):
Rectangle(pos=(painter.pos_tocoord_x(self.pos.x-0.5*self.size),painter.pos_tocoord_y(self.pos.y-0.5*self.size*self.aspect)),size=(self.size*painter.base_size,self.size*self.aspect*painter.base_size))
# draw boundary
def stroke(self,painter):
# convert to graphical coordinates
coordx=painter.pos_tocoord_x(square.pos.x)
coordy=painter.pos_tocoord_y(square.pos.y)
Line(points=(
*(coordx-0.5*self.size*painter.base_size,coordy-0.5*self.size*self.aspect*painter.base_size),
*(coordx-0.5*self.size*painter.base_size,coordy+0.5*self.size*self.aspect*painter.base_size),
*(coordx+0.5*self.size*painter.base_size,coordy+0.5*self.size*self.aspect*painter.base_size),
*(coordx+0.5*self.size*painter.base_size,coordy-0.5*self.size*self.aspect*painter.base_size),
*(coordx-0.5*self.size*painter.base_size,coordy-0.5*self.size*self.aspect*painter.base_size)
))
# for use with lattices
# list of lattice points covered by square
def lattice_points(self,lattice):
out=[]
dx=math.floor(0.5*self.size/lattice.spacing)
dy=math.floor(0.5*self.size*self.aspect/lattice.spacing)
for i in range(-dx,dx+1):
for j in range(-dy,dy+1):
out.append(Point(self.pos.x+i*lattice.spacing,self.pos.y+j*lattice.spacing))
return out
# check whether an element interacts with square
# TODO: this only works if element is a rectangle!
def check_interaction(self,element):
# allow for error
return max(abs(element.pos.x-self.pos.x)/(self.size+element.size),abs(element.pos.y-self.pos.y)/(self.size*self.aspect+element.size*element.aspect))<1/2-1e-11
# whether x is in the support of the element
def in_support(self,x):
return max(abs(self.pos.x-x.x),abs(self.pos.y-x.y)/self.aspect)<=1/2
# check whether an element is touching self
# TODO: this only works if element is a rectangle!
def check_touch(self,element):
# allow for error
if in_interval(max(abs(element.pos.x-self.pos.x)/(self.size+element.size),abs(element.pos.y-self.pos.y)/(self.size*self.aspect+element.size*element.aspect)),1/2-1e-11,1/2+1e-11):
return True
return False
# find position along a line that comes in contact with the line going through element.pos in direction v
# TODO: this only works if element is a rectangle!
def move_on_line_to_stick(self,element,v):
size_x=(self.size+element.size)/2
size_y=(self.size*self.aspect+element.size*element.aspect)/2
# compute intersections with four lines making up square
if v.x!=0:
if v.y!=0:
intersections=[\
Point(self.pos.x+size_x,element.pos.y+v.y/v.x*(self.pos.x+size_x-element.pos.x)),\
Point(self.pos.x-size_x,element.pos.y+v.y/v.x*(self.pos.x-size_x-element.pos.x)),\
Point(element.pos.x+v.x/v.y*(self.pos.y+size_y-element.pos.y),self.pos.y+size_y),\
Point(element.pos.x+v.x/v.y*(self.pos.y-size_y-element.pos.y),self.pos.y-size_y)\
]
else:
intersections=[\
Point(self.pos.x+size_x,element.pos.y),\
Point(self.pos.x-size_x,element.pos.y)
]
else:
if v.y!=0:
intersections=[\
Point(element.pos.x,self.pos.y+size_y),\
Point(element.pos.x,self.pos.y-size_y)\
]
else:
print("error: move_on_line_to_stick called with v=0, please file a bug report with the developer",file=sys.stderr)
exit(-1)
# compute closest one, on square
closest=None
dist=math.inf
for i in range(0,len(intersections)):
# check that it is on square
if abs(intersections[i].x-self.pos.x)<=size_x+1e-11 and abs(intersections[i].y-self.pos.y)<=size_y+1e-11:
if (intersections[i]-element.pos)**2<dist:
closest=intersections[i]
dist=(intersections[i]-element.pos)**2
if closest==None:
print("error: cannot move particle at (",element.pos.x,",",element.pos.y,") to the boundary of (",self.pos.x,",",self.pos.y,") in direction (",v.x,",",v.y,")",file=sys.stderr)
exit(-1)
# return difference to pos
return closest-element.pos
# move along edge of square
# TODO: this only works if element is a rectangle!
def move_along(self,delta,element):
size_x=(self.size+element.size)/2
size_y=(self.size*self.aspect+element.size*element.aspect)/2
rel=element.pos-self.pos
# check if the particle is stuck in the x direction
if isint_nonzero(rel.x/size_x):
# check y direction
if isint_nonzero(rel.y/size_y):
# in corner
if sgn(delta.y)==-sgn(rel.y):
# stuck in x direction
return self.move_stuck_x(delta,element)
elif sgn(delta.x)==-sgn(rel.x):
# stuck in y direction
return self.move_stuck_y(delta,element)
# stuck in both directions
return element.pos
else:
# stuck in x direction
return self.move_stuck_x(delta,element)
elif isint_nonzero(rel.y/size_y):
# stuck in y direction
return self.move_stuck_y(delta,element)
# this should never happen
else:
print("error: stuck particle has non-integer relative position: (",rel.x,",",rel.y,")",file=sys.stderr)
exit(-1)
# move when stuck in the x direction
def move_stuck_x(self,delta,element):
size_y=(self.size*self.aspect+element.size*element.aspect)/2
# only move in y direction
candidate=Point(0,delta.y)
# do not move past corners
rel=element.pos.y-self.pos.y
if delta.y>0:
if rel<ceil_grid(rel,size_y)-1e-11 and delta.y+rel>ceil_grid(rel,size_y)+1e-11 and ceil_grid(rel,size_y)!=0:
# stick to corner
candidate.y=ceil_grid(rel,size_y)+self.pos.y-element.pos.y
else:
if rel>floor_grid(rel,size_y)+1e-11 and delta.y+rel<floor_grid(rel,size_y)-1e-11 and floor_grid(rel,size_y)!=0:
# stick to corner
candidate.y=floor_grid(rel,size_y)+self.pos.y-element.pos.y
return candidate
# move when stuck in the y direction
def move_stuck_y(self,delta,element):
size_x=(self.size+element.size)/2
# onlx move in x direction
candidate=Point(delta.x,0)
# do not move past corners
rel=element.pos.x-self.pos.x
if delta.x>0:
if rel<ceil_grid(rel,size_x)-1e-11 and delta.x+rel>ceil_grid(rel,size_x)+1e-11 and ceil_grid(rel,size_x)!=0:
# stick to corner
candidate.x=ceil_grid(rel,size_x)+self.pos.x-element.pos.x
else:
if rel>floor_grid(rel,size_x)+1e-11 and delta.x+rel<floor_grid(rel,size_x)-1e-11 and floor_grid(rel,size_x)!=0:
# stick to corner
candidate.x=floor_grid(rel,size_x)+self.pos.x-element.pos.x
return candidate
# circular elements
# (size is the diameter)
class Element_circle(Element):
# draw element
def draw(self,painter):
Ellipse(pos=(painter.pos_tocoord_x(self.pos.x-0.5*self.size),painter.pos_tocoord_y(self.pos.y-0.5*self.size)),size=(self.size*painter.base_size,self.size*painter.base_size))
# draw boundary
def stroke(self,painter):
Line(circle=(painter.pos_tocoord_x(self.pos.x),painter.pos_tocoord_y(self.pos.y),self.size*0.5*painter.base_size))
# check whether an element interacts with square
# TODO: this only works if element is a circle!
def check_interaction(self,element):
# allow for error
return l_2(element.pos-self.pos)<(self.size+element.size)/2-1e-11
# whether x is in the support of the element
def in_support(self,x):
return l_2(self.pos-x)<=1/2
# check whether an element is touching self
# TODO: this only works if element is a circle!
def check_touch(self,element):
# allow for error
if in_interval(l_2(element.pos-self.pos),(self.size+element.size)/2-1e-11,(self.size+element.size)/2+1e-11):
return True
return False
# find position along a line that comes in contact with the line going through element.pos in direction v
# TODO: this only works if element is a circle!
def move_on_line_to_stick(self,element,v):
# relative position
x=element.pos-self.pos
# radius of collision circle
R=(element.size+self.size)/2
# smallest root of t^2 v^2+2x.v t+x^2-R^2
t=(-v.dot(x)-math.sqrt(v.dot(x)*v.dot(x)-v.dot(v)*(x.dot(x)-R*R)))/v.dot(v)
# return difference to pos
return v*t
# move along edge of circle
# TODO: this only works if element is a circle!
def move_along(self,delta,element):
x=element.pos-self.pos+delta
return x/l_2(x)*(element.size+self.size)/2+self.pos-element.pos
# for use with lattices
# list of lattice points covered by square
def lattice_points(self,lattice):
out=[]
dx=math.floor(0.5*self.size/lattice.spacing)
for i in range(-dx,dx+1):
for j in range(-dx,dx+1):
if lattice.spacing*lattice.spacing*(i*i+j*j)<=self.size*self.size/4:
out.append(Point(self.pos.x+i*lattice.spacing,self.pos.y+j*lattice.spacing))
return out

View File

@ -12,6 +12,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# check that a file is creatable/writable/editable
import os.path
# check that a file can be edited

128
src/jam
View File

@ -14,18 +14,119 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import os.path,os
import filecheck
from lattice import Lattice
## read cli before loading kivy, in case there are errors
# read cli
openfile=""
lattice=""
def read_cli():
global openfile
global lattice
# init flag
flag=""
# loop over arguments
for arg in sys.argv[1:]:
# option flag
if arg[0]=='-':
# loop over options
for c in arg[1:]:
# lattice
if c=='L':
flag="lattice"
else:
print("error: unrecognized option '"+c+"'\n", file=sys.stderr)
exit(-1)
else:
# read lattice argument
if flag=="lattice":
# test the specification
(obj,message)=Lattice.new(arg)
if obj==None:
print(message,file=sys.stderr)
exit(-1)
lattice=arg
# reset flag
flag=""
# no flags
else:
openfile=arg
(ret,message)=filecheck.check_edit(openfile)
if ret<0:
print(message,file=sys.stderr)
exit(-1)
preread_conf(openfile)
# read command line arguments from configuration file
def preread_conf(file):
global lattice
try:
ff=open(file,"r")
except:
return
# counter
i=0
try:
lines=ff.readlines()
except:
print("error: could not read the contents of file '"+file+"'", file=sys.stderr)
exit(-1)
for line in lines:
i+=1
# remove newline
line=line[:len(line)-1]
# ignore comments
if '#' in line:
line=line[:line.find('#')]
# ignore empty lines
if len(line)==0:
continue
# read options
if line[0]=='%':
# ignore empty line
if len(line)==1:
continue
[key,val]=line[1:].split('=',1)
if key=="lattice":
# test the specification
(obj,message)=Lattice.new(val)
if obj==None:
print("error: line "+str(i)+" in file '"+file+"': "+message,file=sys.stderr)
exit(-1)
lattice=val
ff.close()
# read cli
read_cli()
## import kivy
# disable kivy argument parser
os.environ["KIVY_NO_ARGS"] = "1"
from kivy.app import App
from kivy.uix.widget import Widget
from kivy.uix.boxlayout import BoxLayout
from kivy.config import Config
import sys
import os.path
from painter import Painter
from status_bar import Status_bar
from command_prompt import Command_prompt
import filecheck
# App class
class Jam_app(App):
@ -36,6 +137,9 @@ class Jam_app(App):
# the file open for editing
self.openfile=kwargs.get("openfile","")
# the lattice open for editing
self.lattice=kwargs.get("lattice","")
# readonly mode
self.readonly=False
@ -63,24 +167,20 @@ class Jam_app(App):
# set readonly mode
self.readonly=not os.access(self.openfile,os.W_OK)
# load lattice
if self.lattice!="":
(obj,message)=Lattice.new(self.lattice)
self.painter.set_lattice(obj)
return layout
# disable red circles on right click
Config.set('input', 'mouse', 'mouse,disable_multitouch')
# do not exit on escape
Config.set('kivy', 'exit_on_escape', 0)
# read cli
openfile=""
if len(sys.argv)==2:
openfile=sys.argv[1]
# check file
(ret,message)=filecheck.check_edit(openfile)
if ret<0:
print(message,file=sys.stderr)
exit(-1)
# run
if __name__ == '__main__':
Jam_app(openfile=openfile).run()
Jam_app(openfile=openfile,lattice=lattice).run()

94
src/lattice.py Normal file
View File

@ -0,0 +1,94 @@
# Copyright 2021-2023 Ian Jauslin
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# define background lattices
from point import Point
# parent class of all lattices
class Lattice():
def __init__(self,**kwargs):
self.type=kwargs.get("type","")
# lattice point nearest to point
# overwrite in subclasses
def nearest(self,point):
return point
# delta to nearest point
def nearest_delta(self,point):
return self.nearest(point)-point
# draw lattice
# overwrite in subclasses
def draw(self,painter):
return
# return the lattice according to a specification
def new(spec):
specs=spec.split(":")
# check type of lattice
if specs[0]=="square":
return Lattice_square.new_square(specs[1:],spec)
else:
return(None,"error: unrecognized lattice type: '"+specs[0]+"'")
# square lattice
class Lattice_square(Lattice):
def __init__(self,**kwargs):
self.spacing=kwargs.get("spacing",1.)
super(Lattice_square,self).__init__(**kwargs,type="square")
# lattice point nearest to point
def nearest(self,point):
return Point(round(point.x/self.spacing)*self.spacing,round(point.y/self.spacing)*self.spacing)
# draw
def draw(self,painter):
painter.draw_grid(Point(self.spacing/2,self.spacing/2),self.spacing)
# return the lattice according to a specification
def new_square(specs,spec):
# no optional args
if len(specs)==0:
return (Lattice_square(),"")
if len(specs)>1:
return (None,"error: '"+spec+"' is not a valid specification for the square lattice: should be 'square[:spacing]'")
try:
spacing=float(specs[0])
return (Lattice_square(spacing=spacing),"")
except:
return (None,"error: '"+spec+"' is not a valid specification for the square lattice: should be 'square[:spacing]'")
# distance on the lattice between (x1,x2) and (y1,y2)
def distance(self, x1, x2, y1, y2):
return round((abs(x1-y1)+abs(x2-y2))/self.spacing)
# distance between a lattice site and a particle
def distance_to_particle(self, x1, x2, particle):
mindist=self.distance_to_element(x1, x2, particle.elements[0])
for i in range(1,len(particle.elements)):
mindist=min(self.distance_to_element(x1, x2, particle.elements[i]),mindist)
return mindist
# distance between a lattice site and an element
def distance_to_element(self, x1, x2, element):
pts=element.lattice_points(self)
mindist=self.distance(x1, x2, pts[0].x, pts[0].y)
for i in range(1,len(pts)):
mindist=min(self.distance(x1, x2, pts[i].x, pts[i].y),mindist)
return mindist

View File

@ -12,15 +12,16 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# main drawing class
import sys
import math
from kivy.uix.widget import Widget
from kivy.core.window import Window
from kivy.graphics import Color,Line
from kivy.graphics import Color,Line,Rectangle
from point import Point
from polyomino import Cross
from polyomino import Square_element
from polyomino import Cross,Disk,Staircase,Square2
from tools import remove_fromlist
@ -34,6 +35,15 @@ class Painter(Widget):
# list of particles
self.particles=[]
# shape of particle to add next
self.shape=Cross
# color of particle to add next
self.color=(0,0,1)
# underlying lattice
self.lattice=None
# particle under mouse
self.undermouse=None
@ -54,6 +64,9 @@ class Painter(Widget):
# modifiers
self.modifiers=[]
# base size for all particles
self.base_size=50
# init Widget
super(Painter,self).__init__(**kwargs)
@ -61,21 +74,38 @@ class Painter(Widget):
self.keyboard = Window.request_keyboard(None,self,"text")
self.keyboard.bind(on_key_down=self.on_key_down,on_key_up=self.on_key_up,on_textinput=self.on_textinput)
# redraw on resize
self.bind(size=lambda obj,value: self.draw())
def reset(self):
self.particles=[]
self.undermouse=None
self.draw()
# set lattice
def set_lattice(self,lattice):
self.lattice=lattice
# draw
self.draw()
# snap all existing particles to grid
for particle in self.particles:
delta=self.lattice.nearest_delta(particle.elements[0].pos)
if not self.check_interaction_any(particle,delta):
particle.move(delta)
# convert logical coordinates (normalized and centered) to the ones that are plotted
def pos_tocoord_x(self,x):
return self.width/2+x*Square_element.size
return self.width/2+x*self.base_size
def pos_tocoord_y(self,y):
return self.height/2+y*Square_element.size
return self.height/2+y*self.base_size
def coord_topos_x(self,x):
return (x-self.width/2)/Square_element.size
return (x-self.width/2)/self.base_size
def coord_topos_y(self,y):
return (y-self.height/2)/Square_element.size
return (y-self.height/2)/self.base_size
@ -88,10 +118,20 @@ class Painter(Widget):
for particle in self.particles:
particle.draw(self)
# draw lattice
if self.lattice!=None:
self.lattice.draw(self)
# draw grids
for particle in self.particles:
if particle.grid>0:
self.draw_grid(particle.squares[0].pos,particle.grid)
self.draw_grid(particle.elements[0].pos,particle.grid)
# draw Voronoi cells
if self.lattice!=None:
for particle in self.particles:
if particle.voronoi>0:
self.draw_voronoi(particle)
for particle in self.particles:
particle.draw(self,alpha=0.5)
@ -101,17 +141,79 @@ class Painter(Widget):
# height offset due to status bar and command prompt
height_offset=self.app.status_bar.height+self.app.command_prompt.height
# vertical lines
# offest wrt 0
offset=(pos.x-0.5)%mesh
for i in range(math.floor((self.width/Square_element.size-offset)/mesh)+1):
# lines right of pos
xx=pos.x+mesh/2
while self.pos_tocoord_x(xx)<self.width:
Color(1,1,1)
Line(points=((i*mesh+offset)*Square_element.size,height_offset,(i*mesh+offset)*Square_element.size,self.height+height_offset))
# horizontal lines
# offset wrt 0
offset=(pos.y-0.5)%1-height_offset/Square_element.size
for i in range(math.floor((self.height/Square_element.size-offset)/mesh)+1):
Line(points=(self.pos_tocoord_x(xx),height_offset,self.pos_tocoord_x(xx),self.height+height_offset))
xx+=mesh
# lines left of pos
xx=pos.x-mesh/2
while self.pos_tocoord_x(xx)>0:
Color(1,1,1)
Line(points=(0,(i*mesh+offset)*Square_element.size+height_offset,self.width,(i*mesh+offset)*Square_element.size+height_offset))
Line(points=(self.pos_tocoord_x(xx),height_offset,self.pos_tocoord_x(xx),self.height+height_offset))
xx-=mesh
# lines above pos
yy=pos.y+mesh/2
while self.pos_tocoord_y(yy)<self.height:
Color(1,1,1)
Line(points=(0,self.pos_tocoord_y(yy),self.width,self.pos_tocoord_y(yy)))
yy+=mesh
# lines below pos
yy=pos.y-mesh/2
while self.pos_tocoord_y(yy)>0:
Color(1,1,1)
Line(points=(0,self.pos_tocoord_y(yy),self.width,self.pos_tocoord_y(yy)))
yy-=mesh
# draw the discrete Voronoi cell of a particle
def draw_voronoi(self,particle):
# only works for lattices
if self.lattice!=None:
pos=particle.elements[0].pos
# loop over all points
xx=pos.x
while self.pos_tocoord_x(xx)<self.width:
yy=pos.y
while self.pos_tocoord_y(yy)<self.height:
self.draw_voronoi_site(xx,yy,particle.color,self.is_in_voronoi(xx,yy,particle))
yy+=self.lattice.spacing
yy=pos.y-self.lattice.spacing
while self.pos_tocoord_y(yy)>0:
self.draw_voronoi_site(xx,yy,particle.color,self.is_in_voronoi(xx,yy,particle))
yy-=self.lattice.spacing
xx+=self.lattice.spacing
xx=pos.x-self.lattice.spacing
while self.pos_tocoord_x(xx)>0:
yy=pos.y
while self.pos_tocoord_y(yy)<self.height:
self.draw_voronoi_site(xx,yy,particle.color,self.is_in_voronoi(xx,yy,particle))
yy+=self.lattice.spacing
yy=pos.y-self.lattice.spacing
while self.pos_tocoord_y(yy)>0:
self.draw_voronoi_site(xx,yy,particle.color,self.is_in_voronoi(xx,yy,particle))
yy-=self.lattice.spacing
xx-=self.lattice.spacing
# check whether a site is in the Voronoi cell of a particle
def is_in_voronoi(self,x,y,particle):
d_to_particle=self.lattice.distance_to_particle(x,y,particle)
# count how many are in voronoi cell
count=1
# TODO: start with a particle that is close to x,y
for q in self.particles:
dd=self.lattice.distance_to_particle(x,y,q)
if q!=particle and dd<d_to_particle:
return 0
if dd==d_to_particle:
count+=1
return count
# draw a site in a Voronoi cell
def draw_voronoi_site(self,x,y,color,count):
if count==0:
return
Color(color[0],color[1],color[2],1-count*0.1)
Rectangle(pos=(self.pos_tocoord_x(x-0.5*self.lattice.spacing),self.pos_tocoord_y(y-0.5*self.lattice.spacing)),size=(self.base_size*self.lattice.spacing,self.base_size*self.lattice.spacing))
# respond to keyboard
@ -153,10 +255,10 @@ class Painter(Widget):
# zoom
elif text=="+":
# increment by 10%
self.set_zoom(Square_element.size/50*1.1)
self.set_zoom(self.base_size/50*1.1)
elif text=="-":
# decrease by 10%
self.set_zoom(Square_element.size/50*0.9)
self.set_zoom(self.base_size/50*0.9)
elif text=="=":
# reset
self.set_zoom(1)
@ -186,9 +288,13 @@ class Painter(Widget):
touchx=self.coord_topos_x(touch.x)
touchy=self.coord_topos_y(touch.y)
# create new cross
# create new particle
if touch.button=="right":
new=Cross(touchx,touchy)
new=self.shape(touchx,touchy,color=self.color)
# snap to lattice
if self.lattice!=None:
new.move(self.lattice.nearest_delta(new.elements[0].pos))
if not self.check_interaction_any(new,Point(0,0)):
# add to list
self.particles.append(new)
@ -208,7 +314,10 @@ class Painter(Widget):
# record relative position of click with respect to reference
if self.undermouse!=None:
self.offset=Point(touchx,touchy)-self.undermouse.squares[0].pos
self.offset=Point(touchx,touchy)-self.undermouse.elements[0].pos
# snap to lattice
if self.lattice!=None:
self.offset=self.lattice.nearest(self.offset)
# no modifiers
if self.modifiers==[]:
@ -251,16 +360,32 @@ class Painter(Widget):
# respond to drag
def on_touch_move(self,touch):
# convert to logical
touchx=self.coord_topos_x(touch.x)
touchy=self.coord_topos_y(touch.y)
# only respond to touch in drawing area
if self.collide_point(*touch.pos):
# convert to logical
touchc=Point(self.coord_topos_x(touch.x),self.coord_topos_y(touch.y))
# snap to lattice
if self.lattice!=None:
touchc=self.lattice.nearest(touchc)
# only move on left click
if touch.button=="left" and self.modifiers==[] and self.undermouse!=None:
# attempted move determined by the relative position to the relative position of click within self.undermouse
delta=self.adjust_move(Point(touchx,touchy)-(self.offset+self.undermouse.squares[0].pos),0)
delta=self.adjust_move(touchc-(self.offset+self.undermouse.elements[0].pos),0)
# snap to lattice
if self.lattice!=None:
delta=self.lattice.nearest(delta)
# check that the move is possible (which is not guaranteed after snapping to lattice)
if not self.check_interaction_unselected_list(self.selected,delta):
for particle in self.selected:
particle.move(delta)
# no lattice, move is guaranteed to be acceptable
else:
for particle in self.selected:
particle.move(delta)
@ -305,9 +430,15 @@ class Painter(Widget):
# check whether a candidate particle element with any of the unselected particles
def check_interaction_unselected_element(self,element,offset):
for particle in self.unselected:
for square in particle.squares:
if square.check_interaction(element.pos+offset):
for elt in particle.elements:
# add offset
element.pos+=offset
if elt.check_interaction(element):
# reset offset
element.pos-=offset
return True
# reset offset
element.pos-=offset
return False
@ -317,7 +448,7 @@ class Painter(Widget):
# actual_delta is the smallest (componentwise) of all the computed delta's
actual_delta=Point(math.inf,math.inf)
for particle in self.selected:
for element in particle.squares:
for element in particle.elements:
# compute adjustment move due to unselected obstacles
adjusted_delta=self.adjust_move_element(delta,element,0)
# only keep the smallest delta's (in absolute value)
@ -343,18 +474,23 @@ class Painter(Widget):
# whether newpos is acceptable
accept_newpos=True
for other in self.unselected:
for obstacle in other.squares:
for obstacle in other.elements:
# move would make element overlap with obstacle
if obstacle.check_interaction(element.pos+delta):
element.pos+=delta
if obstacle.check_interaction(element):
element.pos-=delta
accept_newpos=False
# check if particle already touches obstacle
if obstacle.check_touch(element.pos):
if obstacle.check_touch(element):
# move along obstacle while remaining stuck
newdelta=obstacle.move_along(delta,element.pos)
newdelta=obstacle.move_along(delta,element)
else:
newdelta=obstacle.move_on_line_to_stick(element.pos,delta)
newdelta=obstacle.move_on_line_to_stick(element,delta)
if not self.check_interaction_unselected_element(element,newdelta):
return newdelta
else:
# reset offset
element.pos-=delta
if accept_newpos:
return delta
else:
@ -369,6 +505,9 @@ class Painter(Widget):
# set color of selected particles
def set_color(self,color):
# set color for next particles
self.color=color
# set color of selected particles
for particle in self.selected:
particle.color=color
# redraw
@ -388,14 +527,46 @@ class Painter(Widget):
# redraw
self.draw()
# set voronoi for selected particles
def set_voronoi(self, onoff):
for particle in self.selected:
if onoff==0:
particle.voronoi=False
elif onoff==1:
particle.voronoi=True
elif onoff==-1:
particle.voronoi=not particle.voronoi
# redraw
self.draw()
# write configuration to file
def write(self,file):
ff=open(file,"w")
# save state (particle shape, zoom, lattice)
if self.shape==Cross:
ff.write("%shape=cross\n")
elif self.shape==Disk:
ff.write("%shape=disk\n")
elif self.shape==Staircase:
ff.write("%shape=staircase\n")
elif self.shape==Square2:
ff.write("%shape=2square\n")
else:
print("bug: unrecognized shape in write: '"+str(self.shape)+"'")
ff.write("%zoom={:1.1f}\n".format(self.base_size/50))
ff.write("%color={:1.1f},{:1.1f},{:1.1f}\n".format(self.color[0],self.color[1],self.color[2]))
if self.lattice != None:
ff.write("%lattice="+self.lattice.type+':'+str(self.lattice.spacing)+"\n")
for particle in self.particles:
if type(particle)==Cross:
ff.write("{:d};".format(CROSS_INDEX))
ff.write("{:05.2f},{:05.2f};{:3.1f},{:3.1f},{:3.1f}\n".format(particle.squares[0].pos.x,particle.squares[0].pos.y,particle.color[0],particle.color[1],particle.color[2]))
elif type(particle)==Disk:
ff.write("{:d};".format(DISK_INDEX))
elif type(particle)==Staircase:
ff.write("{:d};".format(STAIRCASE_INDEX))
elif type(particle)==Square2:
ff.write("{:d};".format(SQUARE2_INDEX))
ff.write("{:05.2f},{:05.2f};{:3.1f},{:3.1f},{:3.1f}\n".format(particle.elements[0].pos.x,particle.elements[0].pos.y,particle.color[0],particle.color[1],particle.color[2]))
ff.close()
# read configuration from file
@ -429,12 +600,35 @@ class Painter(Widget):
if len(line)==0:
continue
# read options
if line[0]=='%':
# ignore empty line
if len(line)==1:
continue
[key,val]=line[1:].split('=',1)
if key=="shape":
self.app.command_prompt.run_set_shape(["set","shape",val])
elif key=="zoom":
self.app.command_prompt.run_set_zoom(["set","zoom",val])
elif key=="color":
color_str=val.split(',')
try:
self.set_color((float(color_str[0]),float(color_str[1]),float(color_str[2])))
except:
print("warning: ignoring line "+str(i)+" in file '"+file+"': color '"+color_str+"' cannot be read",file=sys.stderr)
# lattice is handled by main function
elif key=="lattice":
continue
else:
print("warning: ignoring line "+str(i)+" in file '"+file+"': unrecognized option '"+key+"'",file=sys.stderr)
continue
entries=line.split(";")
# skip line if improperly formatted
if len(entries)>3:
print("warning: ignoring line "+str(i)+" in file '"+file+"': more than three ';' spearated entries in '"+line+"'",file=sys.stderr)
print("warning: ignoring line "+str(i)+" in file '"+file+"': more than three ';' separated entries in '"+line+"'",file=sys.stderr)
if len(entries)<2:
print("warning: ignoring line "+str(i)+" in file '"+file+"': fewer than two ';' spearated entries in '"+line+"'",file=sys.stderr)
print("warning: ignoring line "+str(i)+" in file '"+file+"': fewer than two ';' separated entries in '"+line+"'",file=sys.stderr)
continue
# position
@ -472,6 +666,12 @@ class Painter(Widget):
continue
if particle_type==CROSS_INDEX:
candidate=Cross(pos.x,pos.y,color=color)
elif particle_type==DISK_INDEX:
candidate=Disk(pos.x,pos.y,color=color)
elif particle_type==STAIRCASE_INDEX:
candidate=Staircase(pos.x,pos.y,color=color)
elif particle_type==SQUARE2_INDEX:
candidate=Square2(pos.x,pos.y,color=color)
else:
print("warning: ignoring line "+str(i)+" in file '"+file+"': unrecognized particle type: '"+entries[0]+"'",file=sys.stderr)
continue
@ -508,7 +708,13 @@ class Painter(Widget):
for particle in self.particles:
if type(particle)==Cross:
ff.write("\cross{"+colors.closest_color(particle.color,colors.xcolor_names)+"}")
ff.write("{{({:05.2f},{:05.2f})}};\n".format(particle.squares[0].pos.x-self.particles[0].squares[0].pos.x,particle.squares[0].pos.y-self.particles[0].squares[0].pos.y))
elif type(particle)==Disk:
ff.write("\disk{"+colors.closest_color(particle.color,colors.xcolor_names)+"}")
elif type(particle)==Staircase:
ff.write("\staircase{"+colors.closest_color(particle.color,colors.xcolor_names)+"}")
elif type(particle)==Square2:
ff.write("\square{"+colors.closest_color(particle.color,colors.xcolor_names)+"}")
ff.write("{{({:05.2f},{:05.2f})}};\n".format(particle.elements[0].pos.x-self.particles[0].elements[0].pos.x,particle.elements[0].pos.y-self.particles[0].elements[0].pos.y))
ff.write("\\end{tikzpicture}\n")
ff.write("\\end{document}\n")
@ -518,11 +724,14 @@ class Painter(Widget):
# set zoom level
def set_zoom(self,level):
Square_element.size=level*50
self.base_size=level*50
self.draw()
# global variables (used like precompiler variables)
CROSS_INDEX=1
DISK_INDEX=2
STAIRCASE_INDEX=3
SQUARE2_INDEX=4

View File

@ -12,6 +12,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# two-dimensional point structure
import math
# point in two dimensions
@ -61,3 +63,7 @@ class Point:
# L infinity norm
def l_infinity(x):
return max(abs(x.x),abs(x.y))
# L 2 norm
def l_2(x):
return math.sqrt(x.x*x.x+x.y*x.y)

View File

@ -12,18 +12,16 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import sys
from kivy.graphics import Color,Line,Rectangle
from point import Point,l_infinity
from tools import isint_nonzero,sgn,in_interval
# a polyomino is a collection of elements, defined in elements.py
from kivy.graphics import Color,Line
from point import l_infinity
from element import Element_square,Element_circle
# parent class of all polyominos
class Polyomino():
def __init__(self,**kwargs):
# square elements that maje up the polyomino
self.squares=kwargs.get("squares",[])
# elements that make up the polyomino
self.elements=kwargs.get("elements",[])
self.color=kwargs.get("color",(0,0,1))
self.selected=False
@ -31,6 +29,9 @@ class Polyomino():
# mesh of background grid (no grid for mesh size 0)
self.grid=kwargs.get("grid",0)
# draw Voronoi cell
self.voronoi=kwargs.get("voronoi",False)
# draw function
def draw(self,painter,**kwargs):
alpha=kwargs.get("alpha",1)
@ -42,212 +43,137 @@ class Polyomino():
# darken selected
Color(r/2,g/2,b/2,alpha)
for square in self.squares:
Rectangle(pos=(painter.pos_tocoord_x(square.pos.x-0.5),painter.pos_tocoord_y(square.pos.y-0.5)),size=(square.size,square.size))
for element in self.elements:
element.draw(painter)
# draw boundary
self.stroke(painter)
# draw boundary (override for connected polyominos)
def stroke(self,painter):
# convert to graphical coordinates
coordx=painter.pos_tocoord_x(square.pos.x)
coordy=painter.pos_tocoord_y(square.pos.y)
# white
Color(1,1,1)
for square in self.squares:
Line(points=(
*(coordx-0.5*square.size,coordy-0.5*square.size),
*(coordx-0.5*square.size,coordy+0.5*square.size),
*(coordx+0.5*square.size,coordy+0.5*square.size),
*(coordx+0.5*square.size,coordy-0.5*square.size),
*(coordx-0.5*square.size,coordy-0.5*square.size)
))
for element in self.elements:
element.stroke(painter)
# move by delta
def move(self,delta):
for square in self.squares:
square.pos+=delta
for element in self.elements:
element.pos+=delta
# whether x is in the support of the polyomino
def in_support(self,x):
for square in self.squares:
if l_infinity(square.pos-x)<=1/2:
for element in self.elements:
if element.in_support(x):
return True
return False
# check whether self interacts with candidate if candidate were moved by offset
def check_interaction(self,candidate,offset):
for square1 in self.squares:
for square2 in candidate.squares:
if square1.check_interaction(square2.pos+offset):
for element1 in self.elements:
for element2 in candidate.elements:
# add offset
element2.pos+=offset
if element1.check_interaction(element2):
# reset offset
element2.pos-=offset
return True
# reset offset
element2.pos-=offset
return False
# square
class Square(Polyomino):
def __init__(self,x,y,**kwargs):
super(Square,self).__init__(**kwargs,squares=[Square_element(x,y)])
super(Square,self).__init__(**kwargs,elements=[Element_square(x,y,size=kwargs.get("size",1.0))])
# cross
class Cross(Polyomino):
def __init__(self,x,y,**kwargs):
super(Cross,self).__init__(**kwargs,squares=[\
Square_element(x,y),\
Square_element(x+1,y),\
Square_element(x-1,y),\
Square_element(x,y+1),\
Square_element(x,y-1)\
super(Cross,self).__init__(**kwargs,elements=[\
Element_square(x,y,1,aspect=3),\
Element_square(x+1,y,1),\
Element_square(x-1,y,1)\
])
# redefine stroke to avoid lines between touching squares
# redefine stroke to avoid lines between touching elements
def stroke(self,painter):
# convert to graphical coordinates
coordx=painter.pos_tocoord_x(self.squares[0].pos.x)
coordy=painter.pos_tocoord_y(self.squares[0].pos.y)
coordx=painter.pos_tocoord_x(self.elements[0].pos.x)
coordy=painter.pos_tocoord_y(self.elements[0].pos.y)
Color(1,1,1)
Line(points=(
*(coordx-0.5*Square_element.size,coordy-0.5*Square_element.size),
*(coordx-0.5*Square_element.size,coordy-1.5*Square_element.size),
*(coordx+0.5*Square_element.size,coordy-1.5*Square_element.size),
*(coordx+0.5*Square_element.size,coordy-0.5*Square_element.size),
*(coordx+1.5*Square_element.size,coordy-0.5*Square_element.size),
*(coordx+1.5*Square_element.size,coordy+0.5*Square_element.size),
*(coordx+0.5*Square_element.size,coordy+0.5*Square_element.size),
*(coordx+0.5*Square_element.size,coordy+1.5*Square_element.size),
*(coordx-0.5*Square_element.size,coordy+1.5*Square_element.size),
*(coordx-0.5*Square_element.size,coordy+0.5*Square_element.size),
*(coordx-1.5*Square_element.size,coordy+0.5*Square_element.size),
*(coordx-1.5*Square_element.size,coordy-0.5*Square_element.size),
*(coordx-0.5*Square_element.size,coordy-0.5*Square_element.size),
*(coordx-0.5*painter.base_size,coordy-0.5*painter.base_size),
*(coordx-0.5*painter.base_size,coordy-1.5*painter.base_size),
*(coordx+0.5*painter.base_size,coordy-1.5*painter.base_size),
*(coordx+0.5*painter.base_size,coordy-0.5*painter.base_size),
*(coordx+1.5*painter.base_size,coordy-0.5*painter.base_size),
*(coordx+1.5*painter.base_size,coordy+0.5*painter.base_size),
*(coordx+0.5*painter.base_size,coordy+0.5*painter.base_size),
*(coordx+0.5*painter.base_size,coordy+1.5*painter.base_size),
*(coordx-0.5*painter.base_size,coordy+1.5*painter.base_size),
*(coordx-0.5*painter.base_size,coordy+0.5*painter.base_size),
*(coordx-1.5*painter.base_size,coordy+0.5*painter.base_size),
*(coordx-1.5*painter.base_size,coordy-0.5*painter.base_size),
*(coordx-0.5*painter.base_size,coordy-0.5*painter.base_size),
))
# square building block of polyominos
class Square_element():
# size
size=50
# disk
class Disk(Polyomino):
def __init__(self,x,y,**kwargs):
self.pos=Point(x,y)
super(Disk,self).__init__(**kwargs,elements=[Element_circle(x,y,size=kwargs.get("size",1.0))])
# set position
def setpos(self,x,y):
self.pos.x=x
self.pos.y=y
# 3-staircase
class Staircase(Polyomino):
def __init__(self,x,y,**kwargs):
super(Staircase,self).__init__(**kwargs,elements=[\
Element_square(x,y+1,1,aspect=3),\
Element_square(x+1,y,1),\
Element_square(x+1,y+1,1),\
Element_square(x+2,y,1)\
])
# redefine stroke to avoid lines between touching elements
def stroke(self,painter):
# convert to graphical coordinates
coordx=painter.pos_tocoord_x(self.elements[0].pos.x)
coordy=painter.pos_tocoord_y(self.elements[0].pos.y)
# check whether a square at pos interacts with square
def check_interaction(self,pos):
return l_infinity(pos-self.pos)<1
Color(1,1,1)
Line(points=(
*(coordx-0.5*painter.base_size,coordy-1.5*painter.base_size),
*(coordx+2.5*painter.base_size,coordy-1.5*painter.base_size),
*(coordx+2.5*painter.base_size,coordy-0.5*painter.base_size),
*(coordx+1.5*painter.base_size,coordy-0.5*painter.base_size),
*(coordx+1.5*painter.base_size,coordy+0.5*painter.base_size),
*(coordx+0.5*painter.base_size,coordy+0.5*painter.base_size),
*(coordx+0.5*painter.base_size,coordy+1.5*painter.base_size),
*(coordx-0.5*painter.base_size,coordy+1.5*painter.base_size),
*(coordx-0.5*painter.base_size,coordy-1.5*painter.base_size),
))
# check whether a square at position pos is touching self
def check_touch(self,pos):
# allow for error
if in_interval(l_infinity(pos-self.pos),1-1e-11,1+1e-11):
return True
return False
# 2-square
class Square2(Polyomino):
def __init__(self,x,y,**kwargs):
super(Square2,self).__init__(**kwargs,elements=[\
Element_square(x,y,1),\
Element_square(x+1,y,1),\
Element_square(x,y+1,1),\
Element_square(x+1,y+1,1)\
])
# find position along a line that comes in contact with the line going through pos in direction v
def move_on_line_to_stick(self,pos,v):
# compute intersections with four lines making up square
if v.x!=0:
if v.y!=0:
intersections=[\
Point(self.pos.x+1,pos.y+v.y/v.x*(self.pos.x+1-pos.x)),\
Point(self.pos.x-1,pos.y+v.y/v.x*(self.pos.x-1-pos.x)),\
Point(pos.x+v.x/v.y*(self.pos.y+1-pos.y),self.pos.y+1),\
Point(pos.x+v.x/v.y*(self.pos.y-1-pos.y),self.pos.y-1)\
]
else:
intersections=[\
Point(self.pos.x+1,pos.y+v.y/v.x*(self.pos.x+1-pos.x)),\
Point(self.pos.x-1,pos.y+v.y/v.x*(self.pos.x-1-pos.x))
]
else:
if v.y!=0:
intersections=[\
Point(pos.x+v.x/v.y*(self.pos.y+1-pos.y),self.pos.y+1),\
Point(pos.x+v.x/v.y*(self.pos.y-1-pos.y),self.pos.y-1)\
]
else:
print("error: move_on_line_to_stick called with v=0, please file a bug report with the developer",file=sys.stderr)
exit(-1)
# compute closest one, on square
closest=None
dist=math.inf
for i in range(0,len(intersections)):
# check that it is on square
if abs(intersections[i].x-self.pos.x)<=1+1e-11 and abs(intersections[i].y-self.pos.y)<=1+1e-11:
if (intersections[i]-pos)**2<dist:
closest=intersections[i]
dist=(intersections[i]-pos)**2
if closest==None:
print("error: cannot move particle at (",pos.x,",",pos.y,") to the boundary of (",self.pos.x,",",self.pos.y,") in direction (",v.x,",",v.y,")",file=sys.stderr)
exit(-1)
# return difference to pos
return closest-pos
# move along edge of square
def move_along(self,delta,pos):
rel=pos-self.pos
# check if the particle is stuck in the x direction
if isint_nonzero(rel.x):
# check y direction
if isint_nonzero(rel.y):
# in corner
if sgn(delta.y)==-sgn(rel.y):
# stuck in x direction
return self.move_stuck_x(delta,pos)
elif sgn(delta.x)==-sgn(rel.x):
# stuck in y direction
return self.move_stuck_y(delta,pos)
# stuck in both directions
return pos
else:
# stuck in x direction
return self.move_stuck_x(delta,pos)
elif isint_nonzero(rel.y):
# stuck in y direction
return self.move_stuck_y(delta,pos)
# this should never happen
else:
print("error: stuck particle has non-integer relative position: (",rel.x,",",rel.y,")",file=sys.stderr)
exit(-1)
# move when stuck in the x direction
def move_stuck_x(self,delta,pos):
# only move in y direction
candidate=Point(0,delta.y)
# do not move past corners
rel=pos.y-self.pos.y
if delta.y>0:
if rel<math.ceil(rel)-1e-11 and delta.y+rel>math.ceil(rel)+1e-11 and math.ceil(rel)!=0:
# stick to corner
candidate.y=math.ceil(rel)+self.pos.y-pos.y
else:
if rel>math.floor(rel)+1e-11 and delta.y+rel<math.floor(rel)-1e-11 and math.floor(rel)!=0:
# stick to corner
candidate.y=math.floor(rel)+self.pos.y-pos.y
return candidate
# move when stuck in the y direction
def move_stuck_y(self,delta,pos):
# onlx move in x direction
candidate=Point(delta.x,0)
# do not move past corners
rel=pos.x-self.pos.x
if delta.x>0:
if rel<math.ceil(rel)-1e-11 and delta.x+rel>math.ceil(rel)+1e-11 and math.ceil(rel)!=0:
# stick to corner
candidate.x=math.ceil(rel)+self.pos.x-pos.x
else:
if rel>math.floor(rel)+1e-11 and delta.x+rel<math.floor(rel)-1e-11 and math.floor(rel)!=0:
# stick to corner
candidate.x=math.floor(rel)+self.pos.x-pos.x
return candidate
# redefine stroke to avoid lines between touching elements
def stroke(self,painter):
# convert to graphical coordinates
coordx=painter.pos_tocoord_x(self.elements[0].pos.x)
coordy=painter.pos_tocoord_y(self.elements[0].pos.y)
Color(1,1,1)
Line(points=(
*(coordx-0.5*painter.base_size,coordy-0.5*painter.base_size),
*(coordx+1.5*painter.base_size,coordy-0.5*painter.base_size),
*(coordx+1.5*painter.base_size,coordy+1.5*painter.base_size),
*(coordx-0.5*painter.base_size,coordy+1.5*painter.base_size),
*(coordx-0.5*painter.base_size,coordy-0.5*painter.base_size),
))

View File

@ -1,3 +1,17 @@
# Copyright 2021-2023 Ian Jauslin
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from kivy.uix.label import Label
from kivy.graphics import Color,Rectangle
from kivy.utils import escape_markup
@ -45,9 +59,9 @@ class Status_bar(Label):
spaces=int(self.width/self.char_width)-len(self.raw_text)-13
if spaces>0:
if self.app.painter.reference==None:
self.raw_text+=" "*spaces+"({:05.2f},{:05.2f})\n".format(self.app.painter.selected[0].squares[0].pos.x,self.app.painter.selected[0].squares[0].pos.y)
self.raw_text+=" "*spaces+"({:05.2f},{:05.2f})\n".format(self.app.painter.selected[0].elements[0].pos.x,self.app.painter.selected[0].elements[0].pos.y)
else:
self.raw_text+=" "*spaces+"({:05.2f},{:05.2f})\n".format(self.app.painter.selected[0].squares[0].pos.x-self.app.painter.reference.squares[0].pos.x,self.app.painter.selected[0].squares[0].pos.y-self.app.painter.reference.squares[0].pos.y)
self.raw_text+=" "*spaces+"({:05.2f},{:05.2f})\n".format(self.app.painter.selected[0].elements[0].pos.x-self.app.painter.reference.elements[0].pos.x,self.app.painter.selected[0].elements[0].pos.y-self.app.painter.reference.elements[0].pos.y)
# do not wrap
self.text=self.raw_text[:min(len(self.raw_text),int(self.width/self.char_width))]

View File

@ -1,3 +1,19 @@
# Copyright 2021-2023 Ian Jauslin
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
# sign function
def sgn(x):
if x>=0:
@ -20,3 +36,10 @@ def remove_fromlist(a,x):
a[a.index(x)]=a[len(a)-1]
a=a[:len(a)-1]
return a
# snap to a grid: ceiling
def ceil_grid(x,size):
return math.ceil(x/size)*size
# snap to a grid: floor
def floor_grid(x,size):
return math.floor(x/size)*size