Implement interaction between squares of different sizes

This commit is contained in:
Ian Jauslin 2022-09-23 20:49:58 -04:00
parent b9be36b4e0
commit 5835c9003c
2 changed files with 68 additions and 50 deletions

View File

@ -348,8 +348,14 @@ class Painter(Widget):
def check_interaction_unselected_element(self,element,offset):
for particle in self.unselected:
for square in particle.squares:
if square.check_interaction(element.pos+offset):
# add offset
element.pos+=offset
if square.check_interaction(element):
# reset offset
element.pos-=offset
return True
# reset offset
element.pos-=offset
return False
@ -387,16 +393,21 @@ class Painter(Widget):
for other in self.unselected:
for obstacle in other.squares:
# move would make element overlap with obstacle
if obstacle.check_interaction(element.pos+delta):
element.pos+=delta
if obstacle.check_interaction(element):
element.pos-=delta
accept_newpos=False
# check if particle already touches obstacle
if obstacle.check_touch(element.pos):
if obstacle.check_touch(element):
# move along obstacle while remaining stuck
newdelta=obstacle.move_along(delta,element.pos)
newdelta=obstacle.move_along(delta,element)
else:
newdelta=obstacle.move_on_line_to_stick(element.pos,delta)
newdelta=obstacle.move_on_line_to_stick(element,delta)
if not self.check_interaction_unselected_element(element,newdelta):
return newdelta
else:
# reset offset
element.pos-=delta
if accept_newpos:
return delta
else:

View File

@ -29,7 +29,7 @@ class Polyomino():
Color(r/2,g/2,b/2,alpha)
for square in self.squares:
Rectangle(pos=(painter.pos_tocoord_x(square.pos.x-0.5),painter.pos_tocoord_y(square.pos.y-0.5)),size=(square.size*painter.base_size,square.size*painter.base_size))
Rectangle(pos=(painter.pos_tocoord_x(square.pos.x-0.5*square.size),painter.pos_tocoord_y(square.pos.y-0.5*square.size)),size=(square.size*painter.base_size,square.size*painter.base_size))
# draw boundary
self.stroke(painter)
@ -67,8 +67,14 @@ class Polyomino():
def check_interaction(self,candidate,offset):
for square1 in self.squares:
for square2 in candidate.squares:
if square1.check_interaction(square2.pos+offset):
# add offset
square2.pos+=offset
if square1.check_interaction(square2):
# reset offset
square2.pos-=offset
return True
# reset offset
square2.pos-=offset
return False
# square
@ -125,38 +131,39 @@ class Square_element():
self.pos.y=y
# check whether a square at pos interacts with square
def check_interaction(self,pos):
return l_infinity(pos-self.pos)<self.size
# check whether a square at position pos is touching self
def check_touch(self,pos):
# check whether an element interacts with square
def check_interaction(self,element):
# allow for error
if in_interval(l_infinity(pos-self.pos),self.size-1e-11,self.size+1e-11):
return l_infinity(element.pos-self.pos)<(self.size+element.size)/2-1e-11
# check whether an element is touching self
def check_touch(self,element):
# allow for error
if in_interval(l_infinity(element.pos-self.pos),(self.size+element.size)/2-1e-11,(self.size+element.size)/2+1e-11):
return True
return False
# find position along a line that comes in contact with the line going through pos in direction v
def move_on_line_to_stick(self,pos,v):
# find position along a line that comes in contact with the line going through element.pos in direction v
def move_on_line_to_stick(self,element,v):
# compute intersections with four lines making up square
if v.x!=0:
if v.y!=0:
intersections=[\
Point(self.pos.x+self.size,pos.y+v.y/v.x*(self.pos.x+self.size-pos.x)),\
Point(self.pos.x-self.size,pos.y+v.y/v.x*(self.pos.x-self.size-pos.x)),\
Point(pos.x+v.x/v.y*(self.pos.y+self.size-pos.y),self.pos.y+self.size),\
Point(pos.x+v.x/v.y*(self.pos.y-self.size-pos.y),self.pos.y-self.size)\
Point(self.pos.x+(self.size+element.size)/2,element.pos.y+v.y/v.x*(self.pos.x+(self.size+element.size)/2-element.pos.x)),\
Point(self.pos.x-(self.size+element.size)/2,element.pos.y+v.y/v.x*(self.pos.x-(self.size+element.size)/2-element.pos.x)),\
Point(element.pos.x+v.x/v.y*(self.pos.y+(self.size+element.size)/2-element.pos.y),self.pos.y+(self.size+element.size)/2),\
Point(element.pos.x+v.x/v.y*(self.pos.y-(self.size+element.size)/2-element.pos.y),self.pos.y-(self.size+element.size)/2)\
]
else:
intersections=[\
Point(self.pos.x+self.size,pos.y+v.y/v.x*(self.pos.x+self.size-pos.x)),\
Point(self.pos.x-self.size,pos.y+v.y/v.x*(self.pos.x-self.size-pos.x))
Point(self.pos.x+(self.size+element.size)/2,element.pos.y+v.y/v.x*(self.pos.x+(self.size+element.size)/2-element.pos.x)),\
Point(self.pos.x-(self.size+element.size)/2,element.pos.y+v.y/v.x*(self.pos.x-(self.size+element.size)/2-element.pos.x))
]
else:
if v.y!=0:
intersections=[\
Point(pos.x+v.x/v.y*(self.pos.y+self.size-pos.y),self.pos.y+self.size),\
Point(pos.x+v.x/v.y*(self.pos.y-self.size-pos.y),self.pos.y-self.size)\
Point(element.pos.x+v.x/v.y*(self.pos.y+(self.size+element.size)/2-element.pos.y),self.pos.y+(self.size+element.size)/2),\
Point(element.pos.x+v.x/v.y*(self.pos.y-(self.size+element.size)/2-element.pos.y),self.pos.y-(self.size+element.size)/2)\
]
else:
print("error: move_on_line_to_stick called with v=0, please file a bug report with the developer",file=sys.stderr)
@ -167,72 +174,72 @@ class Square_element():
dist=math.inf
for i in range(0,len(intersections)):
# check that it is on square
if abs(intersections[i].x-self.pos.x)<=self.size+1e-11 and abs(intersections[i].y-self.pos.y)<=self.size+1e-11:
if (intersections[i]-pos)**2<dist:
if abs(intersections[i].x-self.pos.x)<=(self.size+element.size)/2+1e-11 and abs(intersections[i].y-self.pos.y)<=(self.size+element.size)/2+1e-11:
if (intersections[i]-element.pos)**2<dist:
closest=intersections[i]
dist=(intersections[i]-pos)**2
dist=(intersections[i]-element.pos)**2
if closest==None:
print("error: cannot move particle at (",pos.x,",",pos.y,") to the boundary of (",self.pos.x,",",self.pos.y,") in direction (",v.x,",",v.y,")",file=sys.stderr)
exit(-1)
# return difference to pos
return closest-pos
return closest-element.pos
# move along edge of square
def move_along(self,delta,pos):
rel=pos-self.pos
def move_along(self,delta,element):
rel=element.pos-self.pos
# check if the particle is stuck in the x direction
if isint_nonzero(rel.x/self.size):
if isint_nonzero(rel.x/((self.size+element.size)/2)):
# check y direction
if isint_nonzero(rel.y/self.size):
if isint_nonzero(rel.y/((self.size+element.size)/2)):
# in corner
if sgn(delta.y)==-sgn(rel.y):
# stuck in x direction
return self.move_stuck_x(delta,pos)
return self.move_stuck_x(delta,element)
elif sgn(delta.x)==-sgn(rel.x):
# stuck in y direction
return self.move_stuck_y(delta,pos)
return self.move_stuck_y(delta,element)
# stuck in both directions
return pos
return element.pos
else:
# stuck in x direction
return self.move_stuck_x(delta,pos)
elif isint_nonzero(rel.y/self.size):
return self.move_stuck_x(delta,element)
elif isint_nonzero(rel.y/((self.size+element.size)/2)):
# stuck in y direction
return self.move_stuck_y(delta,pos)
return self.move_stuck_y(delta,element)
# this should never happen
else:
print("error: stuck particle has non-integer relative position: (",rel.x,",",rel.y,")",file=sys.stderr)
exit(-1)
# move when stuck in the x direction
def move_stuck_x(self,delta,pos):
def move_stuck_x(self,delta,element):
# only move in y direction
candidate=Point(0,delta.y)
# do not move past corners
rel=pos.y-self.pos.y
rel=element.pos.y-self.pos.y
if delta.y>0:
if rel<math.ceil(rel/self.size)*self.size-1e-11 and delta.y+rel>math.ceil(rel/self.size)*self.size+1e-11 and math.ceil(rel/self.size)*self.size!=0:
if rel<math.ceil(rel/((self.size+element.size)/2))*((self.size+element.size)/2)-1e-11 and delta.y+rel>math.ceil(rel/((self.size+element.size)/2))*((self.size+element.size)/2)+1e-11 and math.ceil(rel/((self.size+element.size)/2))*((self.size+element.size)/2)!=0:
# stick to corner
candidate.y=math.ceil(rel/self.size)*self.size+self.pos.y-pos.y
candidate.y=math.ceil(rel/((self.size+element.size)/2))*((self.size+element.size)/2)+self.pos.y-element.pos.y
else:
if rel>math.floor(rel/self.size)*self.size+1e-11 and delta.y+rel<math.floor(rel/self.size)*self.size-1e-11 and math.floor(rel/self.size)*self.size!=0:
if rel>math.floor(rel/((self.size+element.size)/2))*((self.size+element.size)/2)+1e-11 and delta.y+rel<math.floor(rel/((self.size+element.size)/2))*((self.size+element.size)/2)-1e-11 and math.floor(rel/((self.size+element.size)/2))*((self.size+element.size)/2)!=0:
# stick to corner
candidate.y=math.floor(rel)+self.pos.y-pos.y
candidate.y=math.floor(rel/((self.size+element.size)/2))*((self.size+element.size)/2)+self.pos.y-element.pos.y
return candidate
# move when stuck in the y direction
def move_stuck_y(self,delta,pos):
def move_stuck_y(self,delta,element):
# onlx move in x direction
candidate=Point(delta.x,0)
# do not move past corners
rel=pos.x-self.pos.x
rel=element.pos.x-self.pos.x
if delta.x>0:
if rel<math.ceil(rel/self.size)*self.size-1e-11 and delta.x+rel>math.ceil(rel/self.size)*self.size+1e-11 and math.ceil(rel/self.size)*self.size!=0:
if rel<math.ceil(rel/((self.size+element.size)/2))*((self.size+element.size)/2)-1e-11 and delta.x+rel>math.ceil(rel/((self.size+element.size)/2))*((self.size+element.size)/2)+1e-11 and math.ceil(rel/((self.size+element.size)/2))*((self.size+element.size)/2)!=0:
# stick to corner
candidate.x=math.ceil(rel/self.size)*self.size+self.pos.x-pos.x
candidate.x=math.ceil(rel/((self.size+element.size)/2))*((self.size+element.size)/2)+self.pos.x-element.pos.x
else:
if rel>math.floor(rel/self.size)*self.size+1e-11 and delta.x+rel<math.floor(rel/self.size)*self.size-1e-11 and math.floor(rel/self.size)*self.size!=0:
if rel>math.floor(rel/((self.size+element.size)/2))*((self.size+element.size)/2)+1e-11 and delta.x+rel<math.floor(rel/((self.size+element.size)/2))*((self.size+element.size)/2)-1e-11 and math.floor(rel/((self.size+element.size)/2))*((self.size+element.size)/2)!=0:
# stick to corner
candidate.x=math.floor(rel/self.size)*self.size+self.pos.x-pos.x
candidate.x=math.floor(rel/((self.size+element.size)/2))*((self.size+element.size)/2)+self.pos.x-element.pos.x
return candidate