Update to v0.2
Added: Discussion of uniqueness of the solution of the Simple Equation Added: Exercise: prove \psi_0>=0 using |\psi_0| Added: Links in bibliography Removed: Commented blocks Fixed: Formatting
This commit is contained in:
		
							
								
								
									
										12
									
								
								Changelog
									
									
									
									
									
								
							
							
						
						
									
										12
									
								
								Changelog
									
									
									
									
									
								
							@@ -1,3 +1,15 @@
 | 
			
		||||
v0.2:
 | 
			
		||||
  * Added: Discussion of uniqueness of the solution of the Simple Equation
 | 
			
		||||
 | 
			
		||||
  * Added: Exercise: prove \psi_0>=0 using |\psi_0|
 | 
			
		||||
 | 
			
		||||
  * Added: Links in bibliography
 | 
			
		||||
 | 
			
		||||
  * Removed: Commented blocks
 | 
			
		||||
 | 
			
		||||
  * Fixed: Formatting
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
v0.1:
 | 
			
		||||
 | 
			
		||||
  * Fixed: H_N is not compact, e^{-H_N} is.
 | 
			
		||||
 
 | 
			
		||||
@@ -269,6 +269,7 @@ The microscopic state of a system of quantum particles is given by a wavefunctio
 | 
			
		||||
  \label{H}
 | 
			
		||||
\end{equation}
 | 
			
		||||
where $\Delta_i$ is the Laplacian with respect to $x_i$.
 | 
			
		||||
(Throughout this document, we choose units so that $\hbar=1$; we keep track of the mass because different authors use $m=1$ or $m=1/2$, so we keep it to avoid confusion.)
 | 
			
		||||
This is the microscopic description of the system.
 | 
			
		||||
Similarly to the classical case, to treat situations with a huge number of particles, we will approach the system statistically.
 | 
			
		||||
In the classical case, we considered a probability distribution over all possible configurations, without fixing the number of particles.
 | 
			
		||||
@@ -635,6 +636,7 @@ Let us consider a more realistic Hamiltonian:
 | 
			
		||||
  \label{Ham}
 | 
			
		||||
\end{equation}
 | 
			
		||||
where $v$ is the potential that accounts for the interaction between pairs of particles.
 | 
			
		||||
(Throughout this document, we choose units so that $\hbar=1$; we keep track of the mass because different authors use $m=1$ or $m=1/2$, so we keep it to avoid confusion.)
 | 
			
		||||
This potential could be the Coulomb potential $1/|x|$ for charged particles, or the Lennard-Jones potential for interacting atoms, or something more realistic that accounts for the fine structure of atoms.
 | 
			
		||||
Here, we will restrict our focus a bit and assume that $v$ is integrable ($v\in L_1(\mathbb R^3)$) and non-negative: $v(x)\geqslant 0$.
 | 
			
		||||
In addition, we will only consider the zero-temperature state ($T=0$ that is $\beta=\infty$), in other words, we will be considering only the ground state of $H_N$, which is the eigenstate with lowest eigenvalue.
 | 
			
		||||
@@ -688,9 +690,10 @@ The physical picture to have in mind is two particles coming closer together in
 | 
			
		||||
By translation invariance, we can work in the center of mass reference frame, in which the scattering event can be seen as a single particle flying through a fixed potential.
 | 
			
		||||
The Schr\"odinger equation for this process is
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  -\frac1m\Delta\psi+v(x)\psi=i\hbar\partial_t\psi
 | 
			
		||||
  -\frac1m\Delta\psi+v(x)\psi=i\partial_t\psi
 | 
			
		||||
\end{equation}
 | 
			
		||||
(note the absence of a $1/2$ factor in front of the Laplacian which comes from the fact that the effective mass in the center of mass frame is $\frac{m_1m_2}{m_1+m_2}=m/2$.)
 | 
			
		||||
(Recall that we chose units so that $\hbar=1$.)
 | 
			
		||||
\bigskip
 | 
			
		||||
 | 
			
		||||
\indent
 | 
			
		||||
@@ -813,11 +816,13 @@ Alternatively, the scattering length can be computed as follows.
 | 
			
		||||
 | 
			
		||||
\theo{Lemma}\label{lemma:scattering}
 | 
			
		||||
  If $v$ is spherically symmetric, compactly supported and integrable, then
 | 
			
		||||
  \nopagebreakaftereq
 | 
			
		||||
  \begin{equation}
 | 
			
		||||
    a=\frac m{4\pi}\int dx\ v(x)\psi(x)
 | 
			
		||||
    .
 | 
			
		||||
  \end{equation}
 | 
			
		||||
\endtheo
 | 
			
		||||
\restorepagebreakaftereq
 | 
			
		||||
\bigskip
 | 
			
		||||
 | 
			
		||||
\indent\underline{Proof}:
 | 
			
		||||
@@ -907,11 +912,13 @@ Lee, Huang and Yang predicted the following low-density expansion for the ground
 | 
			
		||||
    \label{lhy_e}
 | 
			
		||||
  \end{equation}
 | 
			
		||||
  where $a$ is the scattering length of the potential, and
 | 
			
		||||
  \nopagebreakaftereq
 | 
			
		||||
  \begin{equation}
 | 
			
		||||
    \lim_{\rho\to 0}\frac{o(\sqrt{\rho})}{\sqrt{\rho}}=0
 | 
			
		||||
    .
 | 
			
		||||
  \end{equation}
 | 
			
		||||
\endtheo
 | 
			
		||||
\restorepagebreakaftereq
 | 
			
		||||
\bigskip
 | 
			
		||||
 | 
			
		||||
The first two orders of this expansion thus only depend on the potential through its scattering length.
 | 
			
		||||
@@ -1313,6 +1320,7 @@ We thus define an equation obtained from the Complete Equation in which we drop
 | 
			
		||||
  \label{bigeqL}
 | 
			
		||||
  \end{equation}
 | 
			
		||||
\endtheo
 | 
			
		||||
\restorepagebreakaftereq
 | 
			
		||||
\bigskip
 | 
			
		||||
 | 
			
		||||
In practice, we have found that the predictions of the Big Equation are extremely close to those of the Complete Equation.
 | 
			
		||||
@@ -1710,7 +1718,7 @@ We are almost there: we have proved the existence of the solution of the modifie
 | 
			
		||||
To prove Theorem\-~\ref{theo:existence}, we need to prove that $e\mapsto\rho(e)$ can be inverted locally.
 | 
			
		||||
\bigskip
 | 
			
		||||
 | 
			
		||||
\theo{Lemma}
 | 
			
		||||
\theo{Lemma}\label{lemma:surjective}
 | 
			
		||||
  The map $e\mapsto\rho(e)$ is continuous, and $\rho(0)=0$ and $\lim_{e\to\infty}\rho(e)=\infty$.
 | 
			
		||||
  Therefore $e\mapsto\rho(r)$ can be inverted locally.
 | 
			
		||||
\endtheo
 | 
			
		||||
@@ -1838,6 +1846,13 @@ But what of the uniqueness?
 | 
			
		||||
    .
 | 
			
		||||
  \end{equation}
 | 
			
		||||
\qed
 | 
			
		||||
\bigskip
 | 
			
		||||
 | 
			
		||||
\indent
 | 
			
		||||
Thus, taking the point of view in which the energy $e$ is fixed and $\rho$ is computed as a fuction of $e$, the solution is unique.
 | 
			
		||||
However, this does not imply that the solution to the problem in which $\rho$ is fixed is unique: the mapping $e\mapsto\rho(e)$ may not be injective (it is surjective by Lemma\-~\ref{lemma:surjective}).
 | 
			
		||||
To prove that it is injective, one could prove that $\rho$ is an increasing function of $e$ (physically, it should be: the higher the density is, the higher the energy should be because the potnetial is repulsive).
 | 
			
		||||
This has been proved for small and large values of $e$\-~\cite{CJL21}, but, in general, it is still an open problem.
 | 
			
		||||
 | 
			
		||||
\subsection{Energy of the Simple Equation}
 | 
			
		||||
\indent
 | 
			
		||||
@@ -2324,24 +2339,6 @@ In this appendix we gather a few useful definitions and results from functional
 | 
			
		||||
\endtheo
 | 
			
		||||
\bigskip
 | 
			
		||||
 | 
			
		||||
%\theo{Lemma}
 | 
			
		||||
%  If $A$ and $B$ are positivity preserving, $A$ and $A^{-1}-B$ are invertible, and $\|BA\|<1$ or $\|AB\|<1$, then $(A^{-1}-B)^{-1}$ is positivity preserving.
 | 
			
		||||
%\endtheo
 | 
			
		||||
%\bigskip
 | 
			
		||||
%
 | 
			
		||||
%\indent\underline{Proof}:
 | 
			
		||||
%  We expand
 | 
			
		||||
%  \begin{equation}
 | 
			
		||||
%    (A^{-1}-B)^{-1}
 | 
			
		||||
%    =
 | 
			
		||||
%    \sum_{n=0}^\infty A(BA)^n
 | 
			
		||||
%    =
 | 
			
		||||
%    \sum_{n=0}^\infty (AB)^nA
 | 
			
		||||
%    .
 | 
			
		||||
%  \end{equation}
 | 
			
		||||
%\qed
 | 
			
		||||
%\bigskip
 | 
			
		||||
 | 
			
		||||
\theo{Lemma}\label{lemma:add_inv}
 | 
			
		||||
  If $\mathrm{spec}(A+B)>\epsilon>0$, and $e^{-tA}$ and $e^{-t B}$ are positivity preserving for all $t>0$, then for all $t>0$, $e^{-t(A+B)}$ and $(A+B)^{-1}$ are positivity preserving.
 | 
			
		||||
\endtheo
 | 
			
		||||
@@ -2374,20 +2371,6 @@ In this appendix we gather a few useful definitions and results from functional
 | 
			
		||||
\qed
 | 
			
		||||
\bigskip
 | 
			
		||||
 | 
			
		||||
%\theo{Lemma}\label{lemma:diff}
 | 
			
		||||
%  If $B$ is positivity preserving and $(A+\eta B)^{-1}$ is positivity preserving for all $\eta$, then for any $f\in\mathcal B_1$ such that $f\geqslant 0$, $\eta\mapsto(A+\eta B)^{-1}f$ is monotone decreasing pointwise in $x$.
 | 
			
		||||
%\endtheo
 | 
			
		||||
%\bigskip
 | 
			
		||||
%
 | 
			
		||||
%\indent\underline{Proof}:
 | 
			
		||||
%  We have
 | 
			
		||||
%  \begin{equation}
 | 
			
		||||
%    \partial_\eta(A+\eta B)^{-1}f
 | 
			
		||||
%    =-(A+\eta B)^{-1}B(A+\eta B)^{-1}f\leqslant 0
 | 
			
		||||
%    .
 | 
			
		||||
%  \end{equation}
 | 
			
		||||
%\qed
 | 
			
		||||
 | 
			
		||||
\theoname{Theorem}{Positivity of the heat kernel}\label{theo:heat}
 | 
			
		||||
  Given $t>0$, the operator $e^{t\Delta}$ from $L_2(\mathbb R^d)$ to $L_2(\mathbb R^d)$ is positivity preserving.
 | 
			
		||||
\endtheo
 | 
			
		||||
@@ -2452,30 +2435,6 @@ In this appendix we gather a few useful definitions and results from functional
 | 
			
		||||
{\bf Remark}: In particular, taking the potential to be $\eta+v(x)$, this implies that $e^{-t(-\Delta+v(x)+\eta)}$ and $(-\Delta+v(x)+\eta)^{-1}$ are positivity preserving for any $\eta,v(x)\geqslant 0$.
 | 
			
		||||
\bigskip
 | 
			
		||||
 | 
			
		||||
%\theo{Lemma}\label{lemma:yukawa}
 | 
			
		||||
%  Given $\epsilon>0$, the operator $(-\Delta+\epsilon)^{-1}$ from $L_p(\mathbb R^3)$ to $W_{2,p}(\mathbb R^3)$ is positivity preserving.
 | 
			
		||||
%\endtheo
 | 
			
		||||
%\bigskip
 | 
			
		||||
%
 | 
			
		||||
%\indent\underline{Proof}:
 | 
			
		||||
%  We apply lemma\-~\ref{lemma:add_inv} with $A^{-1}=-\Delta$
 | 
			
		||||
%  We have
 | 
			
		||||
%  \begin{equation}
 | 
			
		||||
%    (-\Delta+\epsilon)^{-1}f(x)=\frac1{4\pi}\int dx\ \frac{e^{-\sqrt\epsilon|x-y|}}{|x-y|}f(y)
 | 
			
		||||
%    .
 | 
			
		||||
%  \end{equation}
 | 
			
		||||
%\qed
 | 
			
		||||
%\bigskip
 | 
			
		||||
%
 | 
			
		||||
%{\bf Example}:
 | 
			
		||||
%This implies that if $v(x)\geqslant 0$, $v\in L_p(\mathbb R^3)$ and $\|v\|_p<\epsilon$, then $(-\Delta+\epsilon-v)^{-1}$ is positivity preserving.
 | 
			
		||||
%Indeed, take $A=(-\Delta+\epsilon)^{-1}$, and use the fact that
 | 
			
		||||
%\begin{equation}
 | 
			
		||||
%  \|(-\Delta+\epsilon)^{-1}\|=\frac1\epsilon
 | 
			
		||||
%  .
 | 
			
		||||
%\end{equation}
 | 
			
		||||
%\bigskip
 | 
			
		||||
 | 
			
		||||
\theo{Lemma}\label{lemma:conv}
 | 
			
		||||
  If $A$ is positivity preserving, $f\in L_1(\mathbb R^d)$ such that $f\geqslant 0$ and $\mathrm{spec}(A-f\ast)>\epsilon>0$ and $e^{-tA}$ is positivity preserving, then $(A-f\ast)^{-1}$ is positivity preserving.
 | 
			
		||||
\endtheo
 | 
			
		||||
@@ -2552,12 +2511,14 @@ We need to compute these up to order $V^{-2}$, because one of the terms in the e
 | 
			
		||||
    u_3(x-y):=u(x-y)+\frac{w_3(x-y)}V
 | 
			
		||||
    \label{u3}
 | 
			
		||||
  \end{equation}
 | 
			
		||||
  \nopagebreakaftereq
 | 
			
		||||
  \begin{equation}
 | 
			
		||||
    w_3(x-y):=(1-u(x-y))\int dz\ u(x-z)u(y-z)
 | 
			
		||||
    .
 | 
			
		||||
    \label{w3}
 | 
			
		||||
  \end{equation}
 | 
			
		||||
\endtheo
 | 
			
		||||
\restorepagebreakaftereq
 | 
			
		||||
\bigskip
 | 
			
		||||
 | 
			
		||||
\indent\underline{Proof}:
 | 
			
		||||
@@ -2953,6 +2914,26 @@ Check that Theorem\-~\ref{theo:schrodinger} applies, so that $e^{-tH_N}$ is posi
 | 
			
		||||
Use the Perron-Frobenius theorem (Theorem\-~\ref{theo:perron_frobenius}) to conclude.
 | 
			
		||||
\bigskip
 | 
			
		||||
 | 
			
		||||
\problem\label{ex:nonneg} (solution on p.\-~\ref{sol:nonneg})\par
 | 
			
		||||
\smallskip
 | 
			
		||||
In this exercise, we will derive an alternate proof that $\psi_0\geqslant 0$ under the extra assumption that $v$ is continuous.
 | 
			
		||||
To do so, consider the energy of $\psi_0$:
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \mathcal E(\psi_0):=\left<\psi_0\right|H_N\left|\psi_0\right>
 | 
			
		||||
  =\int_{(\mathbb R/(L\mathbb Z))^{3N}} dx\ 
 | 
			
		||||
  \left(
 | 
			
		||||
    -\frac1{2m}\psi_0^*(x)\Delta\psi(x)
 | 
			
		||||
    +V(x)|\psi_0(x)|^2
 | 
			
		||||
  \right)
 | 
			
		||||
\end{equation}
 | 
			
		||||
where $\Delta$ is the Laplacian on $\mathbb R^{3N}$ and $V(x)\equiv\sum_{i<j}v(x_i-x_j)$.
 | 
			
		||||
Prove that
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \mathcal E(|\psi_0|)=\mathcal E(\psi_0)
 | 
			
		||||
\end{equation}
 | 
			
		||||
and use that to prove that $\psi_0\geqslant 0$.
 | 
			
		||||
\bigskip
 | 
			
		||||
 | 
			
		||||
\problem\label{ex:feynman_hellman} (solution on p.\-~\ref{sol:feynman_hellman})\par
 | 
			
		||||
\smallskip
 | 
			
		||||
In this exercise, we will show how to compute the condensate fraction in terms of the ground state energy of an effective Hamiltonian.
 | 
			
		||||
@@ -3135,6 +3116,43 @@ In addition, $e^{-tH_N}$ is compact by Theorem\-~\ref{theo:compact_schrodinger},
 | 
			
		||||
Finally, since $\mathrm{spec}(H_N)\geqslant 0$ (because $-\Delta\geqslant 0$ and $v\geqslant 0$, we can apply the Perron-Frobenius theorem, which implies that $\psi_0$ is unique and $\geqslant 0$.
 | 
			
		||||
\bigskip
 | 
			
		||||
 | 
			
		||||
\solution{nonneg}
 | 
			
		||||
The potential term $\int dx\ V(x)|\psi_0|^2$ is obviously the same for $\psi_0$ and $|\psi_0|$, so we only need to worry about the kinetic term.
 | 
			
		||||
Let
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  P:=\{x\in\mathbb R^{3N}:\ \psi_0(x)\neq0\}
 | 
			
		||||
  .
 | 
			
		||||
\end{equation}
 | 
			
		||||
Now, $\psi_0$ is twice contiuously differentiable, since it is an eigenfunction and $v$ is continous (see\-~\cite[Theorem 11.7(vi)]{LL01}), so $|\psi_0|$ is twice continuously differentiable on $P$,  and so
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  -\int dx\ |\psi_0|\Delta|\psi_0|
 | 
			
		||||
  \equiv
 | 
			
		||||
  -\int_P dx\ |\psi_0|\Delta|\psi_0|
 | 
			
		||||
  =
 | 
			
		||||
  \int_P dx\ (\nabla|\psi_0|)^2
 | 
			
		||||
  +\int_{\partial P} dx\ |\psi_0(x)|(n(x)\cdot\nabla|\psi_0|)
 | 
			
		||||
\end{equation}
 | 
			
		||||
where $n(x)$ is the normal vector at $x$ ($\partial P$ is differentiable because $\psi_0$ is as well), but since $\psi_0(x)=0$ on $\partial P$,
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  -\int dx\ |\psi_0|\Delta|\psi_0|
 | 
			
		||||
  =
 | 
			
		||||
  \int_P dx\ (\nabla|\psi_0|)^2
 | 
			
		||||
  =
 | 
			
		||||
  \int_P dx\ \left(\nabla\psi_0\frac{\psi_0}{|\psi_0|}\right)^2
 | 
			
		||||
  =
 | 
			
		||||
  \int_P dx\ (\nabla\psi_0)^2
 | 
			
		||||
  =
 | 
			
		||||
  -\int_P dx\ \psi_0\Delta\psi_0
 | 
			
		||||
  .
 | 
			
		||||
\end{equation}
 | 
			
		||||
Thus, $\mathcal E(|\psi_0|)=\mathcal E(\psi_0)$.
 | 
			
		||||
Since $\psi_0$ is the minimizer of $\mathcal E(\psi_0)$, so is $|\psi_0|$, but since the ground state is unique,
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \psi_0=|\psi_0|
 | 
			
		||||
\end{equation}
 | 
			
		||||
so $\psi_0\geqslant 0$.
 | 
			
		||||
\bigskip
 | 
			
		||||
 | 
			
		||||
\solution{feynman_hellman}
 | 
			
		||||
Let $\tilde\psi_0(\epsilon)$ denote the ground state of $\tilde H_N(\epsilon)$ with $\|\tilde\psi_0(\epsilon)\|_2=1$.
 | 
			
		||||
We have
 | 
			
		||||
 
 | 
			
		||||
@@ -29,7 +29,8 @@ doi:{\tt\color{blue}\href{http://dx.doi.org/10.4007/annals.2020.192.3.5}{10.4007
 | 
			
		||||
\bibitem[FS23]{FS23}S. Fournais, J.P. Solovej - {\it The energy of dilute Bose gases II: the general case}, Inventiones mathematicae, volume\-~232, issue\-~2, pages\-~863-994, 2023,\par\penalty10000
 | 
			
		||||
doi:{\tt\color{blue}\href{http://dx.doi.org/10.1007/s00222-022-01175-0}{10.1007/s00222-022-01175-0}}, arxiv:{\tt\color{blue}\href{http://arxiv.org/abs/2108.12022}{2108.12022}}.\par\medskip
 | 
			
		||||
 
 | 
			
		||||
\bibitem[Ga99]{Ga99}G. Gallavotti - {\it Statistical mechanics, a short treatise}, Springer, 1999.\par\medskip
 | 
			
		||||
\bibitem[Ga99]{Ga99}G. Gallavotti - {\it Statistical mechanics, a short treatise}, Springer, 1999,\par\penalty10000
 | 
			
		||||
{\tt\color{blue}\href{https://141.108.10.74/pagine/deposito/1998/libro.pdf}{https://141.108.10.74/pagine/deposito/1998/libro.pdf}}.\par\medskip
 | 
			
		||||
 
 | 
			
		||||
\bibitem[Ja22]{Ja22}I. Jauslin - {\it Review of a Simplified Approach to study the Bose gas at all densities}, The Physics and Mathematics of Elliott Lieb, The\-~90th Anniversary Volume I, chapter\-~25, pages\-~609-635, ed. Rupert L. Frank, Ari Laptev, Mathieu Lewin, Robert Seiringer, EMS Press, 2022,\par\penalty10000
 | 
			
		||||
doi:{\tt\color{blue}\href{http://dx.doi.org/10.4171/90-1/25}{10.4171/90-1/25}}, arxiv:{\tt\color{blue}\href{http://arxiv.org/abs/2202.07637}{2202.07637}}.\par\medskip
 | 
			
		||||
@@ -68,7 +69,8 @@ doi:{\tt\color{blue}\href{http://dx.doi.org/10.4171/90-2/40}{10.4171/90-2/40}},
 | 
			
		||||
\bibitem[Se11]{Se11}R. Seiringer - {\it The Excitation Spectrum for Weakly Interacting Bosons}, Communications in Mathematical Physics, volume\-~306, issue\-~2, pages\-~565-578, 2011,\par\penalty10000
 | 
			
		||||
doi:{\tt\color{blue}\href{http://dx.doi.org/10.1007/s00220-011-1261-6}{10.1007/s00220-011-1261-6}}, arxiv:{\tt\color{blue}\href{http://arxiv.org/abs/1008.5349}{1008.5349}}.\par\medskip
 | 
			
		||||
 
 | 
			
		||||
\bibitem[Te14]{Te14}G. Teschl - {\it Mathematical Methods in Quantum Mechanics With Applications to Schr\"odinger Operators}, Second Edition, Graduate Studies in Mathematics, volume\-~157, AMS, 2014.\par\medskip
 | 
			
		||||
\bibitem[Te14]{Te14}G. Teschl - {\it Mathematical Methods in Quantum Mechanics With Applications to Schr\"odinger Operators}, Second Edition, Graduate Studies in Mathematics, volume\-~157, AMS, 2014,\par\penalty10000
 | 
			
		||||
{\tt\color{blue}\href{https://www.mat.univie.ac.at/~gerald/ftp/book-schroe/schroe2.pdf}{https://www.mat.univie.ac.at/$\sim$gerald/ftp/book-schroe/schroe2.pdf}}.\par\medskip
 | 
			
		||||
 
 | 
			
		||||
\bibitem[YY09]{YY09}H. Yau, J. Yin - {\it The Second Order Upper Bound for the Ground Energy of a Bose Gas}, Journal of Statistical Physics, volume\-~136, issue\-~3, pages\-~453-503, 2009,\par\penalty10000
 | 
			
		||||
doi:{\tt\color{blue}\href{http://dx.doi.org/10.1007/s10955-009-9792-3}{10.1007/s10955-009-9792-3}}, arxiv:{\tt\color{blue}\href{http://arxiv.org/abs/0903.5347}{0903.5347}}.\par\medskip
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user