Initial commit

This commit is contained in:
Ian Jauslin 2023-02-26 19:10:42 -05:00
commit d4b3b0cc4c
55 changed files with 4800 additions and 0 deletions

504
Jauslin_2023b.tex Normal file
View File

@ -0,0 +1,504 @@
\documentclass[pra,twocolumn]{revtex4-2}
\usepackage[hidelinks]{hyperref}
\usepackage{amssymb}
\usepackage{array}
\usepackage{graphicx}
\usepackage{dsfont}
\usepackage{xcolor}
\begin{document}
\title{Evidence of a liquid phase in interacting Bosons at intermediate densities}
\author{Ian Jauslin}
\affiliation{\it Department of Mathematics, Rutgers University}
\email{ian.jauslin@rutgers.edu}
\begin{abstract}
In this paper, we present evidence for a liquid-like phase in systems of many interacting Bosons at intermediate densities.
The interacting Bose gas has been studied extensively in the low and high density regimes, in which interactions do not play a physically significant role, and the system behaves similarly to the ideal quantum gas.
Instead, we will turn our attention to the intermediate density regime, and report evidence that the system enters a strongly correlated phase where its behavior is markedly different from that of the ideal quantum gas.
To do so, we use the Simplified approach to the Bose gas, which was introduced by Lieb in 1963 and recently found to provide very accurate predictions for many-Boson systems at all densities.
Using this tool, we will compute predictions for the radial distribution function, structure factor, condensate fraction and momentum distribution, and show that they are consistent with liquid-type behavior.
\end{abstract}
\maketitle
\section{Introduction}
\indent
Since the early days of quantum mechanics, the Bose gas has been the subject of much interest, both from the theoretical\-~\cite{Bo24,Ei24,Le29,Bo47,Dy57,LHY57,Ef70,LY98,Ta08,BDZ08,YY09,Su11,CS16,NE17,FS20,BCS21,FS22} and the experimental\-~\cite{Ka38,AM38,AEe95,DMe95,KMe06,MMe07,BDZ08,CGe10,CS16,NE17,FAe21} communities.
Despite its relative simplicity, it exhibits a rich phenomenology: it forms a Bose-Einstein condensate at low temperatures\-~\cite{Bo24,Ei24,AEe95,DMe95}, and, with the advent of cold-atom physics\-~\cite{PM82,CHe85,AAe88,BML00} and the possibility of studying Bose gasses in the lab with ever increasing precision, there have been many successes in probing its phase diagram and understanding its exotic quantum phase transitions\-~\cite{AEe95,DMe95,MMe07,SPP07,BDZ08}.
\indent
Whereas much attention has been payed to the behavior of Bose gasses at very low and high densities, where the system behaves similarly to the ideal quantum gas, in this paper, we shall turn our attention to the intermediate density regime, for which we have found evidence of behavior that differs significantly from the ideal quantum gas, and bears resemblance to a liquid-type phase.
Until recently, theoretical tools, such as Bogolyubov theory\-~\cite{Bo47,LY98,ZB01,LSe05,YY09,FS22} or renormalization group techniques\-~\cite{Be95,CG14,BFe17}, developed to understand the behavior of the Bose gas have been based on perturbing non-interacting systems.
As such, these methods are ill-suited to understanding the strongly coupled behavior emerging in the intermediate density regime.
\indent
Instead, we will use the ``Simplified Approach to the Bose gas'', which was introduced in a paper by Lieb from 1963\-~\cite{Li63,LS64,LL64}, and was recently found to yield very accurate predictions at all densities\-~\cite{CJL20,CJL21,CHe21,Ja22}.
This has allowed us to probe the behavior of Bose gasses in a range of densities that had, until now, only been accessible to Quantum Monte-Carlo simulations.
In doing so, we have found numerical evidence for a liquid-like phase in a range of densities that is large enough for the interactions to become important, but not so large as to break into the mean-field regime.
This is, as far as we know, a new prediction, which shows that there is non-trivial behavior in interacting Bose gasses at intermediate densities, and may be investigated experimentally.
\indent
More specifically, we have studied predictions for the radial distribution function (i.e. the spherical average of the two-point correlation function), the structure factor (i.e. the Fourier transform of the radial distribution function), the condensate fraction, and the momentum distribution (i.e. the average number of particles in the state $e^{i\mathbf k\mathbf x}$).
We have found that the radial distribution function is monotone increasing for small densities, and that, beyond a first critical density $\rho_*$, a local maximum emerges, see Figures\-~\ref{fig:2pt} and\-~\ref{fig:2pt_max}.
There is thus a length scale at which it is more likely to find pairs of particles, which is consistent with liquid behavior.
Conversely, the structure factor is monotone at very high densities, and, lowering the density, we find that for densities smaller than a second critical density $\rho_{**}>\rho_*$, it develops a local maximum, see Figures\-~\ref{fig:2pt_fourier} and\-~\ref{fig:2pt_fourier_max}.
These critical densities also appear rather close to inflection points of the condensate fraction as a function of density, see Figure\-~\ref{fig:condensate}.
We have also investigated the momentum distribution, and found that it increases sharply near $\rho_*$, see Figure\-~\ref{fig:Nk}.
This is clear evidence for non-trivial behavior in the range of densities $\rho_*<\rho<\rho_{**}$, which shares some similarities to classical liquids\-~\cite{HM88}.
\indent
These results complete the phase diagram of the Bose gas.
At low densities, the interactions between particles are weak, and the system behaves similarly to the ideal quantum gas\-~\cite{Bo47,Dy57,LHY57,LY98,YY09,FS20,FS22,LSY00,LS02,NRS16,BBe18,BBe19,DSY19,BBe20,DS20,BSS22,NNe22,Sc22}.
At high densities, the particles are so close that the effect of neighboring particles is approximately a uniform background field: this is a mean-field phase\-~\cite{LSe05,Se11,PPS20,Bo22}, and behaves formally as an ideal quantum gas in a field.
The results in this paper show that, in between these two regimes, there is evidence for a new kind behavior.
It is worth pointing out that, in the case of a gas with hard-core repulsion, the mean-field regime does not exist, and the intermediate density regime considered here corresponds to the high density phase of the hard-core Bose gas.
\bigskip
\indent
The model we will consider throughout this paper is a systems of many Bosons interacting via a spherically symmetric, repulsive, pair potential, whose Hamiltonian is
\begin{equation}
H=-\frac12\sum_{i=1}^N\Delta_i+\sum_{1\leqslant i<j\leqslant N}v(|x_i-x_j|)
\end{equation}
which we will consider in the thermodynamic limit $N,V\to\infty$ with $N/V=\rho$ fixed ($V$ is the volume).
The Simplified approach consists in reducing the computation of thermodynamic observables of this system to solving a non-linear, non-local effective equation\-~(\ref{bigeq}) on $\mathbb R^3$, by making an (as of yet uncontrolled) approximation, see\-~\cite{CJL20,CJL21,CHe21,Ja22} for more details.
Doing so comes at a cost, and there are several important limitations to the method.
In particular, the Simplified approach seems only to be useful to compute the ground state of Bose gasses, which means that we can probe the extremely low-temperature regime of the phase diagram, but not higher temperatures.
In addition, the high-density predictions of the Simplified approach have been shown\-~\cite{CJL20,CJL21,CHe21} to be accurate only in the case of purely repulsive interactions of positive type, that is, to potentials $v$ that are $\geqslant 0$ and whose Fourier transform is also $\geqslant 0$.
Such potentials are not rare: given any non-negative function $f$, the potential $v(x)=f\ast f(x)\equiv \int dy\ f(x-y)f(y)$ satisfies the two requirements.
Finally, we will assume that the interaction is spherically symmetric, as that greatly simplifies the numerical solution of the effective equation.
Under these restrictions, the Simplified approach has been found to be extremely accurate\-~\cite{CHe21} when compared to analytical predictions and to Quantum Monte Carlo simulations.
\indent
The Simplified approach actually provides a family of equations with varying levels of approximation.
In most of this paper we will use the ``Big equation''\-~\cite{CHe21}, which provides the best compromise between computational efficiency and accuracy.
It is defined as
\begin{equation}
\begin{array}{r@{\ }l}
-\Delta u(\mathbf x)
=&
(1-u(\mathbf x))
\big(v(\mathbf x)-2\rho u\ast S(\mathbf x)
+\\[0.1cm]&+
\rho^2 u\ast u\ast S(\mathbf x)-2u\ast(u(u\ast S))(\mathbf x)
\big)
\end{array}
\label{bigeq}
\end{equation}
in which $\ast$ is the convolution operator, $\rho$ is the density, $v$ is the potential, and
\begin{equation}
S(\mathbf x):=(1-u(\mathbf x))v(\mathbf x)
.
\label{S}
\end{equation}
The unknown $u$ is related to the two-point of correlation function of the ground-state wavefunction $\psi_0$, viewed as a probability distribution:
\begin{equation}
u(\mathbf x_1-\mathbf x_2)=1-\lim_{N,V\to\infty}\frac{V^2\int d\mathbf x_3\cdots d\mathbf x_N\ \psi_0(\mathbf x_1,\cdots,\mathbf x_N)}{\int d\mathbf y_1\cdots d\mathbf y_N\ \psi_0(\mathbf y_1,\cdots,\mathbf y_N)}
\end{equation}
in terms of which we can compute the ground state energy per particle:
\begin{equation}
e=\frac\rho2\int d\mathbf x\ (1-u(\mathbf x))v(\mathbf x)
.
\label{energy}
\end{equation}
\indent
The computation of the momentum distribution will actually be done in a different approximation, as the Big equation leads to significant numerical difficulties for that observable.
Instead, we will consider another of the equations of the Simplified approach: the ``Medium equation''\-~\cite{CHe21}, which is less accurate, but much easier to solve numerically.
It is obtained from the Big equation by neglecting the $2u\ast(u(u\ast S))$ term, and dropping the $u(\mathbf x)$ in the $(1-u(\mathbf x))$ prefactor except in front of $v$:
\begin{equation}
-\Delta u(\mathbf x)
=
(1-u(\mathbf x))v(\mathbf x)
-2\rho u\ast S(\mathbf x)
+\rho^2 u\ast u\ast S(\mathbf x)
.
\label{medeq}
\end{equation}
We will also use the less accurate Medium equation as a check on the predictions of the Big equation: qualitative phenomena that are visible in both approaches have a good chance of holding for the exact, unapproximated many-body Bose gas as well.
Conversely, when the quantitative predictions disagree, we will take that as an indication that the quantitative predictions are not to be taken too seriously.
\indent
Throughout this paper, we will use the interaction potential
\begin{equation}
v(\mathbf x)=8e^{-|\mathbf x|}
\end{equation}
which is of positive type (its Fourier transform is non-negative).
There is no particular reason why this potential is used rather than another spherically symmetric, positive type function, and it is chosen in this way merely for the sake of definiteness.
\bigskip
\indent
The rest of the paper is structured as follows.
In Section\-~\ref{sec:results}, we present the main results, and discuss the prediction of the Simplified approach for the radial distribution function, structure factor, condensate fraction and momentum distribution, and find that these consistently show non-trivial behavior for intermediate densities, which is consistent with a liquid-type phase.
In Appendix\-~\ref{app:medeq}, we present the corresponding predictions for the Medium equation.
In Appendix\-~\ref{app:simplesolv}, we discuss the numerical computation of the solution of the Big and Medium equations, which were carried out using the {\tt simplesolv}\-~\cite{ss} tool developed for this purpose, and released under a free software license.
\section{Numerical analysis of the intermediate density phase}\label{sec:results}
\subsection{Radial distribution}
\indent
We define the radial distribution function as the spherical average of the normalized two-point correlation function:
\begin{equation}
g(r):=\frac1{\rho^24\pi r^2}\int d\mathbf y\ \delta(|\mathbf y|-r)\sum_{i,j=1}^N\left<\delta(\mathbf y-\mathbf x_i)\delta(\mathbf x_j)\right>
.
\label{C2}
\end{equation}
Normalized in this way, $g\to1$ as $r\to\infty$.
To compute $g$, we use the fact that, denoting the energy of the system by $E_0$,
\begin{equation}
\frac12\sum_{i,j=1}^N\left<\delta(\mathbf y-\mathbf x_i)\delta(\mathbf x_j)\right>=\frac{\delta E_0}{\delta v(\mathbf y)}
\end{equation}
and use the prediction of the Big equation for the energy of the Bose gas to compute $E_0$.
\bigskip
\indent
The prediction for the radial distribution function for the Big equation is shown in Figure\-~\ref{fig:2pt}.
At low densities, the maximum of $g$ is $1$, that is, it is attained as $r\to\infty$.
As the density is increased, there is a transition to a regime in which the maximum is greater than $1$, and is attained at a finite value $r_*$.
In such cases, the length scale $r_*$ is a preferred inter-particle spacing, which shows that there is short-range order in the system.
This maximum quickly dissipates as $r$ increases, thus showing that there is no long-range order, which is consistent with the behavior of a liquid phase.
\bigskip
\begin{figure}
\hfil\includegraphics[width=\columnwidth]{2pt_bigeq.pdf}
\caption{
The prediction of the Big equation for the radial distribution function as a function of $r\rho^{1/3}$, for various values of $\rho$.
Note that $\rho^{-1/3}$ is the length scale of the average inter-particle distance.
As $\rho$ increases the radial distribution function develops a peak above $1$ that is not present for smaller densities.
As the density is increased further, the height of the peak goes down.
A similar plot for the Medium equation is in Figure\-~\ref{fig:2pt_medeq}.
}
\label{fig:2pt}
\end{figure}
\indent
The transition is even clearer in Figure\-~\ref{fig:2pt_max}, which shows the prediction of the maximum of the radial distribution function as a function of the density.
We see a clear transition from a low density regime in which the maximum $g(r_*)$ of $g$ is 1 to a high-density regime in which $g(r_*)>1$.
This occurs at a density $\rho_*\approx 0.9\times10^{-3}$, though the precise value of $\rho_*$ should not be taken too seriously.
Indeed, as is seen in Figure\-~\ref{fig:2pt_max_medeq} in Appendix\-~\ref{app:medeq}, the qualitative behavior of the Medium equation is similar to that of the Big equation, but the value of $\rho_*$ is off by a factor of $\approx2$.
Since the Big and Medium equation are two different levels of approximation of the many-body Bose gas, this is evidence that the Bose gas has a transition from $g(r_*)=1$ to $g(r_*)>1$, through the precise value of $\rho_*$ may differ from that of the Big equation.
\begin{figure}
\hfil\includegraphics[width=\columnwidth]{2pt_max.pdf}
\caption{
The prediction of the Big and Medium equations for the maximum of the radial distribution function as a function of $\rho$.
There is a clear transition from a low density regime in which the maximum is $1$ to a high density regime in which the maximum is $>1$.
The critical density at which the transition occurs is approximately $\rho_*=0.9\times 10^{-3}$.
}
\label{fig:2pt_max}
\end{figure}
\subsection{Structure factor}
\indent
The structure factor is defined in terms of the Fourier transform of the radial distribution function $g$\-~\cite{HM88}:
\begin{equation}
\mathcal S(|\mathbf k|):=1+\rho\int d\mathbf x\ e^{i\mathbf k\mathbf x}(g(|\mathbf x|)-1)
.
\end{equation}
The structure factor is of interest as it is directly observable in scattering experiments\-~\cite{HM88}.
\bigskip
\indent
The prediction for the structure factor for the Big equation is shown in Figure\-~\ref{fig:2pt_fourier}.
We find that, as the density increases, the maximum of the structure factor increases, and its standard deviation becomes smaller.
This bump is far from being a Bragg peak, as there is no long range order, nevertheless, the sharpening of the maximum indicates increased correlations\-~\cite{To18}, which is consistent with liquid-type behavior.
As the density is increased further, this bump disappears, as the system transitions to a high-density mean-field regime.
\bigskip
\begin{figure}
\hfil\includegraphics[width=\columnwidth]{2pt_fourier_bigeq.pdf}
\caption{
The prediction of the Big equation for the structure factor as a function of $\kappa\equiv|\mathbf k|$, for a wide range of values of $\rho$.
At small densities, the structure factor has a maximum that is just slightly above one (not visible in the figure), and as the density increases, this maximum becomes more and more pronounced, and then decreases.
Above a certain density, the maximum disappears entirely.
A similar plot for the Medium equation is in Figure\-~\ref{fig:2pt_fourier_medeq}.
}
\label{fig:2pt_fourier}
\end{figure}
\indent
In Figure\-~\ref{fig:2pt_fourier_max}, we plot the maximum of $\mathcal S$ as a function of $\rho$, where we see that the maximum increases smoothly until it reaches a maximum, and then decreases anew.
Beyond a second critical density, $\rho_{**}\approx0.2$, the local maximum disappears, and the maximum of $\mathcal S$ is pushed off to $\infty$.
Again, the value of this critical density should not be taken too seriously, as is indicated by a comparison with the prediction of the Medium equation, see Figure\-~\ref{fig:2pt_fourier_max_medeq}.
\begin{figure}
\hfil\includegraphics[width=\columnwidth]{2pt_fourier_max.pdf}
\caption{
The prediction of the Big equation for the maximum of the structure factor as a function of $\rho$.
As the density increases, the maximum of $\mathcal S$ first increases, then reaches a maximum, and decreases anew.
Beyond a density $\rho_{**}\approx 0.2$, the maximum of $\mathcal S$ is equal to 1.
}
\label{fig:2pt_fourier_max}
\end{figure}
\subsection{Condensate fraction}
\indent
The condensate fraction is the proportion of particles in the Bose-Einstein condensate:
\begin{equation}
\eta=
\frac1N\sum_{i=1}^N\left<P_0^{(i)}\right>
\end{equation}
where $P_0^{(i)}$ is the projector onto the subspace in which the $i$-th particle is in the constant state $\frac1{\sqrt V}$.
To compute it, we use the Feynman-Hellman theorem and express $\eta$ as a derivative of the ground state energy of an effective Hamiltonian, which we compute using the Big equation\-~\cite{CJL21,CHe21}.
\bigskip
\indent
We plot the condensate fraction as a function of the density in Figure\-~\ref{fig:condensate}.
As $\rho\to0$, $\eta\to1$, that is, there is complete Bose-Einstein condensation at zero density.
As the density is increased, $\eta$ decreases, then reaches a minimum, and then increases back towards $1$.
There are two inflection points, which occur somewhat close to the critical densities $\rho_*\approx0.9\times10^{-3}$ and $\rho_{**}\approx0.2$.
\begin{figure}
\hfil\includegraphics[width=\columnwidth]{condensate.pdf}
\caption{
The prediction of the Big equation for the condensate fraction as a function of $\rho$.
As the density increases, the condensate fraction first decreases, then reaches a minimum, and increases anew.
The dotted vertical lines correspond to the critical densities $\rho_*=0.9\times10^{-3}$ and $\rho_{**}=0.2$.
The curve has inflection points that are somewhat near $\rho_*$ and $\rho_{**}$.
}
\label{fig:condensate}
\end{figure}
\subsection{Momentum distribution}
\indent
The condensate fraction is defined using the projector onto the constant state, which is the ground state of the non-interacting system (the Laplacian).
The momentum distribution is determined from the occupation number of the {\it excited} states of the Laplacian, namely $e^{i\mathbf k\mathbf x}$ (note that this is different from studying the excitation spectrum of the Bose gas; our computation is restricted to the ground state).
Specifically, we define the number of particles with momentum $|\mathbf k|\equiv\kappa$ as
\begin{equation}
N_{\kappa}:=\int d\mathbf k\ \delta(|\mathbf k|-\kappa)\sum_{i=1}^N\left<P_{\mathbf k}^{(i)}\right>
\end{equation}
where $P_{\mathbf k}^{(i)}$ is the projector onto the subspace in which the $i$-th particle is in the state $\frac1{\sqrt V}e^{i\mathbf k\mathbf x}$.
Thus, $N_{\kappa}$ is the integral over the sphere of radius $\kappa$ of the number of particles in the state $e^{i\mathbf k\mathbf x}$.
In particular, $\eta=N_0/N$.
(The momentum distribution is then defined as $\mathcal M(\kappa):=N_\kappa/(4\pi\kappa^2\rho)$, but, in the following, we shall show results for $N_\kappa$ instead.)
\bigskip
\indent
As is explained in more detail in Appendix\-~\ref{app:simplesolv}, the numerical solution of the Big equation is less accurate than that of the Medium equation, and the computation of the momentum distribution for the Big equation leads to large numerical artifacts.
We will therefore focus on the Medium equation.
We will compare the prediction of the Medium equation to that of Bogolyubov theory\-~\cite[Appendix\-~A]{LSe05}:
\begin{equation}
N_{\kappa}^{(\mathrm{Bog})}=\frac12\left(\frac{\kappa^2+8\pi\rho a}{\kappa^2(\kappa^2+16\pi\rho a)}-1\right)
\end{equation}
where $a$ is the scattering length of the potential.
\indent
We plot the difference between the prediction for $N_\kappa$ of the Medium equation and of Bogolyubov theory in Figure\-~\ref{fig:Nk}.
We find that this difference increases sharply near the critical density $\bar\rho_*$ (for the Medium equation, the transition density is $\bar\rho_*\approx1.9\times10^{-3}$).
In addition, we find that Bogolyubov theory underestimates $N_\kappa$ for small $\kappa$ and overestimates it for larger $\kappa$.
\begin{figure}
\hfil\includegraphics[width=\columnwidth]{Nk.pdf}
\caption{
The difference between the predictions of the Medium equation and Bogolyubov theory for the spherical integral of the occupation number in the state $e^{i\mathbf k\mathbf x}$ as a function of $\kappa\equiv|\mathbf k|$ for densities near the critical density $\bar\rho_*=1.9\times10^{-3}$.
The solid line corresponds to $\rho=\bar\rho_*$.
As the density approaches $\bar\rho_*$, the difference in the predictions grows quickly.
We also find that Bogolyubov underestimates the occupation number for small $\kappa$ and overestimates it for large $\kappa$.
}
\label{fig:Nk}
\end{figure}
\section{Conclusion}
\indent
We have shown evidence for the existence of a non-trivial phase in interacting Bose gasses in a range of densities that are neither very small nor very large.
More specifically, we have shown that there exist two critical densities, $\rho_*<\rho_{**}$ such that, for $\rho_*<\rho<\rho_{**}$, both the radial distribution function and the structure factor have a maximum, see Figures\-~\ref{fig:2pt}-\ref{fig:2pt_fourier_max}.
Outside this range of densities, either the radial distribution function or the structure factor does not have a maximum.
This suggests a behavior that is similar to that of a classical liquid\-~\cite{HM88} for $\rho_*<\rho<\rho_{**}$.
In addition, these critical densities are near inflection points of the condensate fraction, see Figure\-~\ref{fig:condensate}.
Even though the evidence is insufficient to confidently claim that the system is in a liquid phase, it seems clear that there is non-trivial behavior in this intermediate range of densities.
\indent
To study this range of densities, we have used the Simplified approach, which is a method to study the ground state of repulsive Bose gasses with positive-type pair potentials.
It would be interesting to check these predictions using Quantum Monte-Carlo simulations (as was done for the radial distribution function in\-~\cite{CHe21}), and perhaps even in experiments.
This paper shows clear evidence that the behavior in the intermediate density regime may be worth investigating further, both theoretically and experimentally.
\begin{acknowledgements}
The author thanks Elliott H. Lieb, Eric A. Carlen and Markus Holzmann for many valuable discussions.
The author acknowledges support from the Simons Foundation, Grant Number 825876.
\end{acknowledgements}
\appendix
\section{Predictions of the Medium equation}\label{app:medeq}
In this appendix, we show plots of the predictions of the Medium equation for the results discussed above for the Big equation, see Figures\-~\ref{fig:2pt_medeq}-\ref{fig:condensate_medeq}.
\begin{figure}
\hfil\includegraphics[width=\columnwidth]{2pt_medeq.pdf}
\caption{
The prediction of the Medium equation for the radial distribution function as a function of $r\rho^{1/3}$, for various values of $\rho$.
The Medium equation reproduces the qualitative behavior of the Big equation in Figure \ref{fig:2pt}.
}
\label{fig:2pt_medeq}
\end{figure}
\begin{figure}
\hfil\includegraphics[width=\columnwidth]{2pt_max_medeq.pdf}
\caption{
The prediction of the Big and Medium equations for the maximum of the radial distribution function as a function of $\rho$.
The Medium equation is qualitatively similar to the Big equation, but the location of the transition as well as the height of the maximum differ significantly.
The critical density at which the transition occurs for the Medium equation is $\bar\rho_*\approx1.9\times 10^{-3}$.
}
\label{fig:2pt_max_medeq}
\end{figure}
\begin{figure}
\hfil\includegraphics[width=\columnwidth]{2pt_fourier_medeq.pdf}
\caption{
The prediction of the Medium equation for the structure factor as a function of $\kappa\equiv|\mathbf k|$, for a wide range of values of $\rho$.
The Medium equation reproduces the qualitative behavior of the Big equation in Figure \ref{fig:2pt_fourier}.
}
\label{fig:2pt_fourier_medeq}
\end{figure}
\begin{figure}
\hfil\includegraphics[width=\columnwidth]{2pt_fourier_max_medeq.pdf}
\caption{
The prediction of the Big and Medium equations for the maximum of the structure factor as a function of $\rho$.
The Medium equation is qualitatively similar to the Big equation, but the location of the transition as well as the height of the maximum differ significantly.
The critical density at which the transition occurs for the Medium equation is $\bar\rho_{**}\approx0.05$.
}
\label{fig:2pt_fourier_max_medeq}
\end{figure}
\begin{figure}
\hfil\includegraphics[width=\columnwidth]{condensate_medeq.pdf}
\caption{
The prediction of the Big and Medium equations for the condensate fraction as a function of $\rho$.
The dotted vertical lines correspond to the critical densities $\rho_*=0.9\times10^{-3}$ and $\rho_{**}=0.2$ for the Big equation and $\bar\rho_*=1.9\times10^{-3}$ and $\bar\rho_{**}=0.05$ for the Medium equation.
For the Big equation, the curve has inflection points at $\rho_*$ and $\rho_{**}$.
For the Medium equation, they are off.
}
\label{fig:condensate_medeq}
\end{figure}
\section{{\tt simplesolv}: a tool to solve the equations of the Simplified approach}\label{app:simplesolv}
\indent
To compute the numerical solution to the equations of the Simplified approach (such as the Big and Medium equations) we developed a tool called {\tt simplesolv}\-~\cite{ss}, written using the {\it Julia} programming language\-~\cite{Julia}, and released under the Apache 2.0 license, a free software license that allows free use, distribution, and modifications.
It is designed to compute the solution of any of the equations of the Simplified approach as well as a variety of observables, such as the energy, the condensate fraction, the two-point correlation function and its Fourier transform, the momentum distribution, and the compressibility.
\bigskip
\indent
In this appendix, we sketch the algorithm used to carry out the computation.
A more detailed explanation is available in the documentation bundled with the {\tt simplesolv} package\-~\cite{ss}.
\bigskip
\indent
The only observable that is directly accessible from the solution of the Big or Medium equations is the ground state energy per particle\-~(\ref{energy}).
To compute all other observables, we use the Feynman-Hellman theorem to reduce the computation to that of the energy of an auxiliary Hamiltonian, which leads to auxiliary Big and Medium equations.
We can thus reduce the computation of many observables to that of the energy.
\bigskip
\indent
We begin by describing the algorithm for the Medium equation, as it is simpler.
The Medium equation\-~(\ref{medeq}) can be rewritten as
\begin{equation}
-\Delta u=S-2\rho u\ast S+\rho^2 u\ast u\ast S
.
\end{equation}
In this form, it involves convolutions, but no products, so it has a simple expression in Fourier space:
\begin{equation}
\mathbf k^2\hat u=\hat S-2\rho\hat S\hat u+\rho^2\hat S\hat u^2
,\quad
\hat u(\mathbf k):=\int d\mathbf x\ e^{i\mathbf k\mathbf x}u(\mathbf x)
\end{equation}
with
\begin{equation}
\hat S(\mathbf k):=\int d\mathbf x\ e^{i\mathbf k\mathbf x}S(\mathbf x)
=\hat v(\mathbf k)+\frac1{8\pi^3}\hat v\ast\hat u(\mathbf k)
.
\end{equation}
This equation thus only involves a single in $\hat S$.
To compute it numerically, we use a Gauss quadrature.
First of all, we assume radial symmetry and work in spherical coordinates, so the integral can be expressed in terms of an integral over $[0,\infty)$:
\begin{equation}
\hat v\ast \hat u(|\mathbf k|)=\frac{2\pi}{|\mathbf k|}\int_0^\infty dt\ t\hat u(t)\int_{||\mathbf k|-t|}^{|\mathbf k|+t}ds\ s\hat v(s)
.
\end{equation}
Next, we compactify the interval using the map $\kappa\mapsto1/(\kappa+1)$, which maps $[0,\infty)$ to $(0,1]$, and use a Gauss-Legendre quadrature in that interval.
The reason we compactify the interval, rather than use a quadrature defined directly on $[0,\infty)$, is that $\hat u$ decays algebraically (as $|\mathbf k|^{-2}$\-~\cite{CJL20}), which rules out using Gauss-Hermite and Gauss-Laguerre quadratures.
Proceeding in this way, we approximate
\begin{equation}
\hat v\ast\hat u(\kappa_i)
\approx
\frac1{4\pi^3}\sum_{j=1}^N w_j\frac{(1-r_j)\hat u(\kappa_j)H(\kappa_i,\kappa_j)}{(1+r_j)^3}
\end{equation}
where $N$ is the {\it order} of the approximation, $(w_j,r_j)$ are the {\it weights} and {\it abscissa} of the Gauss-Legendre quadrature (which are universal and can be found in tables or standard software packages), and
\begin{equation}
\kappa_i:=\frac{1-r_i}{1+r_i}
,\quad
H(\kappa,t):=\frac{2\pi}\kappa\int_{|\kappa-t|}^{\kappa+t}ds\ s\hat v(s)
.
\end{equation}
Having made this approximation, the Medium equation reduces to a system of equations for $\hat u(\kappa_i)$ for $i\in\{1,\cdots,N\}$, which we solve using the Newton algorithm.
\indent
Gauss quadratures can be proved to converge exponentially in $N$ for analytic functions\-~\cite{PTe08} so the algorithm converges exponentially in $N$ as long as $\hat u$ is analytic (algebraically if it is only $\mathcal C^p$).
\indent
For the plots in this paper, we have used $N=100$ or $N=200$.
\bigskip
\indent
The Big equation poses a more significant challenge.
Indeed, in Fourier space, (\ref{bigeq}) becomes
\begin{equation}
\begin{array}{>\displaystyle l}
-\mathbf k^2\hat u
=
\hat S
-2\rho\hat S\hat u+\rho^2\hat S\hat u^2
-\frac1{4\pi^3}\hat u(\hat u\ast(\hat S\hat u))
-\\[0.1cm]\indent-
\frac1{8\pi^3}\hat u\ast\left(
-2\rho\hat S\hat u+\rho^2\hat S\hat u^2
-\frac1{4\pi^3}\hat u(\hat u\ast(\hat S\hat u))
\right)
.
\end{array}
\end{equation}
This involves many more convolutions in Fourier space than the Medium equation.
Whereas, for the Medium equation, using Gauss quadratures reduces the equation to a discrete system of equations, this is not the case for the Big equation.
Instead, we need an interpolation scheme to approximate the value of $\hat u$ in between the points $\kappa_i$.
To do so, we will use a Chebyshev polynomial expansion, but we must be careful in doing so alongside the compactification.
Indeed, we must take care to ensure that the polynomial goes to 0 at the edge of the compactified interval that corresponds to $\infty$, and that it does so at the appropriate rate.
To do so, instead of expanding $\hat u$, we expand $(1+|\mathbf k|)^2\hat u$, which does not decay at infinity.
In addition, because $\hat u$ is not necessarily approximated well by a polynomial uniformly over the entire range $[0,\infty)$, we split it up into intervals called {\it splines}, and perform the polynomial expansion in each spline independently.
(In addition to improving the precision, this gives us a simple check of the accuracy of the computation: neighboring splines must continue one another continuously, which allows us to spot numerical inaccuracies when this is not the case.)
Having approximated $\hat u$ by a polynomial, we compute integrals using Gauss-Legendre quadratures as before.
We denote the number of splines by $J$, the order of the Chebyshev polynomial expansion in each spline by $P$, and the order of the Gauss quadratures by $N$.
\indent
The Chebyshev polynomial expansion can be proved to converge exponentially in $P$ for analytic functions\-~\cite{PTe08}, so the algorithm converges exponentially in $N$ and in $P$ as long as $u$ is analytic.
However, it is computationally much heavier than the algorithm for the Medium equation, which restricts the values of $P,N$ and $J$ we can use in practice (all computations were run on a laptop computer).
Therefore, the numerical solution of the Big equation is more time-consuming, and, for some observables, less accurate than the solution of the Medium equation.
\indent
For the plots in this paper, we have used $J=10$, $P=8$ and $N=12$ or $J=15$, $P=12$ and $N=18$.
\bibliographystyle{apsrev4-2}
\bibliography{bibliography}
\end{document}

55
Makefile Normal file
View File

@ -0,0 +1,55 @@
PROJECTNAME=$(basename $(wildcard *.tex))
FIGS=$(notdir $(wildcard figs/*.fig))
PDFS=$(addsuffix .pdf, $(PROJECTNAME))
SYNCTEXS=$(addsuffix .synctex.gz, $(PROJECTNAME))
all: $(PROJECTNAME)
$(PROJECTNAME): $(FIGS)
pdflatex -file-line-error $@.tex
pdflatex -file-line-error $@.tex
pdflatex -synctex=1 $@.tex
$(PROJECTNAME).aux: $(FIGS)
pdflatex -file-line-error -draftmode $(PROJECTNAME).tex
$(SYNCTEXS): $(FIGS)
pdflatex -synctex=1 $(patsubst %.synctex.gz, %.tex, $@)
$(PROJECTNAME).bbl: $(PROJECTNAME).aux bibliography.bib
bibtex $(PROJECTNAME).aux
figs: $(FIGS)
$(FIGS):
make -C figs/$@
for pdf in $$(find figs/$@/ -name '*.pdf'); do ln -fs "$$pdf" ./ ; done
clean-aux: clean-figs-aux
rm -f $(addsuffix .aux, $(PROJECTNAME))
rm -f $(addsuffix .log, $(PROJECTNAME))
rm -f $(addsuffix .out, $(PROJECTNAME))
rm -f $(addsuffix .toc, $(PROJECTNAME))
rm -f $(addsuffix .blg, $(PROJECTNAME))
rm -f $(addsuffix Notes.bib, $(PROJECTNAME))
clean-figs:
$(foreach fig,$(addprefix figs/, $(FIGS)), make -C $(fig) clean; )
rm -f $(notdir $(wildcard figs/*.fig/*.pdf))
clean-figs-aux:
$(foreach fig,$(addprefix figs/, $(FIGS)), make -C $(fig) clean-aux; )
clean-tex:
rm -f $(PDFS) $(SYNCTEXS)
clean-bibliography:
rm -f $(PROJECTNAME).bbl
clean: clean-aux clean-tex clean-figs

44
README Normal file
View File

@ -0,0 +1,44 @@
This directory contains the source files to typeset the article, and generate
the figures. This can be accomplished by running
make
The figures were obtained using simplesolv v0.4:
http://ian.jauslin.org/software/simplesolv
This document uses a custom class file, located in the 'libs' directory, which
defines a number of commands. Most of these are drop-in replacements for those
defined in the 'article' class.
Some extra functionality is provided in custom style files, located in the
'libs' directory.
* Dependencies:
pdflatex
TeXlive packages:
amssymb
array
doublestroke
graphics
hyperref
latex
pgf
revtex (version 4.2)
standalone
xcolor
GNU make
* Files:
Jauslin_2023b.tex:
main LaTeX file
libs:
custom LaTeX class file
figs:
source code for the figures
bibliography.bib:
BibTeX database

61
bibliography.bib Normal file
View File

@ -0,0 +1,61 @@
@article{AM38, doi = {10.1038/142643a0}, url = {https://doi.org/10.1038%2F142643a0}, year = 1938, month = {oct}, publisher = {Springer Science and Business Media {LLC}}, volume = {142}, number = {3597}, pages = {643--644}, author = {J. F. Allen and A. D. Misener}, title = {Flow Phenomena in Liquid Helium {II}}, journal = {Nature} }
@article{AEe95, doi = {10.1126/science.269.5221.198}, url = {https://doi.org/10.1126%2Fscience.269.5221.198}, year = 1995, month = {jul}, publisher = {American Association for the Advancement of Science ({AAAS})}, volume = {269}, number = {5221}, pages = {198--201}, author = {M. H. Anderson and J. R. Ensher and M. R. Matthews and C. E. Wieman and E. A. Cornell}, title = {Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor}, journal = {Science} }
@article{AAe88, doi = {10.1103/physrevlett.61.826}, url = {https://doi.org/10.1103%2Fphysrevlett.61.826}, year = 1988, month = {aug}, publisher = {American Physical Society ({APS})}, volume = {61}, number = {7}, pages = {826--829}, author = {A. Aspect and E. Arimondo and R. Kaiser and N. Vansteenkiste and C. Cohen-Tannoudji}, title = {Laser Cooling below the One-Photon Recoil Energy by Velocity-Selective Coherent Population Trapping}, journal = {Physical Review Letters} }
@article{BFe17, doi = {10.1007/s00023-017-0587-9}, url = {https://doi.org/10.1007%2Fs00023-017-0587-9}, year = 2017, month = {may}, publisher = {Springer Science and Business Media {LLC}}, volume = {18}, number = {9}, pages = {2873--2903}, author = {Tadeusz Balaban and Joel Feldman and Horst Kn{\"o}rrer and Eugene Trubowitz}, title = {Complex Bosonic Many-Body Models: Overview of the Small Field Parabolic Flow}, journal = {Annales Henri Poincar{\'{e}}} }
@article{BML00, doi = {10.1088/0034-4885/63/9/202}, url = {https://doi.org/10.1088%2F0034-4885%2F63%2F9%2F202}, year = 2000, month = {aug}, publisher = {{IOP} Publishing}, volume = {63}, number = {9}, pages = {1429--1510}, author = {V I Balykin and V G Minogin and V S Letokhov}, title = {Electromagnetic trapping of cold atoms}, journal = {Reports on Progress in Physics} }
@article{BCS21, doi = {10.1017/fms.2021.66}, url = {https://doi.org/10.1017%2Ffms.2021.66}, year = 2021, publisher = {Cambridge University Press ({CUP})}, volume = {9}, number = {e74}, author = {Giulia Basti and Serena Cenatiempo and Benjamin Schlein}, title = {A new second-order upper bound for the ground state energy of dilute Bose gases}, journal = {Forum of Mathematics, Sigma} }
@incollection{Be95, doi = {10.1007/3-540-59190-7_31}, url = {https://doi.org/10.1007%2F3-540-59190-7_31}, publisher = {Springer Berlin Heidelberg}, pages = {219--247}, author = {Giuseppe Benfatto}, title = {Renormalization group approach to zero temperature bose condensation}, booktitle = {Constructive Physics Results in Field Theory, Statistical Mechanics and Condensed Matter Physics}, year = {1995} }
@article{Julia, title={Julia: A fresh approach to numerical computing}, author={Bezanson, Jeff and Edelman, Alan and Karpinski, Stefan and Shah, Viral B}, journal={SIAM {R}eview}, volume={59}, number={1}, pages={65--98}, year={2017}, publisher={SIAM}, doi={10.1137/141000671}, url={https://epubs.siam.org/doi/10.1137/141000671} }
@article{BDZ08, doi = {10.1103/revmodphys.80.885}, url = {https://doi.org/10.1103%2Frevmodphys.80.885}, year = 2008, month = {jul}, publisher = {American Physical Society ({APS})}, volume = {80}, number = {3}, pages = {885--964}, author = {Immanuel Bloch and Jean Dalibard and Wilhelm Zwerger}, title = {Many-body physics with ultracold gases}, journal = {Reviews of Modern Physics} }
@article{BBe18, doi = {10.1007/s00220-017-3016-5}, url = {https://doi.org/10.1007%2Fs00220-017-3016-5}, year = 2017, month = {nov}, publisher = {Springer Nature}, volume = {359}, number = {3}, pages = {975--1026}, author = {Chiara Boccato and Christian Brennecke and Serena Cenatiempo and Benjamin Schlein}, title = {Complete Bose{\textendash}Einstein Condensation in the Gross{\textendash}Pitaevskii Regime}, journal = {Communications in Mathematical Physics} }
@article{BBe19, doi = {10.4310/acta.2019.v222.n2.a1}, url = {https://doi.org/10.4310%2Facta.2019.v222.n2.a1}, year = 2019, publisher = {International Press of Boston}, volume = {222}, number = {2}, pages = {219--335}, author = {Chiara Boccato and Christian Brennecke and Serena Cenatiempo and Benjamin Schlein}, title = {Bogoliubov theory in the Gross{\textendash}Pitaevskii limit}, journal = {Acta Mathematica} }
@article{BBe20, doi = {10.1007/s00220-019-03555-9}, url = {https://doi.org/10.1007%2Fs00220-019-03555-9}, year = 2019, month = {sep}, publisher = {Springer Science and Business Media {LLC}}, volume = {376}, number = {2}, pages = {1311--1395}, author = {Chiara Boccato and Christian Brennecke and Serena Cenatiempo and Benjamin Schlein}, title = {Optimal Rate for Bose{\textendash}Einstein Condensation in the Gross{\textendash}Pitaevskii Regime}, journal = {Communications in Mathematical Physics} }
@article{Bo47, title={On the theory of superfluidity}, author={Bogolyubov, Nikolay Nikolaevich}, journal={Izv. Akad. Nauk Ser. Fiz.}, volume={11}, pages={23--32}, year={1947} }
@article{Bo24, doi = {10.1007/bf01327326}, url = {https://doi.org/10.1007%2Fbf01327326}, year = 1924, month = {dec}, publisher = {Springer Science and Business Media {LLC}}, volume = {26}, number = {1}, pages = {178--181}, author = {Bose}, title = {Plancks Gesetz und Lichtquantenhypothese}, journal = {Zeitschrift f\"ur Physik} }
@article{Bo22, doi = {10.1063/5.0089983}, url = {https://doi.org/10.1063%2F5.0089983}, year = 2022, month = {jun}, publisher = {{AIP} Publishing}, volume = {63}, number = {6}, pages = {061102}, author = {Lea Bo{\ss}mann}, title = {Low-energy spectrum and dynamics of the weakly interacting Bose gas}, journal = {Journal of Mathematical Physics} }
@article{BSS22, doi = {10.1007/s11040-022-09424-7}, url = {https://doi.org/10.1007%2Fs11040-022-09424-7}, year = 2022, month = {apr}, publisher = {Springer Science and Business Media {LLC}}, volume = {25}, number = {2}, author = {Christian Brennecke and Benjamin Schlein and Severin Schraven}, title = {Bose{\textendash}Einstein Condensation with Optimal Rate for Trapped Bosons in the Gross{\textendash}Pitaevskii Regime}, journal = {Mathematical Physics, Analysis and Geometry} }
@article{CHe21, doi = {10.1103/physreva.103.053309}, url = {https://doi.org/10.1103%2Fphysreva.103.053309}, year = 2021, month = {may}, publisher = {American Physical Society ({APS})}, volume = {103}, number = {5}, author = {Eric A. Carlen and Markus Holzmann and Ian Jauslin and Elliott H. Lieb}, title = {Simplified approach to the repulsive Bose gas from low to high densities and its numerical accuracy}, journal = {Physical Review A} }
@article{CJL20, doi = {10.2140/paa.2020.2.659}, url = {https://doi.org/10.2140%2Fpaa.2020.2.659}, year = 2020, month = {nov}, publisher = {Mathematical Sciences Publishers}, volume = {2}, number = {3}, pages = {659--684}, author = {Eric A. Carlen and Ian Jauslin and Elliott H. Lieb}, title = {Analysis of a simple equation for the ground state energy of the Bose gas}, journal = {Pure and Applied Analysis} }
@article{CJL21, doi = {10.1137/20m1376820}, url = {https://doi.org/10.1137%2F20m1376820}, year = 2021, month = {jan}, publisher = {Society for Industrial {\&} Applied Mathematics ({SIAM})}, volume = {53}, number = {5}, pages = {5322--5360}, author = {Eric A. Carlen and Ian Jauslin and Elliott H. Lieb}, title = {Analysis of a Simple Equation for the Ground State of the Bose Gas {II}: Monotonicity, Convexity, and Condensate Fraction}, journal = {{SIAM} Journal on Mathematical Analysis} }
@article{CG14, doi = {10.1007/s10955-014-1034-7}, url = {https://doi.org/10.1007%2Fs10955-014-1034-7}, year = 2014, month = {jul}, publisher = {Springer Science and Business Media {LLC}}, volume = {157}, number = {4-5}, pages = {755--829}, author = {S. Cenatiempo and A. Giuliani}, title = {Renormalization Theory of a Two Dimensional Bose Gas: Quantum Critical Point and Quasi-Condensed State}, journal = {Journal of Statistical Physics} }
@article{CS16, doi = {10.1088/0953-4075/49/19/192001}, url = {https://doi.org/10.1088%2F0953-4075%2F49%2F19%2F192001}, year = 2016, month = {sep}, publisher = {{IOP} Publishing}, volume = {49}, number = {19}, pages = {192001}, author = {F Chevy and C Salomon}, title = {Strongly correlated Bose gases}, journal = {Journal of Physics B: Atomic, Molecular and Optical Physics} }
@article{CGe10, doi = {10.1103/revmodphys.82.1225}, url = {https://doi.org/10.1103%2Frevmodphys.82.1225}, year = 2010, month = {apr}, publisher = {American Physical Society ({APS})}, volume = {82}, number = {2}, pages = {1225--1286}, author = {Cheng Chin and Rudolf Grimm and Paul Julienne and Eite Tiesinga}, title = {Feshbach resonances in ultracold gases}, journal = {Reviews of Modern Physics} }
@article{CHe85, doi = {10.1103/physrevlett.55.48}, url = {https://doi.org/10.1103%2Fphysrevlett.55.48}, year = 1985, month = {jul}, publisher = {American Physical Society ({APS})}, volume = {55}, number = {1}, pages = {48--51}, author = {Steven Chu and L. Hollberg and J. E. Bjorkholm and Alex Cable and A. Ashkin}, title = {Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure}, journal = {Physical Review Letters} }
@article{DMe95, doi = {10.1103/physrevlett.75.3969}, url = {https://doi.org/10.1103%2Fphysrevlett.75.3969}, year = 1995, month = {nov}, publisher = {American Physical Society ({APS})}, volume = {75}, number = {22}, pages = {3969--3973}, author = {K. B. Davis and M. -O. Mewes and M. R. Andrews and N. J. van Druten and D. S. Durfee and D. M. Kurn and W. Ketterle}, title = {Bose-Einstein Condensation in a Gas of Sodium Atoms}, journal = {Physical Review Letters} , pages={}}
@article{DS20, doi = {10.1007/s00205-020-01489-4}, url = {https://doi.org/10.1007%2Fs00205-020-01489-4}, year = 2020, month = {mar}, publisher = {Springer Science and Business Media {LLC}}, volume = {236}, number = {3}, pages = {1217--1271}, author = {Andreas Deuchert and Robert Seiringer}, title = {Gross{\textendash}Pitaevskii Limit of a Homogeneous Bose Gas at Positive Temperature}, journal = {Archive for Rational Mechanics and Analysis} }
@article{DSY19, doi = {10.1007/s00220-018-3239-0}, url = {https://doi.org/10.1007%2Fs00220-018-3239-0}, year = 2018, month = {aug}, publisher = {Springer Science and Business Media {LLC}}, volume = {368}, number = {2}, pages = {723--776}, author = {Andreas Deuchert and Robert Seiringer and Jakob Yngvason}, title = {Bose{\textendash}Einstein Condensation in a Dilute, Trapped Gas at Positive Temperature}, journal = {Communications in Mathematical Physics} }
@article{Dy57, doi = {10.1103/physrev.106.20}, url = {https://doi.org/10.1103%2Fphysrev.106.20}, year = 1957, month = {apr}, publisher = {American Physical Society ({APS})}, volume = {106}, number = {1}, pages = {20--26}, author = {F. J. Dyson}, title = {Ground-State Energy of a Hard-Sphere Gas}, journal = {Physical Review} }
@article{Ef70, title={Weakly-bound states of three resonantly-interacting particles}, author={Efimov, V. N.}, year={1970}, journal={Yadernaya Fizika}, volume={12}, pages={1080--1091}}
@article{Ei24, title={Quantentheorie des einatomigen idealen Gases}, author={Einstein, Albert},journal={Sitzungsberichte der Preussischen Akademie der Wissenschaften},volume={1},issue={3},year={1924}}
@article{FS20, ISSN = {0003486X, 19398980}, URL = {https://www.jstor.org/stable/10.4007/annals.2020.192.3.5}, author = {S{\o}ren Fournais and Jan Philip Solovej}, journal = {Annals of Mathematics}, number = {3}, pages = {893--976}, publisher = {[Annals of Mathematics, Trustees of Princeton University on Behalf of the Annals of Mathematics, Mathematics Department, Princeton University]}, title = {The energy of dilute Bose gases}, volume = {192}, year = {2020}, doi = {10.4007/annals.2020.192.3.5} }
@article{FS22, doi = {10.1007/s00222-022-01175-0}, url = {https://doi.org/10.1007%2Fs00222-022-01175-0}, year = 2022, month = {dec}, publisher = {Springer Science and Business Media {LLC}}, author = {S{\o}ren Fournais and Jan Philip Solovej}, title = {The energy of dilute Bose gases {II}: the general case}, journal = {Inventiones mathematicae} }
@article{FAe21, doi = {10.1140/epjqt/s40507-020-00090-8}, url = {https://doi.org/10.1140%2Fepjqt%2Fs40507-020-00090-8}, year = 2021, month = {jan}, publisher = {Springer Science and Business Media {LLC}}, volume = {8}, number = {1}, author = {Kai Frye and Sven Abend and Wolfgang Bartosch and Ahmad Bawamia and Dennis Becker and Holger Blume and Claus Braxmaier and Sheng-Wey Chiow and Maxim A. Efremov and Wolfgang Ertmer and Peter Fierlinger and Tobias Franz and Naceur Gaaloul and Jens Grosse and Christoph Grzeschik and Ortwin Hellmig and Victoria A. Henderson and Waldemar Herr and Ulf Israelsson and James Kohel and Markus Krutzik and Christian K{\"u}rbis and Claus L{\"a}mmerzahl and Meike List and Daniel L{\"u}dtke and Nathan Lundblad and J. Pierre Marburger and Matthias Meister and Moritz Mihm and Holger M{\"u}ller and Hauke M{\"u}ntinga and Ayush M. Nepal and Tim Oberschulte and Alexandros Papakonstantinou and Jaka Perov{\u{s}}ek and Achim Peters and Arnau Prat and Ernst M. Rasel and Albert Roura and Matteo Sbroscia and Wolfgang P. Schleich and Christian Schubert and Stephan T. Seidel and Jan Sommer and Christian Spindeldreier and Dan Stamper-Kurn and Benjamin K. Stuhl and Marvin Warner and Thijs Wendrich and Andr{\'{e}} Wenzlawski and Andreas Wicht and Patrick Windpassinger and Nan Yu and Lisa W{\"o}rner}, title = {The Bose-Einstein Condensate and Cold Atom Laboratory}, journal = {{EPJ} Quantum Technology} }
@book{HM88, year={1988}, title={Theory of simple liquids}, author={Hansen, Jean-Pierre and McDonald, Ian R.}, publisher={Academic Press}}
@incollection{Ja22, doi = {10.4171/90-1/25}, url = {https://doi.org/10.4171%2F90-1%2F25}, year = 2022, month = {jun}, publisher = {{EMS} Press}, pages = {609--635}, author = {Ian Jauslin}, title = {Review of a Simplified Approach to study the Bose gas at all densities}, booktitle = {The Physics and Mathematics of Elliott Lieb} }
@article{Ka38, doi = {10.1038/141074a0}, url = {https://doi.org/10.1038%2F141074a0}, year = 1938, month = {jan}, publisher = {Springer Science and Business Media {LLC}}, volume = {141}, number = {3558}, pages = {74--74}, author = {P. Kapitza}, title = {Viscosity of Liquid Helium below the $\uplambda$-Point}, journal = {Nature} }
@article{KMe06, doi = {10.1038/nature04626}, url = {https://doi.org/10.1038%2Fnature04626}, year = 2006, month = {mar}, publisher = {Springer Science and Business Media {LLC}}, volume = {440}, number = {7082}, pages = {315--318}, author = {T. Kraemer and M. Mark and P. Waldburger and J. G. Danzl and C. Chin and B. Engeser and A. D. Lange and K. Pilch and A. Jaakkola and H.-C. N\"agerl and R. Grimm}, title = {Evidence for Efimov quantum states in an ultracold gas of caesium atoms}, journal = {Nature} }
@article{LHY57, doi = {10.1103/physrev.106.1135}, url = {https://doi.org/10.1103%2Fphysrev.106.1135}, year = 1957, month = {jun}, publisher = {American Physical Society ({APS})}, volume = {106}, number = {6}, pages = {1135--1145}, author = {T. D. Lee and Kerson Huang and C. N. Yang}, title = {Eigenvalues and Eigenfunctions of a Bose System of Hard Spheres and Its Low-Temperature Properties}, journal = {Physical Review} }
@article{Le29, doi = {10.1007/bf01340138}, url = {https://doi.org/10.1007%2Fbf01340138}, year = 1929, month = {nov}, publisher = {Springer Science and Business Media {LLC}}, volume = {56}, number = {11-12}, pages = {778--789}, author = {W. Lenz}, title = {Die Wellenfunktion und Geschwindigkeitsverteilung des entarteten Gases}, journal = {Zeitschrift f\"ur Physik} }
@article{Li63, doi = {10.1103/physrev.130.2518}, url = {https://doi.org/10.1103%2Fphysrev.130.2518}, year = 1963, month = {jun}, publisher = {American Physical Society ({APS})}, volume = {130}, number = {6}, pages = {2518--2528}, author = {Elliott H. Lieb}, title = {Simplified Approach to the Ground-State Energy of an Imperfect Bose Gas}, journal = {Physical Review} }
@article{LL64, doi = {10.1103/physrev.134.a312}, url = {https://doi.org/10.1103%2Fphysrev.134.a312}, year = 1964, month = {apr}, publisher = {American Physical Society ({APS})}, volume = {134}, number = {2A}, pages = {A312--A315}, author = {Elliott H. Lieb and Werner Liniger}, title = {Simplified Approach to the Ground-State Energy of an Imperfect Bose Gas. {III}. Application to the One-Dimensional Model}, journal = {Physical Review} }
@article{LS64, doi = {10.1103/physrev.133.a899}, url = {https://doi.org/10.1103%2Fphysrev.133.a899}, year = 1964, month = {feb}, publisher = {American Physical Society ({APS})}, volume = {133}, number = {4A}, pages = {A899--A906}, author = {Elliott H. Lieb and Arthur Y. Sakakura}, title = {Simplified Approach to the Ground-State Energy of an Imperfect Bose Gas. {II}. Charged Bose Gas at High Density}, journal = {Physical Review} }
@article{LS02, doi = {10.1103/physrevlett.88.170409}, url = {https://doi.org/10.1103%2Fphysrevlett.88.170409}, year = 2002, month = {apr}, publisher = {American Physical Society ({APS})}, volume = {88}, number = {17}, author = {Elliott H. Lieb and Robert Seiringer}, title = {Proof of Bose-Einstein Condensation for Dilute Trapped Gases}, journal = {Physical Review Letters} , pages={170409}}
@book{LSe05,title={The Mathematics of the Bose Gas and its Condensation},author={Lieb, Elliott H. and Seiringer, Robert and Solovej, Jan Philip and Yngvason, Jakob},year={2005},publisher={Birkhauser},series={Oberwolfach Seminars},volume={34}}
@article{LSY00, doi = {10.1103/physreva.61.043602}, url = {https://doi.org/10.1103%2Fphysreva.61.043602}, year = 2000, month = {mar}, publisher = {American Physical Society ({APS})}, volume = {61}, number = {4}, author = {Elliott H. Lieb and Robert Seiringer and Jakob Yngvason}, title = {Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional}, journal = {Physical Review A} }
@article{LY98, doi = {10.1103/physrevlett.80.2504}, url = {https://doi.org/10.1103%2Fphysrevlett.80.2504}, year = 1998, month = {mar}, publisher = {American Physical Society ({APS})}, volume = {80}, number = {12}, pages = {2504--2507}, author = {Elliott H. Lieb and Jakob Yngvason}, title = {Ground State Energy of the Low Density Bose Gas}, journal = {Physical Review Letters} , pages={}}
@article{MMe07, doi = {10.1103/physrevlett.99.150604}, url = {https://doi.org/10.1103%2Fphysrevlett.99.150604}, year = 2007, month = {oct}, publisher = {American Physical Society ({APS})}, volume = {99}, number = {15}, author = {Jongchul Mun and Patrick Medley and Gretchen K. Campbell and Luis G. Marcassa and David E. Pritchard and Wolfgang Ketterle}, title = {Phase Diagram for a Bose-Einstein Condensate Moving in an Optical Lattice}, journal = {Physical Review Letters} }
@article{NE17, doi = {10.1088/1361-6633/aa50e8}, url = {https://doi.org/10.1088%2F1361-6633%2Faa50e8}, year = 2017, month = {mar}, publisher = {{IOP} Publishing}, volume = {80}, number = {5}, pages = {056001}, author = {Pascal Naidon and Shimpei Endo}, title = {Efimov physics: a review}, journal = {Reports on Progress in Physics}}
@article{NNe22, doi = {10.2140/apde.2022.15.1585}, url = {https://doi.org/10.2140%2Fapde.2022.15.1585}, year = 2022, month = {nov}, publisher = {Mathematical Sciences Publishers}, volume = {15}, number = {6}, pages = {1585--1616}, author = {Phan Th{\`{a}}nh Nam and Marcin Napi{\'{o}}rkowski and Julien Ricaud and Arnaud Triay}, title = {Optimal rate of condensation for trapped bosons in the Gross{\textendash}Pitaevskii regime}, journal = {Analysis {\&} {PDE}} }
@article{NRS16, doi = {10.2140/apde.2016.9.459}, url = {https://doi.org/10.2140%2Fapde.2016.9.459}, year = 2016, month = {mar}, publisher = {Mathematical Sciences Publishers}, volume = {9}, number = {2}, pages = {459--485}, author = {Phan Th{\'{a}}nh Nam and Nicolas Rougerie and Robert Seiringer}, title = {Ground states of large bosonic systems~: the Gross{\textendash}Pitaevskii limit revisited}, journal = {Analysis {\&} {PDE}} }
@article{PPS20, doi = {10.1007/s00023-019-00878-0}, url = {https://doi.org/10.1007%2Fs00023-019-00878-0}, year = 2019, month = {dec}, publisher = {Springer Science and Business Media {LLC}}, volume = {21}, number = {2}, pages = {461--498}, author = {S{\"o}ren Petrat and Peter Pickl and Avy Soffer}, title = {Derivation of the Bogoliubov Time Evolution for a Large Volume Mean-Field Limit}, journal = {Annales Henri Poincar{\'{e}}} }
@article{PM82, doi = {10.1103/physrevlett.48.596}, url = {https://doi.org/10.1103%2Fphysrevlett.48.596}, year = 1982, month = {mar}, publisher = {American Physical Society ({APS})}, volume = {48}, number = {9}, pages = {596--599}, author = {William D. Phillips and Harold Metcalf}, title = {Laser Deceleration of an Atomic Beam}, journal = {Physical Review Letters} }
@book{PTe08, title = {Numerical Recipes in C}, author = {William H. Press and Saul A. Teukolsky and William T. Vetterling and Brian P. Flannery}, publisher = {Cambridge University Press}, year = {2008}, edition = {third}}
@inbook{Sc22, doi = {10.4171/90-2/40}, url = {https://doi.org/10.4171%2F90-2}, year = 2022, month = {jun}, publisher = {{EMS} Press}, editor = {Rupert L. Frank and Ari Laptev and Mathieu Lewin and Robert Seiringer}, title = {The Physics and Mathematics of Elliott Lieb}, chapter={Bose gases in the Gross-Pitaevskii limit: A survey of some rigorous results} }
@article{Se11, doi = {10.1007/s00220-011-1261-6}, url = {https://doi.org/10.1007%2Fs00220-011-1261-6}, year = 2011, month = {may}, publisher = {Springer Science and Business Media {LLC}}, volume = {306}, number = {2}, pages = {565--578}, author = {Robert Seiringer}, title = {The Excitation Spectrum for Weakly Interacting Bosons}, journal = {Communications in Mathematical Physics} }
@article{SPP07, doi = {10.1103/physrevlett.98.080404}, url = {https://doi.org/10.1103%2Fphysrevlett.98.080404}, year = 2007, month = {feb}, publisher = {American Physical Society ({APS})}, volume = {98}, number = {8}, author = {I. Spielman and W. Phillips and J. Porto}, title = {Mott-Insulator Transition in a Two-Dimensional Atomic Bose Gas}, journal = {Physical Review Letters} }
@article{Su11, doi = {10.1007/s00220-011-1276-z}, url = {https://doi.org/10.1007%2Fs00220-011-1276-z}, year = 2011, month = {jun}, publisher = {Springer Science and Business Media {LLC}}, volume = {305}, number = {3}, pages = {657--710}, author = {Andr{\'{a}}s Süt{\H{o}}}, title = {Ground State at High Density}, journal = {Communications in Mathematical Physics} }
@article{Ta08, doi = {10.1016/j.aop.2008.03.004}, url = {https://doi.org/10.1016%2Fj.aop.2008.03.004}, year = 2008, month = {dec}, publisher = {Elsevier {BV}}, volume = {323}, number = {12}, pages = {2952--2970}, author = {Shina Tan}, title = {Energetics of a strongly correlated Fermi gas}, journal = {Annals of Physics} }
@article{To18, doi = {10.1016/j.physrep.2018.03.001}, url = {https://doi.org/10.1016%2Fj.physrep.2018.03.001}, year = 2018, month = {jun}, publisher = {Elsevier {BV}}, volume = {745}, pages = {1--95}, author = {Salvatore Torquato}, title = {Hyperuniform states of matter}, journal = {Physics Reports} }
@article{YY09, doi = {10.1007/s10955-009-9792-3}, url = {https://doi.org/10.1007%2Fs10955-009-9792-3}, year = 2009, month = {jul}, publisher = {Springer Science and Business Media {LLC}}, volume = {136}, number = {3}, pages = {453--503}, author = {Horng-Tzer Yau and Jun Yin}, title = {The Second Order Upper Bound for the Ground Energy of a Bose Gas}, journal = {Journal of Statistical Physics} }
@article{ZB01, doi = {10.1016/s0370-1573(00)00132-0}, url = {https://doi.org/10.1016%2Fs0370-1573%2800%2900132-0}, year = 2001, month = {sep}, publisher = {Elsevier {BV}}, volume = {350}, number = {5-6}, pages = {291--434}, author = {Valentin A. Zagrebnov and Jean-Bernard Bru}, title = {The Bogoliubov model of weakly imperfect Bose gas}, journal = {Physics Reports} }
@manual{ss, title = "{\tt simplesolv} {\rm software package, v0.4}, {\tt\href{http://ian.jauslin.org/software/simplesolv}{http://ian.jauslin.org/software/simplesolv}}", author="Ian Jauslin"}

View File

@ -0,0 +1,49 @@
#set title "Big equation"
set ylabel norotate "$g(r)$"
set xlabel "$r\\rho^{1/3}$"
#set xtics 1e-6, 1000, 1e6
#set xtics add ("$10^{-6}$" 0.000001, "$10^{-3}$" 0.001, "$10^{0}$" 1, "$10^{3}$" 1000, "$10^6$" 1000000)
#unset mxtics
set xrange [:3]
#set ytics 0, 1e-5, 2e-5
#set ytics add ("$10^{-5}$" 1e-5)
#set mytics
set yrange [0.8:]
# default output canvas size: 12.5cm x 8.75cm
set term lua tikz size 8,6 standalone
set key bottom right box linetype rgbcolor"#999999" width 3 height 0.3 spacing 1.3
rgb(r,g,b) = 65536 * int(r) + 256 * int(g) + int(b)
circle_2_rgb(x) = (x < 1./6 ? rgb(255,x*6*255,0) : \
(x < 2./6 ? rgb((2./6-x)*6*255,255,0) : \
(x < 3./6 ? rgb(0,255,(x-2./6)*6*255) : \
(x < 4./6 ? rgb(0,(4./6-x)*6*255,255) : \
(x < 5./6 ? rgb((x-4./6)*6*255,0,255) : \
rgb(255,0,(1-x)*6*255) \
)))))
set style line 1 linetype rgbcolor circle_2_rgb(0.0) linewidth 2 dashtype (7,7)
set style line 2 linetype rgbcolor circle_2_rgb(0.2) linewidth 2 dashtype (5,5)
set style line 3 linetype rgbcolor circle_2_rgb(0.4) linewidth 2 dashtype (3,3)
set style line 4 linetype rgbcolor circle_2_rgb(0.6) linewidth 2 dashtype (1,1)
set style line 5 linetype rgbcolor circle_2_rgb(0.8) linewidth 2
set style line 6 linetype rgbcolor (0,0,0) linewidth 1
set pointsize 1
plot \
1 ls 6 notitle,\
"bigeq_5.dat" using ($1*1e-5**(1./3)):($2/1e-5**2) with lines ls 1 title "$\\rho=10^{-5}$" ,\
"bigeq_4.dat" using ($1*1e-4**(1./3)):($2/1e-4**2) with lines ls 2 title "$\\rho=10^{-4}$" ,\
"bigeq_3.dat" using ($1*1e-3**(1./3)):($2/1e-3**2) with lines ls 3 title "$\\rho=10^{-3}$" ,\
"bigeq_2.dat" using ($1*1e-2**(1./3)):($2/1e-2**2) with lines ls 4 title "$\\rho=10^{-2}$" ,\
"bigeq_1.dat" using ($1*1e-1**(1./3)):($2/1e-1**2) with lines ls 5 title "$\\rho=10^{-1}$"

View File

@ -0,0 +1,47 @@
#set title "Medium equation"
set ylabel norotate "$g(r)$"
set xlabel "$r\\rho^{1/3}$"
#set xtics 1e-6, 1000, 1e6
#set xtics add ("$10^{-6}$" 0.000001, "$10^{-3}$" 0.001, "$10^{0}$" 1, "$10^{3}$" 1000, "$10^6$" 1000000)
#unset mxtics
set xrange [:3]
#set ytics 0, 1e-5, 2e-5
#set ytics add ("$10^{-5}$" 1e-5)
#set mytics
set yrange [0.8:]
# default output canvas size: 12.5cm x 8.75cm
set term lua tikz size 8,6 standalone
set key bottom right box linetype rgbcolor"#999999" width 3 height 0.3 spacing 1.3
rgb(r,g,b) = 65536 * int(r) + 256 * int(g) + int(b)
circle_2_rgb(x) = (x < 1./6 ? rgb(255,x*6*255,0) : \
(x < 2./6 ? rgb((2./6-x)*6*255,255,0) : \
(x < 3./6 ? rgb(0,255,(x-2./6)*6*255) : \
(x < 4./6 ? rgb(0,(4./6-x)*6*255,255) : \
(x < 5./6 ? rgb((x-4./6)*6*255,0,255) : \
rgb(255,0,(1-x)*6*255) \
)))))
set style line 1 linetype rgbcolor circle_2_rgb(0.0) linewidth 2 dashtype (7,7)
set style line 2 linetype rgbcolor circle_2_rgb(0.2) linewidth 2 dashtype (5,5)
set style line 3 linetype rgbcolor circle_2_rgb(0.4) linewidth 2 dashtype (3,3)
set style line 4 linetype rgbcolor circle_2_rgb(0.6) linewidth 2 dashtype (1,1)
set style line 5 linetype rgbcolor circle_2_rgb(0.8) linewidth 2
set style line 6 linetype rgbcolor (0,0,0) linewidth 1
plot \
1 ls 6 notitle,\
"medeq_5.dat" using ($1*1e-5**(1./3)):($2/1e-5**2) with lines ls 1 title "$\\rho=10^{-5}$" ,\
"medeq_4.dat" using ($1*1e-4**(1./3)):($2/1e-4**2) with lines ls 2 title "$\\rho=10^{-4}$" ,\
"medeq_3.dat" using ($1*1e-3**(1./3)):($2/1e-3**2) with lines ls 3 title "$\\rho=10^{-3}$" ,\
"medeq_2.dat" using ($1*1e-2**(1./3)):($2/1e-2**2) with lines ls 4 title "$\\rho=10^{-2}$" ,\
"medeq_1.dat" using ($1*1e-1**(1./3)):($2/1e-1**2) with lines ls 5 title "$\\rho=10^{-1}$"

63
figs/2pt.fig/Makefile Normal file
View File

@ -0,0 +1,63 @@
PROJECT=$(basename $(wildcard *.gnuplot))
SIMPLESOLV=simplesolv
all: $(addsuffix .pdf, $(PROJECT))
define gnuplot2pdf
gnuplot $(1).gnuplot > $(1).tikz.tex
pdflatex -jobname $(1) -file-line-error $(1).tikz.tex
endef
define medeq_run
julia $(SIMPLESOLV)/main.jl -p "eq=medeq;order=200;maxiter=100;v_a=8;rho=1e-$(1);minlrho_init=-6;nlrho_init=100;window_L=100;xmin=0;xmax=$(2);nx=100" -M easyeq 2pt > medeq_$(1).dat
endef
define bigeq_run
julia -p 16 $(SIMPLESOLV)/main.jl -p "eq=bigeq;N=12;P=8;J=10;maxiter=100;v_a=8;rho=1e-$(1);minlrho_init=-6;nlrho_init=100;window_L=100;xmin=0;xmax=$(2);nx=100" -M anyeq 2pt > bigeq_$(1).dat
endef
define bigeq_run_plus
julia -p 16 $(SIMPLESOLV)/main.jl -p "eq=bigeq;N=18;P=12;J=15;maxiter=100;v_a=8;rho=1e-$(1);minlrho_init=-6;nlrho_init=100;window_L=100;xmin=0;xmax=$(2);nx=100" -M anyeq 2pt > bigeq_$(1).dat
endef
medeq_5.dat:
$(call medeq_run,5,139.5)
medeq_4.dat:
$(call medeq_run,4,64.5)
medeq_3.dat:
$(call medeq_run,3,30)
medeq_2.dat:
$(call medeq_run,2,14)
medeq_1.dat:
$(call medeq_run,1,6.5)
bigeq_5.dat:
$(call bigeq_run_plus,5,139.5)
bigeq_4.dat:
$(call bigeq_run,4,64.5)
bigeq_3.dat:
$(call bigeq_run,3,30)
bigeq_2.dat:
$(call bigeq_run,2,14)
bigeq_1.dat:
$(call bigeq_run,1,6.5)
DATS_MED=medeq_5.dat medeq_4.dat medeq_3.dat medeq_2.dat medeq_1.dat
DATS_BIG=bigeq_5.dat bigeq_4.dat bigeq_3.dat bigeq_2.dat bigeq_1.dat
2pt_medeq.pdf: $(DATS_MED)
$(call gnuplot2pdf,$(basename $@))
2pt_bigeq.pdf: $(DATS_BIG)
$(call gnuplot2pdf,$(basename $@))
clean-aux:
rm -f $(addsuffix .tikz.tex, $(PROJECT))
rm -f *.aux *.log
clean-dat:
rm -f $(DATS_MED) $(DATS_BIG)
clean-pdf:
rm -f $(addsuffix .pdf, $(PROJECT))
clean: clean-aux clean-pdf

100
figs/2pt.fig/bigeq_1.dat Normal file
View File

@ -0,0 +1,100 @@
6.500000000000000e-02 2.124106903868166e-03
1.300000000000000e-01 2.167462874073794e-03
1.950000000000000e-01 2.237296985127973e-03
2.600000000000000e-01 2.331605451031708e-03
3.250000000000000e-01 2.448941547781181e-03
3.900000000000000e-01 2.588140107411339e-03
4.550000000000000e-01 2.748057991645383e-03
5.200000000000000e-01 2.927777097002868e-03
5.850000000000000e-01 3.126536998535562e-03
6.500000000000000e-01 3.343345300613759e-03
7.150000000000000e-01 3.576823032139147e-03
7.800000000000000e-01 3.825564291357081e-03
8.450000000000000e-01 4.088347880430513e-03
9.100000000000000e-01 4.363771211293593e-03
9.750000000000000e-01 4.649916793199939e-03
1.040000000000000e+00 4.944545590582373e-03
1.105000000000000e+00 5.245523977781352e-03
1.170000000000000e+00 5.550842852422491e-03
1.235000000000000e+00 5.858433964474727e-03
1.300000000000000e+00 6.166148349824381e-03
1.365000000000000e+00 6.471827561543476e-03
1.430000000000000e+00 6.773231278914734e-03
1.495000000000000e+00 7.068045143624879e-03
1.560000000000000e+00 7.354235290448398e-03
1.625000000000000e+00 7.630315832381581e-03
1.690000000000000e+00 7.895144379054149e-03
1.755000000000000e+00 8.147496868586892e-03
1.820000000000000e+00 8.386050433396892e-03
1.885000000000000e+00 8.609685063783469e-03
1.950000000000000e+00 8.817659040087014e-03
2.015000000000000e+00 9.009577940779279e-03
2.080000000000000e+00 9.185381346327402e-03
2.145000000000000e+00 9.345326939066329e-03
2.210000000000000e+00 9.489758685687156e-03
2.275000000000000e+00 9.618914416635153e-03
2.340000000000000e+00 9.733047627826646e-03
2.405000000000000e+00 9.832711783240961e-03
2.470000000000000e+00 9.918746117680068e-03
2.535000000000000e+00 9.992032276164565e-03
2.600000000000000e+00 1.005341589861180e-02
2.665000000000000e+00 1.010382500050412e-02
2.730000000000000e+00 1.014429795640940e-02
2.795000000000000e+00 1.017583906325052e-02
2.860000000000000e+00 1.019937223004387e-02
2.925000000000000e+00 1.021578117689775e-02
2.990000000000000e+00 1.022588343063598e-02
3.055000000000000e+00 1.023036179932423e-02
3.120000000000000e+00 1.022988355153324e-02
3.185000000000000e+00 1.022529969371158e-02
3.250000000000000e+00 1.021758971340633e-02
3.315000000000000e+00 1.020758167864982e-02
3.380000000000000e+00 1.019578966724616e-02
3.445000000000000e+00 1.018253743550679e-02
3.510000000000000e+00 1.016810957458936e-02
3.575000000000000e+00 1.015281043777047e-02
3.640000000000000e+00 1.013700304156658e-02
3.705000000000000e+00 1.012115018272562e-02
3.770000000000000e+00 1.010571231237096e-02
3.835000000000000e+00 1.009095460385994e-02
3.900000000000000e+00 1.007693071486199e-02
3.965000000000000e+00 1.006365207962333e-02
4.030000000000000e+00 1.005119995197446e-02
4.095000000000000e+00 1.003964304564000e-02
4.160000000000000e+00 1.002898244362764e-02
4.225000000000000e+00 1.001922422885136e-02
4.290000000000000e+00 1.001044416549989e-02
4.355000000000000e+00 1.000273281819698e-02
4.420000000000000e+00 9.996136355707234e-03
4.485000000000000e+00 9.990674997872297e-03
4.550000000000000e+00 9.986318166380712e-03
4.615000000000000e+00 9.982914275520179e-03
4.680000000000000e+00 9.980214773523646e-03
4.745000000000000e+00 9.978047647373284e-03
4.810000000000000e+00 9.976405734154340e-03
4.875000000000000e+00 9.975338138054330e-03
4.940000000000000e+00 9.974810537406597e-03
5.005000000000000e+00 9.974709513241198e-03
5.070000000000000e+00 9.974923523896896e-03
5.135000000000000e+00 9.975366257384660e-03
5.200000000000000e+00 9.975998818914034e-03
5.265000000000000e+00 9.976871459897417e-03
5.330000000000000e+00 9.978102884010564e-03
5.395000000000000e+00 9.979744856473849e-03
5.460000000000000e+00 9.981708221394653e-03
5.525000000000000e+00 9.983851261885928e-03
5.590000000000000e+00 9.986088186023987e-03
5.655000000000000e+00 9.988367247974549e-03
5.720000000000000e+00 9.990589204206524e-03
5.785000000000000e+00 9.992622779055280e-03
5.850000000000000e+00 9.994359978631823e-03
5.915000000000000e+00 9.995727016710030e-03
5.980000000000000e+00 9.996675943200167e-03
6.045000000000000e+00 9.997234808390895e-03
6.110000000000000e+00 9.997532399390359e-03
6.175000000000000e+00 9.997724519065937e-03
6.240000000000000e+00 9.997924793093482e-03
6.305000000000000e+00 9.998239135346639e-03
6.370000000000000e+00 9.998822907557797e-03
6.435000000000000e+00 9.999808443892519e-03
6.500000000000000e+00 1.000118401897063e-02

100
figs/2pt.fig/bigeq_2.dat Normal file
View File

@ -0,0 +1,100 @@
1.400000000000000e-01 1.488043827565062e-06
2.800000000000000e-01 1.682490793450653e-06
4.200000000000000e-01 2.012392878526759e-06
5.600000000000001e-01 2.497842610503254e-06
7.000000000000000e-01 3.169462751290156e-06
8.400000000000000e-01 4.063501152271771e-06
9.800000000000000e-01 5.221881209449808e-06
1.120000000000000e+00 6.685588932583900e-06
1.260000000000000e+00 8.494580586418807e-06
1.400000000000000e+00 1.068397234740815e-05
1.540000000000000e+00 1.327826576527692e-05
1.680000000000000e+00 1.629096680706187e-05
1.820000000000000e+00 1.972445619317546e-05
1.960000000000000e+00 2.356202944493775e-05
2.100000000000000e+00 2.777290282324146e-05
2.240000000000000e+00 3.231459777435289e-05
2.380000000000000e+00 3.712916581792513e-05
2.520000000000000e+00 4.214818471315268e-05
2.660000000000000e+00 4.729782504286359e-05
2.800000000000000e+00 5.250091949313870e-05
2.940000000000000e+00 5.768018526782452e-05
3.080000000000000e+00 6.275982398160120e-05
3.220000000000000e+00 6.766967728037899e-05
3.360000000000000e+00 7.235284035758368e-05
3.500000000000000e+00 7.675809652716914e-05
3.640000000000000e+00 8.084264766223624e-05
3.780000000000000e+00 8.457902488377725e-05
3.920000000000000e+00 8.795122884233603e-05
4.060000000000000e+00 9.094958194649707e-05
4.200000000000000e+00 9.357477884714454e-05
4.340000000000000e+00 9.583616519787278e-05
4.480000000000000e+00 9.775148023346621e-05
4.620000000000000e+00 9.934256246239866e-05
4.760000000000000e+00 1.006315903620250e-04
4.900000000000000e+00 1.016457132770460e-04
5.040000000000000e+00 1.024147799094748e-04
5.180000000000000e+00 1.029670896526100e-04
5.320000000000000e+00 1.033324348945589e-04
5.460000000000000e+00 1.035414032729816e-04
5.600000000000000e+00 1.036193301644756e-04
5.740000000000000e+00 1.035895073793316e-04
5.880000000000000e+00 1.034722209326643e-04
6.020000000000000e+00 1.032858551931468e-04
6.160000000000000e+00 1.030490036391531e-04
6.300000000000000e+00 1.027799860470333e-04
6.440000000000000e+00 1.024948328044819e-04
6.580000000000000e+00 1.022055056484093e-04
6.720000000000000e+00 1.019161045383466e-04
6.860000000000000e+00 1.016293020924092e-04
7.000000000000000e+00 1.013520593201446e-04
7.140000000000000e+00 1.010910236815499e-04
7.280000000000000e+00 1.008513258890435e-04
7.420000000000000e+00 1.006369980610947e-04
7.560000000000000e+00 1.004493445511503e-04
7.700000000000000e+00 1.002865609227877e-04
7.840000000000000e+00 1.001454970303425e-04
7.980000000000000e+00 1.000231034272054e-04
8.119999999999999e+00 9.992022959404344e-05
8.260000000000000e+00 9.983746470610471e-05
8.400000000000000e+00 9.977322939022189e-05
8.539999999999999e+00 9.972638151935075e-05
8.680000000000000e+00 9.969586467385057e-05
8.820000000000000e+00 9.967905535478958e-05
8.960000000000001e+00 9.967377072943845e-05
9.100000000000000e+00 9.967701271083210e-05
9.240000000000000e+00 9.968524345293783e-05
9.380000000000001e+00 9.969708663738987e-05
9.520000000000000e+00 9.971261294473160e-05
9.660000000000000e+00 9.973297062699927e-05
9.800000000000001e+00 9.975804258635809e-05
9.940000000000000e+00 9.978534564408206e-05
1.008000000000000e+01 9.981297491133409e-05
1.022000000000000e+01 9.984079485130177e-05
1.036000000000000e+01 9.986681758117719e-05
1.050000000000000e+01 9.988973572099738e-05
1.064000000000000e+01 9.991006630645277e-05
1.078000000000000e+01 9.992869723518453e-05
1.092000000000000e+01 9.994612988910766e-05
1.106000000000000e+01 9.996234696754002e-05
1.120000000000000e+01 9.997703106968473e-05
1.134000000000000e+01 9.999058712119805e-05
1.148000000000000e+01 1.000024720980218e-04
1.162000000000000e+01 1.000117187249374e-04
1.176000000000000e+01 1.000190980871260e-04
1.190000000000000e+01 1.000244584711228e-04
1.204000000000000e+01 1.000268673191230e-04
1.218000000000000e+01 1.000266443000525e-04
1.232000000000000e+01 1.000252169273886e-04
1.246000000000000e+01 1.000241469078820e-04
1.260000000000000e+01 1.000250553485828e-04
1.274000000000000e+01 1.000273467968761e-04
1.288000000000000e+01 1.000292757077791e-04
1.302000000000000e+01 1.000287849633750e-04
1.316000000000000e+01 1.000249273487198e-04
1.330000000000000e+01 1.000195937233679e-04
1.344000000000000e+01 1.000153588345325e-04
1.358000000000000e+01 1.000126240836720e-04
1.372000000000000e+01 1.000112293444513e-04
1.386000000000000e+01 1.000108044655828e-04
1.400000000000000e+01 1.000097904178311e-04

100
figs/2pt.fig/bigeq_3.dat Normal file
View File

@ -0,0 +1,100 @@
3.000000000000000e-01 1.824703893100819e-09
6.000000000000000e-01 2.948434971528815e-09
9.000000000000000e-01 5.302162306766167e-09
1.200000000000000e+00 9.665701938306653e-09
1.500000000000000e+00 1.709530348453085e-08
1.800000000000000e+00 2.880976314259995e-08
2.100000000000000e+00 4.601796023940094e-08
2.400000000000000e+00 6.970991762492706e-08
2.700000000000000e+00 1.004676710687081e-07
3.000000000000000e+00 1.383668085957872e-07
3.300000000000000e+00 1.829358561547457e-07
3.600000000000000e+00 2.332492616348657e-07
3.900000000000000e+00 2.880158306898456e-07
4.200000000000000e+00 3.457625098563891e-07
4.500000000000000e+00 4.049583840825737e-07
4.800000000000000e+00 4.641630431896927e-07
5.100000000000000e+00 5.220774956608781e-07
5.400000000000000e+00 5.776407828097453e-07
5.700000000000000e+00 6.300544312618340e-07
6.000000000000000e+00 6.787108305418076e-07
6.300000000000000e+00 7.232409443965227e-07
6.600000000000000e+00 7.635389309236612e-07
6.900000000000000e+00 7.995513057801190e-07
7.200000000000000e+00 8.313655956783998e-07
7.500000000000000e+00 8.592440558672238e-07
7.800000000000000e+00 8.834571292979328e-07
8.100000000000000e+00 9.042515237847413e-07
8.400000000000000e+00 9.219781545171390e-07
8.699999999999999e+00 9.369844282511945e-07
9.000000000000000e+00 9.495901868648726e-07
9.300000000000001e+00 9.600688131368629e-07
9.600000000000000e+00 9.686974833874297e-07
9.900000000000000e+00 9.757800804396086e-07
1.020000000000000e+01 9.815333612205825e-07
1.050000000000000e+01 9.861486660089844e-07
1.080000000000000e+01 9.898065835331489e-07
1.110000000000000e+01 9.926892924922063e-07
1.140000000000000e+01 9.949360593281040e-07
1.170000000000000e+01 9.966545101021228e-07
1.200000000000000e+01 9.979400466990881e-07
1.230000000000000e+01 9.988673613291459e-07
1.260000000000000e+01 9.995398995142251e-07
1.290000000000000e+01 1.000024709540910e-06
1.320000000000000e+01 1.000319130714527e-06
1.350000000000000e+01 1.000481262130794e-06
1.380000000000000e+01 1.000571068779576e-06
1.410000000000000e+01 1.000594251139031e-06
1.440000000000000e+01 1.000556107361005e-06
1.470000000000000e+01 1.000493310651063e-06
1.500000000000000e+01 1.000416620028919e-06
1.530000000000000e+01 1.000336256603072e-06
1.560000000000000e+01 1.000246899015831e-06
1.590000000000000e+01 1.000157837420381e-06
1.620000000000000e+01 1.000069352360848e-06
1.650000000000000e+01 9.999791376925286e-07
1.680000000000000e+01 9.999071565130342e-07
1.710000000000000e+01 9.998654632291316e-07
1.740000000000000e+01 9.998264795889640e-07
1.770000000000000e+01 9.997757483550155e-07
1.800000000000000e+01 9.997303463394155e-07
1.830000000000000e+01 9.997012503088320e-07
1.860000000000000e+01 9.996820538281017e-07
1.890000000000000e+01 9.996733939024580e-07
1.920000000000000e+01 9.996696179952596e-07
1.950000000000000e+01 9.996643932953539e-07
1.980000000000000e+01 9.996727278877117e-07
2.010000000000000e+01 9.996759217298783e-07
2.040000000000000e+01 9.996610164011438e-07
2.070000000000000e+01 9.996596589804359e-07
2.100000000000000e+01 9.996798430190510e-07
2.130000000000000e+01 9.996973039532278e-07
2.160000000000000e+01 9.997025380093869e-07
2.190000000000000e+01 9.997041587605553e-07
2.220000000000000e+01 9.997223099450470e-07
2.250000000000000e+01 9.997428783619637e-07
2.280000000000000e+01 9.997529969010064e-07
2.310000000000000e+01 9.997604304189795e-07
2.340000000000000e+01 9.997666304132915e-07
2.370000000000000e+01 9.997661539971866e-07
2.400000000000000e+01 9.997729641328477e-07
2.430000000000000e+01 9.997892288874949e-07
2.460000000000000e+01 9.998033919866711e-07
2.490000000000000e+01 9.998074627889137e-07
2.520000000000000e+01 9.998141706649807e-07
2.550000000000000e+01 9.998192559215373e-07
2.580000000000000e+01 9.998315769928009e-07
2.610000000000000e+01 9.998551522072098e-07
2.640000000000000e+01 9.998716049811592e-07
2.670000000000000e+01 9.998767234220773e-07
2.700000000000000e+01 9.998743190074921e-07
2.730000000000000e+01 9.998615630267391e-07
2.760000000000000e+01 9.998450470408896e-07
2.790000000000000e+01 9.998406070701955e-07
2.820000000000000e+01 9.998493292901093e-07
2.850000000000000e+01 9.998683539260561e-07
2.880000000000000e+01 9.998927479129016e-07
2.910000000000000e+01 9.999233954260237e-07
2.940000000000000e+01 9.999542117838123e-07
2.970000000000000e+01 9.999568037976789e-07
3.000000000000000e+01 9.999368302165623e-07

100
figs/2pt.fig/bigeq_4.dat Normal file
View File

@ -0,0 +1,100 @@
6.450000000000000e-01 1.432128873931897e-11
1.290000000000000e+00 5.056157393634478e-11
1.935000000000000e+00 1.569629012887402e-10
2.580000000000000e+00 3.873184263547097e-10
3.225000000000000e+00 7.768498616781941e-10
3.870000000000000e+00 1.321255087375002e-09
4.515000000000000e+00 1.981472336306652e-09
5.160000000000000e+00 2.703794210748966e-09
5.805000000000000e+00 3.438185445422930e-09
6.450000000000000e+00 4.147251772000342e-09
7.095000000000000e+00 4.808404416782659e-09
7.740000000000000e+00 5.410215887026720e-09
8.385000000000000e+00 5.949312336880903e-09
9.029999999999999e+00 6.427703919288124e-09
9.675000000000001e+00 6.849222164251034e-09
1.032000000000000e+01 7.219718083122537e-09
1.096500000000000e+01 7.544369704578349e-09
1.161000000000000e+01 7.828996729005433e-09
1.225500000000000e+01 8.078267765050498e-09
1.290000000000000e+01 8.297018718806180e-09
1.354500000000000e+01 8.488770481065251e-09
1.419000000000000e+01 8.657392091699572e-09
1.483500000000000e+01 8.805582179644611e-09
1.548000000000000e+01 8.936214921817190e-09
1.612500000000000e+01 9.051305633881099e-09
1.677000000000000e+01 9.152819891016281e-09
1.741500000000000e+01 9.242850403778631e-09
1.806000000000000e+01 9.322191734464021e-09
1.870500000000000e+01 9.392660934136400e-09
1.935000000000000e+01 9.455225453104832e-09
1.999500000000000e+01 9.510789543428490e-09
2.064000000000000e+01 9.559957481175959e-09
2.128500000000000e+01 9.604076799262948e-09
2.193000000000000e+01 9.643123023560806e-09
2.257500000000000e+01 9.678174040624516e-09
2.322000000000000e+01 9.709373895089665e-09
2.386500000000000e+01 9.737160633160813e-09
2.451000000000000e+01 9.762194693416867e-09
2.515500000000000e+01 9.784548255036071e-09
2.580000000000000e+01 9.804623819947742e-09
2.644500000000000e+01 9.822776061035756e-09
2.709000000000000e+01 9.838860769200027e-09
2.773500000000000e+01 9.853174073749292e-09
2.838000000000000e+01 9.866324074324980e-09
2.902500000000000e+01 9.878365212529430e-09
2.967000000000000e+01 9.889214894056273e-09
3.031500000000000e+01 9.898530807882943e-09
3.096000000000000e+01 9.906919087338392e-09
3.160500000000000e+01 9.914850039643288e-09
3.225000000000000e+01 9.922314334282961e-09
3.289500000000000e+01 9.928970919523760e-09
3.354000000000000e+01 9.934637972900024e-09
3.418500000000000e+01 9.939282953026436e-09
3.483000000000000e+01 9.944004215785366e-09
3.547500000000000e+01 9.949017560015286e-09
3.612000000000000e+01 9.953664371905877e-09
3.676500000000000e+01 9.957041990713178e-09
3.741000000000000e+01 9.959313841024907e-09
3.805500000000000e+01 9.961904887199004e-09
3.870000000000000e+01 9.965474933501575e-09
3.934500000000000e+01 9.969024968720644e-09
3.999000000000000e+01 9.971112390090441e-09
4.063500000000000e+01 9.972211492996892e-09
4.128000000000000e+01 9.973669330160035e-09
4.192500000000000e+01 9.976064573183930e-09
4.257000000000000e+01 9.978668117163906e-09
4.321500000000000e+01 9.980085734740689e-09
4.386000000000000e+01 9.980403439730033e-09
4.450500000000000e+01 9.980908524179661e-09
4.515000000000000e+01 9.982600852027974e-09
4.579500000000000e+01 9.984948270418249e-09
4.644000000000000e+01 9.986513172216413e-09
4.708500000000000e+01 9.986707211543255e-09
4.773000000000000e+01 9.986511050698917e-09
4.837500000000000e+01 9.987062651891196e-09
4.902000000000000e+01 9.988278073220179e-09
4.966500000000000e+01 9.989530286217195e-09
5.031000000000000e+01 9.990268134726119e-09
5.095500000000000e+01 9.990787599640259e-09
5.160000000000000e+01 9.991023105607437e-09
5.224500000000000e+01 9.991255611189615e-09
5.289000000000000e+01 9.991693181212514e-09
5.353500000000000e+01 9.992333574760536e-09
5.418000000000000e+01 9.992813433609646e-09
5.482500000000000e+01 9.993119959351379e-09
5.547000000000000e+01 9.993518032020140e-09
5.611500000000000e+01 9.994275227848667e-09
5.676000000000000e+01 9.995141363218992e-09
5.740500000000000e+01 9.995375266569904e-09
5.805000000000000e+01 9.994759633556979e-09
5.869500000000000e+01 9.993817460799027e-09
5.934000000000000e+01 9.993522543078772e-09
5.998500000000000e+01 9.994218409180494e-09
6.063000000000000e+01 9.995686568275428e-09
6.127500000000000e+01 9.997027858992737e-09
6.192000000000000e+01 9.997708679308081e-09
6.256500000000000e+01 9.997644391793862e-09
6.321000000000000e+01 9.997174359274601e-09
6.385500000000000e+01 9.996672336670500e-09
6.450000000000000e+01 9.996579594260947e-09

100
figs/2pt.fig/bigeq_5.dat Normal file
View File

@ -0,0 +1,100 @@
1.395000000000000e+00 4.541710910501922e-13
2.790000000000000e+00 3.638735983329917e-12
4.185000000000000e+00 1.201346962532882e-11
5.580000000000000e+00 2.360863104180960e-11
6.975000000000000e+00 3.517769435183231e-11
8.369999999999999e+00 4.516250636030541e-11
9.765000000000001e+00 5.333901462886475e-11
1.116000000000000e+01 5.996141119660237e-11
1.255500000000000e+01 6.535324394177085e-11
1.395000000000000e+01 6.978887578385077e-11
1.534500000000000e+01 7.347943233881107e-11
1.674000000000000e+01 7.658246177757618e-11
1.813500000000000e+01 7.921589887797379e-11
1.953000000000000e+01 8.146964870310151e-11
2.092500000000000e+01 8.341271917229076e-11
2.232000000000000e+01 8.509946907138410e-11
2.371500000000000e+01 8.657162893673453e-11
2.511000000000000e+01 8.786318825734297e-11
2.650500000000000e+01 8.900181867924353e-11
2.790000000000000e+01 9.000979279601348e-11
2.929500000000000e+01 9.090530730694628e-11
3.069000000000000e+01 9.170384191634738e-11
3.208500000000000e+01 9.241798896477964e-11
3.348000000000000e+01 9.305887505968337e-11
3.487500000000000e+01 9.363534964242373e-11
3.627000000000000e+01 9.415469202572653e-11
3.766500000000000e+01 9.462413515880475e-11
3.906000000000000e+01 9.504955203907404e-11
4.045500000000000e+01 9.543558158288223e-11
4.185000000000000e+01 9.578624205691097e-11
4.324500000000000e+01 9.610551397245690e-11
4.464000000000000e+01 9.639718055802188e-11
4.603500000000000e+01 9.666345067073767e-11
4.743000000000000e+01 9.690696236584682e-11
4.882500000000000e+01 9.712989374227388e-11
5.022000000000000e+01 9.733466555033849e-11
5.161500000000000e+01 9.752211584270999e-11
5.301000000000000e+01 9.769530448734305e-11
5.440500000000000e+01 9.785391201173654e-11
5.580000000000000e+01 9.800097530204155e-11
5.719500000000000e+01 9.813526992169077e-11
5.859000000000000e+01 9.826075950651404e-11
5.998500000000000e+01 9.837503829755254e-11
6.138000000000000e+01 9.848283992865586e-11
6.277500000000000e+01 9.858042614055263e-11
6.417000000000000e+01 9.867291662182347e-11
6.556500000000000e+01 9.875680717525830e-11
6.695999999999999e+01 9.883615066451577e-11
6.835500000000000e+01 9.890864368481570e-11
6.975000000000000e+01 9.897666511974985e-11
7.114500000000000e+01 9.903948318082752e-11
7.254000000000001e+01 9.909873687688567e-11
7.393500000000000e+01 9.915270715196574e-11
7.533000000000000e+01 9.920434424236337e-11
7.672499999999999e+01 9.925097822903171e-11
7.812000000000000e+01 9.929563491101193e-11
7.951500000000000e+01 9.933741196276195e-11
8.091000000000000e+01 9.937500545151111e-11
8.230500000000001e+01 9.941178171731343e-11
8.370000000000000e+01 9.944584300612513e-11
8.509500000000000e+01 9.947559484950996e-11
8.648999999999999e+01 9.950837195305425e-11
8.788500000000001e+01 9.953205673215250e-11
8.928000000000000e+01 9.956082290552302e-11
9.067500000000000e+01 9.958437654459310e-11
9.206999999999999e+01 9.960534808679775e-11
9.346500000000000e+01 9.963000875028259e-11
9.486000000000000e+01 9.964703094269056e-11
9.625500000000000e+01 9.966650685300420e-11
9.765000000000001e+01 9.968664758324516e-11
9.904500000000000e+01 9.969786786856732e-11
1.004400000000000e+02 9.971954010643397e-11
1.018350000000000e+02 9.973068369162790e-11
1.032300000000000e+02 9.974366057600612e-11
1.046250000000000e+02 9.976104632031335e-11
1.060200000000000e+02 9.976798452630015e-11
1.074150000000000e+02 9.978311492049935e-11
1.088100000000000e+02 9.979316924123018e-11
1.102050000000000e+02 9.980195130581736e-11
1.116000000000000e+02 9.981426035838505e-11
1.129950000000000e+02 9.982063727587336e-11
1.143900000000000e+02 9.983052634419245e-11
1.157850000000000e+02 9.984006681310255e-11
1.171800000000000e+02 9.984438503722287e-11
1.185750000000000e+02 9.985384876597963e-11
1.199700000000000e+02 9.986164928533089e-11
1.213650000000000e+02 9.986630168160191e-11
1.227600000000000e+02 9.987202330001488e-11
1.241550000000000e+02 9.988061820020382e-11
1.255500000000000e+02 9.988297634015297e-11
1.269450000000000e+02 9.989017860637408e-11
1.283400000000000e+02 9.989550167826827e-11
1.297350000000000e+02 9.989798785386024e-11
1.311300000000000e+02 9.990344410781654e-11
1.325250000000000e+02 9.990797176682055e-11
1.339200000000000e+02 9.991350192105834e-11
1.353150000000000e+02 9.991572316062209e-11
1.367100000000000e+02 9.991628956042748e-11
1.381050000000000e+02 9.992368802420682e-11
1.395000000000000e+02 9.992789534028236e-11

100
figs/2pt.fig/medeq_1.dat Normal file
View File

@ -0,0 +1,100 @@
6.500000000000000e-02 3.303004752712183e-03
1.300000000000000e-01 3.352033231265798e-03
1.950000000000000e-01 3.429388519605601e-03
2.600000000000000e-01 3.531376474277522e-03
3.250000000000000e-01 3.654955303512895e-03
3.900000000000000e-01 3.797591438338084e-03
4.550000000000000e-01 3.957109270710347e-03
5.200000000000000e-01 4.131577818480617e-03
5.850000000000000e-01 4.319231489632159e-03
6.500000000000000e-01 4.518414314364947e-03
7.150000000000001e-01 4.727542749654344e-03
7.800000000000000e-01 4.945081403845832e-03
8.450000000000000e-01 5.169529169115533e-03
9.100000000000000e-01 5.399412416132360e-03
9.750000000000001e-01 5.633284197409735e-03
1.040000000000000e+00 5.869727097416483e-03
1.105000000000000e+00 6.107359230381837e-03
1.170000000000000e+00 6.344842325244206e-03
1.235000000000000e+00 6.580889708709906e-03
1.300000000000000e+00 6.814277842627289e-03
1.365000000000000e+00 7.043851644105563e-03
1.430000000000000e+00 7.268539221149760e-03
1.495000000000000e+00 7.487352282548051e-03
1.560000000000000e+00 7.699399337071081e-03
1.625000000000000e+00 7.903889371000870e-03
1.690000000000000e+00 8.100127886161705e-03
1.755000000000000e+00 8.287537846484481e-03
1.820000000000000e+00 8.465636202555665e-03
1.885000000000000e+00 8.634049428441299e-03
1.950000000000000e+00 8.792517534260916e-03
2.015000000000000e+00 8.940858662128189e-03
2.080000000000000e+00 9.079003013010525e-03
2.145000000000000e+00 9.206974320731292e-03
2.210000000000000e+00 9.324852484469138e-03
2.275000000000000e+00 9.432817441133780e-03
2.340000000000000e+00 9.531122033560860e-03
2.405000000000000e+00 9.620045591330915e-03
2.470000000000000e+00 9.699941638606406e-03
2.535000000000000e+00 9.771226657015379e-03
2.600000000000000e+00 9.834312678120237e-03
2.665000000000000e+00 9.889644822004707e-03
2.730000000000000e+00 9.937727400744698e-03
2.795000000000000e+00 9.979053133642935e-03
2.860000000000000e+00 1.001409109687264e-02
2.925000000000000e+00 1.004334983854465e-02
2.990000000000000e+00 1.006735412579717e-02
3.055000000000000e+00 1.008657148702326e-02
3.120000000000000e+00 1.010145058927352e-02
3.185000000000000e+00 1.011247022562955e-02
3.250000000000000e+00 1.012009390688948e-02
3.315000000000000e+00 1.012471443738207e-02
3.380000000000000e+00 1.012669659516932e-02
3.445000000000000e+00 1.012643681392513e-02
3.510000000000000e+00 1.012430531133683e-02
3.575000000000000e+00 1.012059560716610e-02
3.640000000000000e+00 1.011556876207106e-02
3.705000000000000e+00 1.010950290367118e-02
3.770000000000000e+00 1.010267742210339e-02
3.835000000000000e+00 1.009530050665713e-02
3.900000000000000e+00 1.008751827262454e-02
3.965000000000000e+00 1.007949750295546e-02
4.030000000000000e+00 1.007142296866053e-02
4.095000000000000e+00 1.006343767538986e-02
4.160000000000000e+00 1.005562306494908e-02
4.225000000000001e+00 1.004803132143369e-02
4.290000000000000e+00 1.004074552798295e-02
4.355000000000000e+00 1.003387336972190e-02
4.420000000000000e+00 1.002746426066194e-02
4.485000000000000e+00 1.002150801809385e-02
4.550000000000000e+00 1.001600213286917e-02
4.615000000000000e+00 1.001097629572658e-02
4.680000000000000e+00 1.000647186386759e-02
4.745000000000000e+00 1.000249918494391e-02
4.810000000000000e+00 9.999011917491281e-03
4.875000000000000e+00 9.995950867247069e-03
4.940000000000000e+00 9.993313942933063e-03
5.005000000000000e+00 9.991128407550683e-03
5.070000000000000e+00 9.989379301574638e-03
5.135000000000000e+00 9.988012021312873e-03
5.200000000000000e+00 9.986961891148467e-03
5.265000000000001e+00 9.986185867206768e-03
5.330000000000000e+00 9.985685844941621e-03
5.395000000000000e+00 9.985477625892176e-03
5.460000000000000e+00 9.985532803411482e-03
5.525000000000000e+00 9.985770510947007e-03
5.590000000000000e+00 9.986127743844485e-03