Initial commit
This commit is contained in:
		
							
								
								
									
										294
									
								
								Carlen_Jauslin_Lieb_Loss_2020.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										294
									
								
								Carlen_Jauslin_Lieb_Loss_2020.tex
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,294 @@ | ||||
| \documentclass[no_section_in_all]{ian} | ||||
|  | ||||
| \begin{document} | ||||
|  | ||||
| \hbox{} | ||||
| \hfil{\bf\LARGE | ||||
| On the convolution inequality $f\geqslant f\star f$\par | ||||
| } | ||||
| \vfill | ||||
|  | ||||
| \hfil{\bf\large Eric Carlen}\par | ||||
| \hfil{\it Department of Mathematics, Rutgers University}\par | ||||
| \hfil{\color{blue}\tt\href{mailto:carlen@rutgers.edu}{carlen@rutgers.edu}}\par | ||||
| \vskip20pt | ||||
|  | ||||
| \hfil{\bf\large Ian Jauslin}\par | ||||
| \hfil{\it Department of Physics, Princeton University}\par | ||||
| \hfil{\color{blue}\tt\href{mailto:ijauslin@princeton.edu}{ijauslin@princeton.edu}}\par | ||||
| \vskip20pt | ||||
|  | ||||
| \hfil{\bf\large Elliott H. Lieb}\par | ||||
| \hfil{\it Departments of Mathematics and Physics, Princeton University}\par | ||||
| \hfil{\color{blue}\tt\href{mailto:lieb@princeton.edu}{lieb@princeton.edu}}\par | ||||
| \vskip20pt | ||||
|  | ||||
| \hfil{\bf\large Michael Loss}\par | ||||
| \hfil{\it School of Mathematics, Georgia Institute of Technology}\par | ||||
| \hfil{\color{blue}\tt\href{mailto:loss@math.gatech.edu}{loss@math.gatech.edu}}\par | ||||
|  | ||||
| \vfill | ||||
|  | ||||
|  | ||||
| \hfil {\bf Abstract}\par | ||||
| \medskip | ||||
|  | ||||
| We consider the inequality $f \geqslant f\star f$  for real functions in $L^1(\mathbb R^d)$ where $f\star f$ denotes the convolution of $f$ with itself. We show that all such functions $f$ are non-negative,  | ||||
| which is not the case for the same inequality in $L^p$ for any $1 < p \leqslant 2$, for which the convolution is defined. We also show that all solutions in $L^1(\mathbb R^d)$ satisfy $\int_{\mathbb R^d}f(x){\rm d}x \leqslant \textstyle\frac12$.  Moreover, if  | ||||
| $\int_{\mathbb R^d}f(x){\rm d}x = \textstyle\frac12$, then $f$ must decay fairly slowly: $\int_{\mathbb R^d}|x| f(x){\rm d}x = \infty$, and this is sharp since for all  | ||||
| $r< 1$, there are   solutions with  $\int_{\mathbb R^d}f(x){\rm d}x = \textstyle\frac12$ and $\int_{\mathbb R^d}|x|^r f(x){\rm d}x <\infty$.  However, if  | ||||
| $\int_{\mathbb R^d}f(x){\rm d}x  = : a < \textstyle\frac12$, the decay at infinity can be much more rapid: we show that for all $a<\textstyle\frac12$, there are solutions such that for some $\epsilon>0$,  | ||||
| $\int_{\mathbb R^d}e^{\epsilon|x|}f(x){\rm d}x < \infty$.  | ||||
| \vfill | ||||
|  | ||||
| \hfil{\footnotesize\copyright\, 2020 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.} | ||||
|  | ||||
| \eject | ||||
|  | ||||
| \setcounter{page}1 | ||||
| \pagestyle{plain} | ||||
|  | ||||
|  | ||||
| \indent Our subject is  the set of real,  integrable solutions of the inequality  | ||||
| \begin{equation} | ||||
|   f(x)\geqslant f\star f(x) | ||||
|   ,\quad\forall x\in\mathbb R^d\ , | ||||
|   \label{ineq} | ||||
| \end{equation} | ||||
| where $f\star f(x)$ denotes the convolution $f\star f(x) = \int_{\mathbb R^d} f(x-y) f(y){\rm d}y$, which by Young's inequality \cite[Theorem 4.2]{LL96} is well defined as an element of  | ||||
| $L^{p/(2-p)}(\mathbb R^d)$ for all $1 \leqslant p\leqslant 2$.  Thus, one may consider this inequality in $L^p(\mathbb R^d)$ for all $1 \leqslant p \leqslant 2$, but the case $p=1$ is special:   | ||||
| the solution set of (\ref{ineq}) is restricted in a number of surprising ways. Integrating both sides of (\ref{ineq}), one sees immediately that $\int_{\mathbb R^d} f(x){\rm d}x \leqslant 1$.  | ||||
| We prove that, in fact, all integrable solutions satisfy $\int_{\mathbb R^d} f(x){\rm d}x \leqslant \textstyle\frac12$, and this upper bound is sharp.   | ||||
|  | ||||
|  | ||||
| Perhaps even more surprising, we prove that all integrable solutions of (\ref{ineq}) are non-negative.  This is {\em not true} for solutions in $L^p(\mathbb R^d)$, $ 1 < p \leqslant 2$.  | ||||
| For  $f\in L^p(\mathbb R^d)$,  $1\leqslant p \leqslant 2$, the Fourier transform $\widehat{f}(k) = \int_{\mathbb R^d}e^{-i2\pi k\cdot x} f(x){\rm d}x$ is well defined as an element of $L^{p/(p-1)}(\mathbb R^d)$.  If $f$ solves the equation $f = f\star f$, | ||||
| then $\widehat{f} = \widehat{f}^2$, and hence $\widehat{f}$ is the indicator function of a measurable set. By the Riemann-Lebesgue Theorem, if $f\in L^1(\mathbb R^d)$, then   | ||||
| $\widehat{f}$ is continuous and vanishes at infinity, and the only such indicator function is the indicator function of the empty set. Hence the only integrable solution of  | ||||
| $f = f*f$ is the trivial solution $f= 0$. However, for $1 < p \leqslant 2$, solutions abound:  take $d=1$ and define $g$ to be the indicator function of the interval $[-a,a]$.  Define  | ||||
| \begin{equation}\label{exam} | ||||
| f(x) = \int_{\mathbb R} e^{-i2\pi k x} g(k){\rm d}k =  \frac{ \sin 2\pi xa}{\pi x}\ , | ||||
|  \end{equation} | ||||
| which is not integrable, but which belongs to $L^p(\mathbb R)$ for all $p> 1$.  By the Fourier Inversion Theorem $\widehat{f} = g$. Taking products, one gets examples in any dimension.   | ||||
|  | ||||
|  | ||||
| To construct a family of solutions to (\ref{ineq}), fix $a,t> 0$,  and define  $g_{a,t}(k) = a e^{-2\pi |k| t}$. By \cite[Theorem 1.14]{SW71}, | ||||
| $$ | ||||
| f_{a,t}(x) =  \int_{\mathbb R^d} e^{-i2\pi k x} g_{a,t}(k){\rm d}k = a\Gamma((d+1)/2) \pi^{-(d+1)/2} \frac{t}{(t^2 + x^2)^{(d+1)/2}}\ . | ||||
| $$ | ||||
| Since $g_{a,t}^2(k) =  g_{a^2,2t}$, $f_{a,t}\star f_{a,t} = f_{a^2,2t}$, Thus, $f_{a,t} \geqslant f_{a,t}\star f_{a,t}$ reduces to  | ||||
| $$ | ||||
| \frac{t}{(t^2 + x^2)^{(d+1)/2}} \geqslant  \frac{2at}{(4t^2 + x^2)^{(d+1)/2}} | ||||
| $$ | ||||
| which is satisfied for all $a \leqslant 1/2$. Since  $\int_{\mathbb R^d}f_{a,t}(x){\rm d}x =a$, this provides a class of solutions of (\ref{ineq}) that are non-negative and satisfy  | ||||
| \begin{equation}\label{half} | ||||
| \int_{\mathbb R^d}f(x){\rm d}x \leqslant \frac12\ , | ||||
| \end{equation} | ||||
|  all of which have fairly slow decay at infinity, so that in every case,  | ||||
| \begin{equation}\label{tail} | ||||
|  \int_{\mathbb R^d}|x|f(x){\rm d}x =\infty \ . | ||||
|  \end{equation} | ||||
|  | ||||
| Our results show that this class of examples of integrable solutions of (\ref{ineq}) is surprisingly typical  of {\em all} integrable solutions: every real integrable solution  | ||||
| $f$  of (\ref{ineq}) is positive, satisfies (\ref{half}), | ||||
| and if there is equality in (\ref{half}), $f$ also satisfies (\ref{tail}).  The positivity of all real solutions of (\ref{ineq}) in $L^1(\mathbb R^d)$ may be considered surprising since it is  | ||||
| false in $L^p(\mathbb R^d)$ for all $p > 1$, as the example (\ref{exam}) shows.   We also show that when strict inequality holds in (\ref{half}) for a solution $f$ of (\ref{ineq}), it is possible for  | ||||
| $f$ to have rather fast decay; we construct examples such that $\int_{\mathbb R^d}e^{\epsilon|x|}f(x){\rm d}x < \infty$ for some $\epsilon> 0$.  The conjecture that integrable solutions of  (\ref{ineq})   | ||||
| are necessarily positive was motivated by recent work \cite{CJL19} on a  partial differential equation involving a quadratic nonlinearity of $f\star f$ type, and the result proved here is the key to  | ||||
| the proof of positivity for solutions of this partial differential equations; see \cite{CJL19}.  | ||||
|  | ||||
|  | ||||
| \theo{Theorem}\label{theo:positivity} | ||||
| If $f$ is a real valued function in $L^1(\mathbb R^d)$ such that | ||||
| \begin{equation}\label{uineq} | ||||
|    f(x) - f\star f(x) =: u(x) \geqslant 0 | ||||
| \end{equation} | ||||
| for all $x$.  Then  $\int_{\mathbb R^d} f(x)\ dx\leqslant\frac12$,  | ||||
| and $f$ is given by the convergent series | ||||
| \begin{equation} | ||||
| f(x) = \frac{1}{2} \sum_{n=1}^\infty  c_n 4^n (\star^n u)(x) | ||||
| \label{fun} | ||||
| \end{equation}  | ||||
| where the $c_n\geqslant0$ are the Taylor coefficients in the expansion of $\sqrt{1-x}$ | ||||
| \begin{equation}\label{3half} | ||||
|   \sqrt{1-x}=1-\sum_{n=1}^\infty c_n x^n | ||||
|   ,\quad | ||||
|   c_n=\frac{(2n-3)!!}{2^nn!}  \sim n^{-3/2} | ||||
| \end{equation} | ||||
| In particular, $f$ is positive.  Moreover, if $u\geqslant 0$  is any integrable function with $\int_{\mathbb R^d}u(x){\rm d}x \leqslant \textstyle\frac14$, then the sum on the right in (\ref{fun}) defines an integrable function $f$ that satisfies (\ref{uineq}). | ||||
| \endtheo | ||||
| \bigskip | ||||
|  | ||||
| \indent\underline{Proof}: Note that $u$ is integrable. Let $a := \int_{\mathbb R^d}f(x){\rm d}x$ and $b := \int_{\mathbb R^d}u(x){\rm d}x \geqslant 0$. Fourier transforming, | ||||
| (\ref{uineq}) becomes | ||||
| \begin{equation} \label{ft} | ||||
| \widehat f(k) = \widehat f(k)^2 +\widehat u(k)\ . | ||||
| \end{equation} | ||||
| At $k=0$, $a^2 - a = -b$, so that $\left(a - \textstyle\frac12\right)^2  = \textstyle\frac14 - b$.  Thus $0 \leqslant b \leqslant\textstyle\frac14$.  Furthermore, since  $u \geqslant 0$, | ||||
| \begin{equation} | ||||
|   |\widehat u(k)|\leqslant\widehat u(0) \leqslant \textstyle\frac14 | ||||
| \end{equation} | ||||
| and the first   inequality is strict  for $k\neq 0$. Hence for $k\neq 0$,  $\sqrt{1-4\widehat u(k)} \neq 0$.  By the Riemann-Lebesgue Theorem, $\widehat{f}(k)$ and $\widehat{u}(k)$ are both  | ||||
| continuous and vanish at infinity, and hence we must have that  | ||||
| \begin{equation} | ||||
|   \widehat f(k)=\textstyle\frac12-\textstyle\frac12\sqrt{1-4\widehat u(k)} | ||||
|   \label{hatf} | ||||
| \end{equation} | ||||
| for all sufficiently large $k$, and in any case $\widehat f(k)= \frac12\pm\frac12\sqrt{1-4\widehat u(k)}$.  But by continuity and the fact that  $\sqrt{1-4\widehat u(k)} \neq 0$ for any $k\neq 0$, the sign cannot switch.   | ||||
| Hence (\ref{hatf}) is valid for all $k$, including $k=0$, again by continuity.  At $k=0$,  $a = \textstyle\frac12 - \sqrt{1-4b}$, which proves (\ref{half}). | ||||
| The fact that $c_n$ as specified in (\ref{3half}) satisfies $c_n \sim n^{-3/2}$ is a simple application of Stirling's formula, and it shows that the power series for $\sqrt{1-z}$ converges absolutely and  | ||||
| uniformly everywhere on the closed unit disc. Since $|4 \widehat u(k)| \leqslant 1$, | ||||
| ${\displaystyle  | ||||
|  \sqrt{1-4 \widehat u(k)} = 1 -\sum_{n=1}^\infty c_n (4 \widehat u(k))^n}$. Inverting the Fourier transform, yields (\ref{fun}),and since $\int_{\mathbb R^d} 4^n\star^n u(x){\rm d}x \leqslant 1$,  | ||||
|  the convergence of the sum in $L^1(\mathbb R^d)$ follows from the convergence of $\sum_{n=1}^\infty c_n$. The final statement follows from the fact that if $f$ is defined in terms of $u$ in this manner, (\ref{hatf}) is  | ||||
|  valid, and then (\ref{ft}) and (\ref{uineq}) are satisfied. | ||||
| \qed | ||||
| \bigskip | ||||
|  | ||||
| \theo{Theorem}\label{theo:decay} | ||||
| Let $f\in L^1(\mathbb R^d)$ satisfy (\ref{ineq}) and $\int_{\mathbb R^d} f(x)\ dx=\textstyle\frac12$. Then  | ||||
| $\int_{\mathbb R^d}|x| f(x)\ dx=\infty$. | ||||
| \endtheo | ||||
| \bigskip | ||||
|  | ||||
|  | ||||
| \indent\underline{Proof}:  If  $\int_{\mathbb R^d} f(x)\ dx=\textstyle\frac12$, $\int_{\mathbb R^d} 4u(x)\ dx=1$, then $w(x) = 4u(x)$ is a probability density, and we can write $f(x) = \sum_{n=0}^\infty \star^n w$.  Suppose that $|x|f(x)$ is integrable. Then $|x|w(x)$ is integrable.  Let $m:= \int_{\mathbb R^d}xw(x){\rm d} x$.  Since first moments add under convolution, the trivial inequality $|m||x| \geqslant m\cdot x$ yields  | ||||
| $$|m|\int_{\mathbb R^d} |x| \star^nw(x){\rm d}x \geqslant  \int_{\mathbb R^d} m\cdot x \star^nw(x){\rm d}x = n|m|^2\ .$$ | ||||
|  It follows that  $\int_{\mathbb R^d} |x| f(x){\rm d}x \geqslant |m|\sum_{n=1}^\infty nc_n = \infty$. Hence $m=0$.  | ||||
|  | ||||
|  | ||||
| Suppose temporarily that in addition, $|x|^2w(x)$ is integrable. Let $\sigma^2$ be the variance of $w$; i.e., $\sigma^2 = \int_{\mathbb R^d}|x|^2w(x){\rm d}x\ .$ | ||||
| Define the function $\varphi(x) = \min\{1,|x|\}$.  Then  | ||||
| $$ | ||||
| \int_{\mathbb R^d}|x| \star^n w(x){\rm d}x =  \int_{\mathbb R^d}|n^{1/2}x| \star^n w(n^{1/2}x)n^{d/2}{\rm d}x  \geqslant  n^{1/2} \int_{\mathbb R^d}\varphi(x)\star^n w(n^{1/2}x)n^{d/2}{\rm d}x. | ||||
| $$ | ||||
| By the Central Limit Theorem,  since $\varphi$ is bounded and continuous, | ||||
| \begin{equation}\label{CLT} | ||||
| \lim_{n\to\infty}  \int_{\mathbb R^d}\varphi(x)\star^n w(n^{1/2}x)n^{d/2}{\rm d}x =  \int_{\mathbb R^d}\varphi(x) \gamma(x){\rm d}x =: C > 0 | ||||
| \end{equation} | ||||
| where $\gamma(x)$ is a centered Gaussian probability density with variance $\sigma^2$.  | ||||
|  | ||||
| This shows that  there is a  $\delta> 0$  for all sufficiently large $n$, $\int_{\mathbb R^d}|x| \star^n w(x){\rm d}x \geqslant \sqrt{n}\delta$, and then since $c_n\sim n^{3/2}$, $\sum_{n=1}^\infty c_n \int_{\mathbb R^d}|x| \star^n w(x){\rm d}x= \infty$.  | ||||
|  | ||||
|  To remove the hypothesis that $w$ has finite variance, note that if $w$ is a probability density with zero mean and infinite variance, $\star^n w(n^{1/2}x)n^{d/2}$ is ``trying'' to converge to a Gaussian of infinite variance. In particular, one would expect that for all $R>0$,  | ||||
| \begin{equation}\label{CLT2} | ||||
| \lim_{n\to\infty} \int_{|x| \leqslant R}\star^n w(n^{1/2}x)n^{d/2}{\rm d}x = 0\ ,  | ||||
| \end{equation} so that  the limit in (\ref{CLT}) has the value $1$.  The proof then proceeds as above. The fact that (\ref{CLT2}) is valid is proved in \cite[Corollary 1]{CGR08}. | ||||
| \qed | ||||
| \bigskip | ||||
|  | ||||
| \delimtitle{\bf Remark} | ||||
| For the convenience of the reader, we sketch, at the end of this paper, the part of of the argument in \cite{CGR08} that proves (\ref{CLT2}), since we know of no reference for this simple statement, and the proof in \cite{CGR08} deals with a more complicated variant of this problem. | ||||
| \endtheo | ||||
| \bigskip | ||||
|  | ||||
| \theo{Theorem} | ||||
|   If $f$ satisfies\-~(\ref{ineq}), and | ||||
| $\int |x|^2[f(x)-f\star f(x)]\ dx<\infty$, then, for all $0\leqslant p<1$, | ||||
|   \begin{equation} | ||||
|     \int |x|^pf(x)\ dx<\infty. | ||||
|   \end{equation} | ||||
| \endtheo | ||||
| \bigskip | ||||
|  | ||||
| \indent\underline{Proof}:  We may suppose that $f$ is not identically $0$. Let $u = f - f\star f$ as above.  Let  $t := 4\int_{\mathbb R^d}u(x){\rm d}x \leqslant 1$.  Then $t> 0$.  Define $w := t^{-1}4u$; $w$ is a probability density and  | ||||
| $$ | ||||
| f(x) = \sum_{n=1}^\infty c_n t^n \star^n w(x)\ .  | ||||
| $$ | ||||
| By  hypothesis, $w$ has a  mean $m := \int_{\mathbb R^d} x w(x){\rm d}x$ and  variance  $\sigma^2 =   \int_{\mathbb R^d} |x-m|^2 w(x){\rm d}x < \infty$. Since variance is additive under convolution, | ||||
| $$ | ||||
| \int_{\mathbb R^d} |x-m|^2 \star^n w(x){\rm d}x   = n\sigma^2\ . | ||||
| $$ | ||||
| By H\"older's inequality,  for all $0 < p < 2$, | ||||
| $\int_{\mathbb R^d} |x-m|^p \star^n w(x){\rm d}x   \leqslant  (n\sigma^2)^{p/2}$. | ||||
| It follows that for $0 < p < 1$, | ||||
| $$ | ||||
| \int_{\mathbb R^d} |x-m|^p f(x){\rm d}x   \leqslant  (\sigma^2)^{p/2} \sum_{n=1}^\infty n^{p/2} c_n  < \infty\ , | ||||
| $$ | ||||
| again using the fact that $c_n\sim n^{-3/2}$.  | ||||
| \qed | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| Theorem \ref{theo:decay} implies that when $\int f=\frac12$, $f$ cannot decay faster than $|x|^{-(d+1)}$.  However, integrable solutions $f$  of (\ref{ineq}) such that $\int_{\mathbb R^d}f(x){\rm d}x < \textstyle\frac12$ | ||||
| can decay quite rapidly, even having finite exponential moments,  as we now show. | ||||
|  | ||||
|  | ||||
| Consider a non-negative, integrable function $u$, which integrates to $r<\frac14$, and satisfies | ||||
| \begin{equation} | ||||
|   \int_{\mathbb R^d} u(x)e^{\lambda|x|}{\rm d}x < \infty | ||||
| \end{equation} | ||||
| for some $\lambda>0$. | ||||
| The Laplace transform of $u$ is | ||||
| $ \widetilde u(p):=\int e^{-px}u(x)\ {\rm d} x$ which is analytic for $|p|<\lambda$, and $\widetilde u(0) < \textstyle\frac14$. | ||||
| Therefore, there exists $0<\lambda_0\leqslant \lambda$ such that, for all $|p|\leqslant\lambda_0$, | ||||
|   $\widetilde u(p)<\textstyle\frac14$. | ||||
| By Theorem \ref{theo:positivity}, | ||||
| ${\displaystyle  | ||||
|   f(x):=\frac12\sum_{n=1}^\infty 4^nc_n(\star^n u)(x)}$ | ||||
| is an integrable solution of (\ref{ineq}).  For   | ||||
|  $|p|\leqslant\lambda_0$, it has a well-defined Laplace transform $ \widetilde f(p)$ given by  | ||||
| \begin{equation} | ||||
|   \widetilde f(p)=\int e^{-px}f(x)\ dx=\frac12(1-\sqrt{1-4\widetilde u(p)}) | ||||
| \end{equation} | ||||
| which is analytic for $|p|\leqslant \lambda_0$. | ||||
| Note that | ||||
| ${\displaystyle e^{s|x|} \leqslant \prod_{j=1}^d e^{|sx_j|} \leqslant \frac{1}{d}\sum_{j=1}^d e^{d|sx_j|} \leqslant \frac{2}{d}\sum_{j=1}^d \cosh(dsx_j)}$. | ||||
| What has just been shown, yields a $\delta>0$ so that for $|s|< \delta$, $\int_{\mathbb R^d}  \cosh(dsx_j)f(x){\rm d}x < \infty$ for each $j$. It follows that for  | ||||
| $0 < s < \delta$, $\int_{\mathbb R^d} e^{s|x|}f(x){\rm d}x < \infty$.  | ||||
| \bigskip  | ||||
|  | ||||
|   | ||||
| \delimtitle{\bf Remark} | ||||
| One might also consider the inequality $f \leqslant f \star f$ in $L^1(\mathbb R^d)$, but it is simple to construct  solutions that  have both signs. Consider any radial Gaussian probability density $g$,   | ||||
| Then $g\star g(x) \geqslant g(x)$ for all sufficiently large $|x|$, and taking  $f:= ag$ for $a$ sufficiently large, we obtain $f< f\star f$ everywhere. Now on a small neighborhood of the origin, replace the value of  | ||||
| $f$ by $-1$. If the region is taken small enough, the new function $f$ will still satisfy $f < f\star f$ everywhere.   | ||||
| \endtheo | ||||
| \bigskip | ||||
|  | ||||
| We close by sketching a proof of (\ref{CLT2}) using the construction in \cite{CGR08}.  Let $w$ be a mean zero, infinite variance probability density on $\mathbb R^d$.   | ||||
| Pick $\epsilon>0$, and choose a large value $\sigma$ such that $(2\pi \sigma^2)^{-d/2}R^d|B| < \epsilon/2$, where $|B|$ denotes the volume of the ball.   The point of this is that if  | ||||
| $G$ is a centered Gaussian random variable with variance $\sigma^2$, the probability is no more than $\epsilon/2$ that $G$ lies in {\em any} particular translate $B_R+y$ of the ball of radius $R$.  | ||||
|  | ||||
| Let $A \subset \mathbb R^d$ be a bounded set so that $\int_{A}xw(x){\rm d}x = 0$ and  $\int_{A}|x|^2w(x){\rm d}x = \sigma^2$.  It is then easy to find mutually independent random variables $X$, $Y$ and $\alpha$ such that  | ||||
| $X$ takes values in $A$ and, has zero mean and variance greater than $\sigma^2$, $\alpha$ is a Bernoulli variable with success probability $\int_{A}w(x){\rm d}x$, which we can take arbitrarily close to $1$ by  | ||||
| increasing the size of $A$, and finally such that $\alpha X + (1-\alpha)Y $  has the probability density $w$. Taking independent i.i.d. sequences of such random variables, $w(n^{1/2}x)n^{d/2}$ is the probability density of | ||||
| ${\displaystyle W_n :=  \frac{1}{\sqrt{n}}\sum_{j=1}^n \alpha_j X_j +  \frac{1}{\sqrt{n}} \sum_{j=1}^n(1-\alpha_j)Y_j}$. | ||||
| We are interested  in estimating the expectation of $1_{B_R}(W_n)$. We first take the conditional expectation, given the values of the $\alpha$'s and the $Y$'s. These conditional expectations have the form  | ||||
| ${\mathbb E}\left[ 1_{B_R + y}\left( \frac{1}{\sqrt{n}}\sum_{j=1}^n \alpha_j X_j \right)\right]$ | ||||
| for some translate $B_R +y$ of the unit Ball. Since $A$ is bounded, the $X_j$'s all have the same finite third moment, and now the Berry-Esseen Theorem \cite{B41,E42}, a version of the Central Limit Theorem  | ||||
| with rate information,  allows us to control the error in approximating this expectation by  | ||||
| $\mathbb{E}(1_{B_R +y}(G))$ where $G$ is centered Gaussian with variance $\sigma^2$. By the choice of $\sigma$, this is no greater than $\epsilon/2$, independent of $y$.  For $n$ large enough,  | ||||
| the remaining errors  -- coming from the small probability that $\sum_{n=1}^n \alpha_j$ is significantly less $n$, and the error bound provided by the Berry-Esseen Theorem, are readily absorbed into the remaining  | ||||
| $\epsilon/2$ for large $n$. Thus for all sufficiently large $n$, the integral in (\ref{CLT2}) is no more than $\epsilon$.  | ||||
|  | ||||
|  | ||||
| \vfill | ||||
| \eject | ||||
| {\bf Acknowledgements}: | ||||
|  | ||||
| U.S.~National Science Foundation grants DMS-1764254 (E.A.C.),  DMS-1802170 (I.J.)  and  NSF grant DMS-1856645 (M.P.L)  are gratefully acknowledged. | ||||
| \vskip20pt | ||||
|  | ||||
| \begin{thebibliography}{WWW99} | ||||
|  | ||||
| \bibitem[B41]{B41}  A. Berry, {\em The Accuracy of the Gaussian Approximation to the Sum of Independent Variates}. Trans. of the A.M.S. {\bf 49} (1941),122-136. | ||||
|  | ||||
| \bibitem[CGR08]{CGR08} E.A. Carlen, E. Gabetta and E. Regazzini, {\it Probabilistic investigation on explosion of solutions of the Kac equation with infintte initial energy}, J. Appl. Prob. {\bf 45} (2008), 95-106 | ||||
|  | ||||
| \bibitem[CJL19]{CJL19} E.A. Carlen, I. Jauslin and E.H. Lieb, {Analysis of a simple equation for the ground state energy of the Bose gas}, arXiv preprint arXiv:1912.04987. | ||||
|  | ||||
| \bibitem[E42]{E42} C.-G. Esseen, {\em A moment inequality with an application to the central limit theorem}. Skand. Aktuarietidskr. {\bf 39} 160-170. | ||||
|  | ||||
| \bibitem[LL96]{LL96} E.H. Lieb and M. Loss, {\em Analysis}, Graduate Studies in Mathematics {\bf 14}, A.M.S., Providence RI, 1996. | ||||
|  | ||||
| \bibitem[SW71]{SW71} E. Stein and G. Weiss, {\em Introduction to Fourier analysis on Euclidean spaces}, Princeton University Press, Princeton NJ, 1971. | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| \end{thebibliography} | ||||
|  | ||||
| \end{document} | ||||
							
								
								
									
										34
									
								
								Makefile
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										34
									
								
								Makefile
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,34 @@ | ||||
| PROJECTNAME=$(basename $(wildcard *.tex)) | ||||
| LIBS=$(notdir $(wildcard libs/*)) | ||||
|  | ||||
| PDFS=$(addsuffix .pdf, $(PROJECTNAME)) | ||||
| SYNCTEXS=$(addsuffix .synctex.gz, $(PROJECTNAME)) | ||||
|  | ||||
| all: $(PROJECTNAME) | ||||
|  | ||||
| $(PROJECTNAME): $(LIBS) | ||||
| 	pdflatex -file-line-error $@.tex | ||||
| 	pdflatex -file-line-error $@.tex | ||||
| 	pdflatex -synctex=1 $@.tex | ||||
|  | ||||
| $(SYNCTEXS): $(LIBS) | ||||
| 	pdflatex -synctex=1 $(patsubst %.synctex.gz, %.tex, $@) | ||||
|  | ||||
| libs: $(LIBS) | ||||
|  | ||||
| $(LIBS): | ||||
| 	ln -fs libs/$@ ./ | ||||
|  | ||||
| clean-aux: | ||||
| 	rm -f $(addsuffix .aux, $(PROJECTNAME)) | ||||
| 	rm -f $(addsuffix .log, $(PROJECTNAME)) | ||||
| 	rm -f $(addsuffix .out, $(PROJECTNAME)) | ||||
| 	rm -f $(addsuffix .toc, $(PROJECTNAME)) | ||||
|  | ||||
| clean-libs: | ||||
| 	rm -f $(LIBS) | ||||
|  | ||||
| clean-tex: | ||||
| 	rm -f $(PDFS) $(SYNCTEXS) | ||||
|  | ||||
| clean: clean-aux clean-tex clean-libs | ||||
							
								
								
									
										31
									
								
								README
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										31
									
								
								README
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,31 @@ | ||||
| This directory contains the source files to typeset the article. This can be | ||||
| accomplished by running | ||||
|   make | ||||
|  | ||||
| This document uses a custom class file, located in the 'libs' directory, which | ||||
| defines a number of commands. Most of these are drop-in replacements for those | ||||
| defined in the 'article' class. | ||||
|  | ||||
| Some extra functionality is provided in custom style files, located in the | ||||
| 'libs' directory. | ||||
|  | ||||
|  | ||||
| * Dependencies: | ||||
|  | ||||
|   pdflatex | ||||
|   TeXlive packages: | ||||
|     amsfonts | ||||
|     color | ||||
|     hyperref | ||||
|     latex | ||||
|     marginnote | ||||
|   GNU make | ||||
|  | ||||
| * Files: | ||||
|  | ||||
|   Carlen_Jauslin_Lieb_Loss_2020.tex: | ||||
|     main LaTeX file | ||||
|  | ||||
|   libs: | ||||
|     custom LaTeX class file | ||||
|  | ||||
							
								
								
									
										673
									
								
								libs/ian.cls
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										673
									
								
								libs/ian.cls
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,673 @@ | ||||
| %% | ||||
| %% Ian's class file | ||||
| %% | ||||
|  | ||||
| %% TeX format | ||||
| \NeedsTeXFormat{LaTeX2e}[1995/12/01] | ||||
|  | ||||
| %% class name | ||||
| \ProvidesClass{ian}[2017/09/29] | ||||
|  | ||||
| %% boolean to signal that this class is being used | ||||
| \newif\ifianclass | ||||
|  | ||||
| %% options | ||||
| % no section numbering in equations | ||||
| \DeclareOption{section_in_eq}{\sectionsineqtrue} | ||||
| \DeclareOption{section_in_fig}{\sectionsinfigtrue} | ||||
| \DeclareOption{section_in_theo}{\PassOptionsToPackage{\CurrentOption}{iantheo}} | ||||
| \DeclareOption{section_in_all}{\sectionsineqtrue\sectionsinfigtrue\PassOptionsToPackage{section_in_theo}{iantheo}} | ||||
| \DeclareOption{subsection_in_eq}{\subsectionsineqtrue} | ||||
| \DeclareOption{subsection_in_fig}{\subsectionsinfigtrue} | ||||
| \DeclareOption{subsection_in_theo}{\PassOptionsToPackage{\CurrentOption}{iantheo}} | ||||
| \DeclareOption{subsection_in_all}{\subsectionsineqtrue\subsectionsinfigtrue\PassOptionsToPackage{subsection_in_theo}{iantheo}} | ||||
| \DeclareOption{no_section_in_eq}{\sectionsineqfalse} | ||||
| \DeclareOption{no_section_in_fig}{\sectionsinfigfalse} | ||||
| \DeclareOption{no_section_in_theo}{\PassOptionsToPackage{\CurrentOption}{iantheo}} | ||||
| \DeclareOption{no_section_in_all}{\sectionsineqfalse\sectionsinfigfalse\PassOptionsToPackage{no_section_in_theo}{iantheo}} | ||||
| \DeclareOption{no_subsection_in_eq}{\subsectionsineqfalse} | ||||
| \DeclareOption{no_subsection_in_fig}{\subsectionsinfigfalse} | ||||
| \DeclareOption{no_subsection_in_theo}{\PassOptionsToPackage{\CurrentOption}{iantheo}} | ||||
| \DeclareOption{no_subsection_in_all}{\subsectionsineqfalse\subsectionsinfigfalse\PassOptionsToPackage{no_subsection_in_theo}{iantheo}} | ||||
| % reset point | ||||
| \DeclareOption{point_reset_at_section}{\PassOptionsToPackage{reset_at_section}{point}} | ||||
| \DeclareOption{point_no_reset_at_section}{\PassOptionsToPackage{no_reset_at_section}{point}} | ||||
| \DeclareOption{point_reset_at_theo}{\PassOptionsToPackage{reset_at_theo}{point}} | ||||
| \DeclareOption{point_no_reset_at_theo}{\PassOptionsToPackage{no_reset_at_theo}{point}} | ||||
|  | ||||
| \def\ian@defaultoptions{ | ||||
|   \ExecuteOptions{section_in_all, no_subsection_in_all} | ||||
|   \ProcessOptions | ||||
|  | ||||
|   %% required packages | ||||
|   \RequirePackage{iantheo} | ||||
|   \RequirePackage{point} | ||||
|   \RequirePackage{color} | ||||
|   \RequirePackage{marginnote} | ||||
|   \RequirePackage{amssymb} | ||||
|   \PassOptionsToPackage{hidelinks}{hyperref} | ||||
|   \RequirePackage{hyperref} | ||||
| } | ||||
|  | ||||
| %% paper dimensions | ||||
| \setlength\paperheight{297mm} | ||||
| \setlength\paperwidth{210mm} | ||||
|  | ||||
| %% fonts | ||||
| \input{size11.clo} | ||||
| \DeclareOldFontCommand{\rm}{\normalfont\rmfamily}{\mathrm} | ||||
| \DeclareOldFontCommand{\sf}{\normalfont\sffamily}{\mathsf} | ||||
| \DeclareOldFontCommand{\tt}{\normalfont\ttfamily}{\mathtt} | ||||
| \DeclareOldFontCommand{\bf}{\normalfont\bfseries}{\mathbf} | ||||
| \DeclareOldFontCommand{\it}{\normalfont\itshape}{\mathit} | ||||
|  | ||||
| %% text dimensions | ||||
| \hoffset=-50pt | ||||
| \voffset=-72pt | ||||
| \textwidth=460pt | ||||
| \textheight=704pt | ||||
|  | ||||
|  | ||||
| %% remove default indentation | ||||
| \parindent=0pt | ||||
| %% indent command | ||||
| \def\indent{\hskip20pt} | ||||
|  | ||||
| %% something is wrong with \thepage, redefine it | ||||
| \gdef\thepage{\the\c@page} | ||||
|  | ||||
| %% array lines (to use the array environment) | ||||
| \setlength\arraycolsep{5\p@} | ||||
| \setlength\arrayrulewidth{.4\p@} | ||||
|  | ||||
|  | ||||
| %% correct vertical alignment at the end of a document | ||||
| \AtEndDocument{ | ||||
|   \vfill | ||||
|   \eject | ||||
| } | ||||
|  | ||||
|  | ||||
| %% hyperlinks | ||||
| % hyperlinkcounter | ||||
| \newcounter{lncount} | ||||
| % hyperref anchor | ||||
| \def\hrefanchor{% | ||||
| \stepcounter{lncount}% | ||||
| \hypertarget{ln.\thelncount}{}% | ||||
| } | ||||
|  | ||||
| %% define a command and write it to aux file | ||||
| \def\outdef#1#2{% | ||||
|   % define command% | ||||
|   \expandafter\xdef\csname #1\endcsname{#2}% | ||||
|   % hyperlink number% | ||||
|   \expandafter\xdef\csname #1@hl\endcsname{\thelncount}% | ||||
|   % write command to aux% | ||||
|   \immediate\write\@auxout{\noexpand\expandafter\noexpand\gdef\noexpand\csname #1\endcsname{\csname #1\endcsname}}% | ||||
|   \immediate\write\@auxout{\noexpand\expandafter\noexpand\gdef\noexpand\csname #1@hl\endcsname{\thelncount}}% | ||||
| } | ||||
|  | ||||
| %% can call commands even when they are not defined | ||||
| \def\safe#1{% | ||||
|   \ifdefined#1% | ||||
|     #1% | ||||
|   \else% | ||||
|     {\color{red}\bf?}% | ||||
|   \fi% | ||||
| } | ||||
|  | ||||
| %% define a label for the latest tag | ||||
| %% label defines a command containing the string stored in \tag | ||||
| \def\deflabel{ | ||||
|   \def\label##1{\expandafter\outdef{label@##1}{\safe\tag}} | ||||
|  | ||||
|   \def\ref##1{% | ||||
|     % check whether the label is defined (hyperlink runs into errors if this check is omitted) | ||||
|     \ifcsname label@##1@hl\endcsname% | ||||
|       \hyperlink{ln.\csname label@##1@hl\endcsname}{{\color{blue}\safe\csname label@##1\endcsname}}% | ||||
|     \else% | ||||
|       \ifcsname label@##1\endcsname% | ||||
| 	{\color{blue}\csname ##1\endcsname}% | ||||
| 	\else% | ||||
| 	{\bf ??}% | ||||
|       \fi% | ||||
|     \fi% | ||||
|   } | ||||
| } | ||||
|  | ||||
|  | ||||
| %% make a custom link at any given location in the document | ||||
| \def\makelink#1#2{% | ||||
|   \hrefanchor% | ||||
|   \outdef{label@#1}{#2}% | ||||
| } | ||||
|  | ||||
|  | ||||
| %% section command | ||||
| % counter | ||||
| \newcounter{sectioncount} | ||||
| % space before section | ||||
| \newlength\secskip | ||||
| \setlength\secskip{40pt} | ||||
| % a prefix to put before the section number, e.g. A for appendices | ||||
| \def\sectionprefix{} | ||||
| % define some lengths | ||||
| \newlength\secnumwidth | ||||
| \newlength\sectitlewidth | ||||
| \def\section#1{ | ||||
|   % reset counters | ||||
|   \stepcounter{sectioncount} | ||||
|   \setcounter{subsectioncount}{0} | ||||
|   \ifsectionsineq | ||||
|     \setcounter{seqcount}0 | ||||
|   \fi | ||||
|   \ifsectionsinfig | ||||
|     \setcounter{figcount}0 | ||||
|   \fi | ||||
|  | ||||
|   % space before section (if not first) | ||||
|   \ifnum\thesectioncount>1 | ||||
|     \vskip\secskip | ||||
|     \penalty-1000 | ||||
|   \fi | ||||
|  | ||||
|   % hyperref anchor | ||||
|   \hrefanchor | ||||
|   % define tag (for \label) | ||||
|   \xdef\tag{\sectionprefix\thesectioncount} | ||||
|  | ||||
|   % get widths | ||||
|   \def\@secnum{{\bf\Large\sectionprefix\thesectioncount.\hskip10pt}} | ||||
|   \settowidth\secnumwidth{\@secnum} | ||||
|   \setlength\sectitlewidth\textwidth | ||||
|   \addtolength\sectitlewidth{-\secnumwidth} | ||||
|  | ||||
|   % print name | ||||
|   \parbox{\textwidth}{ | ||||
|   \@secnum | ||||
|   \parbox[t]{\sectitlewidth}{\Large\bf #1}} | ||||
|  | ||||
|   % write to table of contents | ||||
|   \iftoc | ||||
|     % save lncount in aux variable which is written to toc | ||||
|     \immediate\write\tocoutput{\noexpand\expandafter\noexpand\edef\noexpand\csname toc@sec.\thesectioncount\endcsname{\thelncount}} | ||||
|     \write\tocoutput{\noexpand\tocsection{#1}{\thepage}} | ||||
|   \fi | ||||
|  | ||||
|   %space | ||||
|   \par\penalty10000 | ||||
|   \bigskip\penalty10000 | ||||
| } | ||||
|  | ||||
| %% subsection | ||||
| % counter | ||||
| \newcounter{subsectioncount} | ||||
| % space before subsection | ||||
| \newlength\subsecskip | ||||
| \setlength\subsecskip{30pt} | ||||
| \def\subsection#1{ | ||||
|   % counters | ||||
|   \stepcounter{subsectioncount} | ||||
|   \setcounter{subsubsectioncount}{0} | ||||
|   \ifsubsectionsineq | ||||
|     \setcounter{seqcount}0 | ||||
|   \fi | ||||
|   \ifsubsectionsinfig | ||||
|     \setcounter{figcount}0 | ||||
|   \fi | ||||
|  | ||||
|   % space before subsection (if not first) | ||||
|   \ifnum\thesubsectioncount>1 | ||||
|     \vskip\subsecskip | ||||
|     \penalty-500 | ||||
|   \fi | ||||
|  | ||||
|   % hyperref anchor | ||||
|   \hrefanchor | ||||
|   % define tag (for \label) | ||||
|   \xdef\tag{\sectionprefix\thesectioncount.\thesubsectioncount} | ||||
|  | ||||
|   % get widths | ||||
|   \def\@secnum{{\bf\large\hskip.5cm\sectionprefix\thesectioncount.\thesubsectioncount.\hskip5pt}} | ||||
|   \settowidth\secnumwidth{\@secnum} | ||||
|   \setlength\sectitlewidth\textwidth | ||||
|   \addtolength\sectitlewidth{-\secnumwidth} | ||||
|   % print name | ||||
|   \parbox{\textwidth}{ | ||||
|   \@secnum | ||||
|   \parbox[t]{\sectitlewidth}{\large\bf #1}} | ||||
|  | ||||
|   % write to table of contents | ||||
|   \iftoc | ||||
|     % save lncount in aux variable which is written to toc | ||||
|     \immediate\write\tocoutput{\noexpand\expandafter\noexpand\edef\noexpand\csname toc@subsec.\thesectioncount.\thesubsectioncount\endcsname{\thelncount}} | ||||
|     \write\tocoutput{\noexpand\tocsubsection{#1}{\thepage}} | ||||
|   \fi | ||||
|  | ||||
|   % space | ||||
|   \par\penalty10000 | ||||
|   \medskip\penalty10000 | ||||
| } | ||||
|  | ||||
| %% subsubsection | ||||
| % counter | ||||
| \newcounter{subsubsectioncount} | ||||
| % space before subsubsection | ||||
| \newlength\subsubsecskip | ||||
| \setlength\subsubsecskip{20pt} | ||||
| \def\subsubsection#1{ | ||||
|   % counters | ||||
|   \stepcounter{subsubsectioncount} | ||||
|  | ||||
|   % space before subsubsection (if not first) | ||||
|   \ifnum\thesubsubsectioncount>1 | ||||
|     \vskip\subsubsecskip | ||||
|     \penalty-500 | ||||
|   \fi | ||||
|  | ||||
|   % hyperref anchor | ||||
|   \hrefanchor | ||||
|   % define tag (for \label) | ||||
|   \xdef\tag{\sectionprefix\thesectioncount.\thesubsectioncount.\thesubsubsectioncount} | ||||
|  | ||||
|   % get widths | ||||
|   \def\@secnum{{\bf\hskip1.cm\sectionprefix\thesectioncount.\thesubsectioncount.\thesubsubsectioncount.\hskip5pt}} | ||||
|   \settowidth\secnumwidth{\@secnum} | ||||
|   \setlength\sectitlewidth\textwidth | ||||
|   \addtolength\sectitlewidth{-\secnumwidth} | ||||
|   % print name | ||||
|   \parbox{\textwidth}{ | ||||
|   \@secnum | ||||
|   \parbox[t]{\sectitlewidth}{\large\bf #1}} | ||||
|  | ||||
|   % write to table of contents | ||||
|   \iftoc | ||||
|     % save lncount in aux variable which is written to toc | ||||
|     \immediate\write\tocoutput{\noexpand\expandafter\noexpand\edef\noexpand\csname toc@subsubsec.\thesectioncount.\thesubsectioncount.\thesubsubsectioncount\endcsname{\thelncount}} | ||||
|     \write\tocoutput{\noexpand\tocsubsubsection{#1}{\thepage}} | ||||
|   \fi | ||||
|  | ||||
|   % space | ||||
|   \par\penalty10000 | ||||
|   \medskip\penalty10000 | ||||
| } | ||||
|  | ||||
| %% itemize | ||||
| \newlength\itemizeskip | ||||
| % left margin for items | ||||
| \setlength\itemizeskip{20pt} | ||||
| \newlength\itemizeseparator | ||||
| % space between the item symbol and the text | ||||
| \setlength\itemizeseparator{5pt} | ||||
| % penalty preceding an itemize | ||||
| \newcount\itemizepenalty | ||||
| \itemizepenalty=0 | ||||
| % counter counting the itemize level | ||||
| \newcounter{itemizecount} | ||||
|  | ||||
| % item symbol | ||||
| \def\itemizept#1{ | ||||
|   \ifnum#1=1 | ||||
|     \textbullet | ||||
|   \else | ||||
|     $\scriptstyle\blacktriangleright$ | ||||
|   \fi | ||||
| } | ||||
|  | ||||
|  | ||||
| \newlength\current@itemizeskip | ||||
| \setlength\current@itemizeskip{0pt} | ||||
| \def\itemize{% | ||||
|   \par\expandafter\penalty\the\itemizepenalty\medskip\expandafter\penalty\the\itemizepenalty% | ||||
|   \addtocounter{itemizecount}{1}% | ||||
|   \addtolength\current@itemizeskip{\itemizeskip}% | ||||
|   \leftskip\current@itemizeskip% | ||||
| } | ||||
| \def\enditemize{% | ||||
|   \addtocounter{itemizecount}{-1}% | ||||
|   \addtolength\current@itemizeskip{-\itemizeskip}% | ||||
|   \par\expandafter\penalty\the\itemizepenalty\leftskip\current@itemizeskip% | ||||
|   \medskip\expandafter\penalty\the\itemizepenalty% | ||||
| } | ||||
|  | ||||
| % item, with optional argument to specify the item point | ||||
| % @itemarg is set to true when there is an optional argument | ||||
| \newif\if@itemarg | ||||
| \def\item{% | ||||
|   % check whether there is an optional argument (if there is none, add on empty '[]') | ||||
|   \@ifnextchar [{\@itemargtrue\@itemx}{\@itemargfalse\@itemx[]}% | ||||
| } | ||||
| \newlength\itempt@total | ||||
| \def\@itemx[#1]{ | ||||
|   \if@itemarg | ||||
|     \settowidth\itempt@total{#1} | ||||
|   \else | ||||
|     \settowidth\itempt@total{\itemizept\theitemizecount} | ||||
|   \fi | ||||
|   \addtolength\itempt@total{\itemizeseparator} | ||||
|   \par | ||||
|   \medskip | ||||
|   \if@itemarg | ||||
|     \hskip-\itempt@total#1\hskip\itemizeseparator | ||||
|   \else | ||||
|     \hskip-\itempt@total\itemizept\theitemizecount\hskip\itemizeseparator | ||||
|   \fi | ||||
| } | ||||
|  | ||||
| %% prevent page breaks after itemize | ||||
| \newcount\previtemizepenalty | ||||
| \def\nopagebreakafteritemize{ | ||||
|   \previtemizepenalty=\itemizepenalty | ||||
|   \itemizepenalty=10000 | ||||
| } | ||||
| %% back to previous value | ||||
| \def\restorepagebreakafteritemize{ | ||||
|   \itemizepenalty=\previtemizepenalty | ||||
| } | ||||
|  | ||||
| %% enumerate | ||||
| \newcounter{enumerate@count} | ||||
| \def\enumerate{ | ||||
|   \setcounter{enumerate@count}0 | ||||
|   \let\olditem\item | ||||
|   \let\olditemizept\itemizept | ||||
|   \def\item{ | ||||
|     % counter | ||||
|     \stepcounter{enumerate@count} | ||||
|     % set header | ||||
|     \def\itemizept{\theenumerate@count.} | ||||
|     % hyperref anchor | ||||
|     \hrefanchor | ||||
|     % define tag (for \label) | ||||
|     \xdef\tag{\theenumerate@count} | ||||
|     \olditem | ||||
|   } | ||||
|   \itemize | ||||
| } | ||||
| \def\endenumerate{ | ||||
|   \enditemize | ||||
|   \let\item\olditem | ||||
|   \let\itemizept\olditemizept | ||||
| } | ||||
|  | ||||
|  | ||||
| %% equation numbering | ||||
| % counter | ||||
| \newcounter{seqcount} | ||||
| % booleans (write section or subsection in equation number) | ||||
| \newif\ifsectionsineq | ||||
| \newif\ifsubsectionsineq | ||||
| \def\seqcount{ | ||||
|   \stepcounter{seqcount} | ||||
|   % the output | ||||
|   \edef\seqformat{\theseqcount} | ||||
|   % add subsection number | ||||
|   \ifsubsectionsineq | ||||
|     \let\tmp\seqformat | ||||
|     \edef\seqformat{\thesubsectioncount.\tmp} | ||||
|   \fi | ||||
|   % add section number | ||||
|   \ifsectionsineq | ||||
|     \let\tmp\seqformat | ||||
|     \edef\seqformat{\sectionprefix\thesectioncount.\tmp} | ||||
|   \fi | ||||
|   % define tag (for \label) | ||||
|   \xdef\tag{\seqformat} | ||||
|   % write number | ||||
|   \marginnote{\hfill(\seqformat)} | ||||
| } | ||||
| %% equation environment compatibility | ||||
| \def\equation{\hrefanchor$$\seqcount} | ||||
| \def\endequation{$$\@ignoretrue} | ||||
|  | ||||
|  | ||||
| %% figures | ||||
| % counter | ||||
| \newcounter{figcount} | ||||
| % booleans (write section or subsection in equation number) | ||||
| \newif\ifsectionsinfig | ||||
| \newif\ifsubsectionsinfig | ||||
| % width of figures | ||||
| \newlength\figwidth | ||||
| \setlength\figwidth\textwidth | ||||
| \addtolength\figwidth{-2.5cm} | ||||
| % caption | ||||
| \def\defcaption{ | ||||
|   \long\def\caption##1{ | ||||
|     \stepcounter{figcount} | ||||
|  | ||||
|     % hyperref anchor | ||||
|     \hrefanchor | ||||
|  | ||||
|     % the number of the figure | ||||
|     \edef\figformat{\thefigcount} | ||||
|     % add subsection number | ||||
|     \ifsubsectionsinfig | ||||
|       \let\tmp\figformat | ||||
|       \edef\figformat{\thesubsectioncount.\tmp} | ||||
|     \fi | ||||
|     % add section number | ||||
|     \ifsectionsinfig | ||||
|       \let\tmp\figformat | ||||
|       \edef\figformat{\sectionprefix\thesectioncount.\tmp} | ||||
|     \fi | ||||
|  | ||||
|     % define tag (for \label) | ||||
|     \xdef\tag{\figformat} | ||||
|  | ||||
|     % write | ||||
|     \hfil fig \figformat: \parbox[t]{\figwidth}{\leavevmode\small##1} | ||||
|  | ||||
|     % space | ||||
|     \par\bigskip | ||||
|   } | ||||
| } | ||||
| %% short caption: centered | ||||
| \def\captionshort#1{ | ||||
|   \stepcounter{figcount} | ||||
|  | ||||
|   % hyperref anchor | ||||
|   \hrefanchor | ||||
|  | ||||
|   % the number of the figure | ||||
|   \edef\figformat{\thefigcount} | ||||
|   % add section number | ||||
|   \ifsectionsinfig | ||||
|   \let\tmp\figformat | ||||
|   \edef\figformat{\sectionprefix\thesectioncount.\tmp} | ||||
|   \fi | ||||
|  | ||||
|   % define tag (for \label) | ||||
|   \xdef\tag{\figformat} | ||||
|  | ||||
|   % write | ||||
|   \hfil fig \figformat: {\small#1} | ||||
|  | ||||
|   %space | ||||
|   \par\bigskip | ||||
| } | ||||
|  | ||||
| %% environment | ||||
| \def\figure{ | ||||
|   \par | ||||
|   \vfil\penalty100\vfilneg | ||||
|   \bigskip | ||||
| } | ||||
| \def\endfigure{ | ||||
|   \par | ||||
|   \bigskip | ||||
| } | ||||
|  | ||||
|  | ||||
| %% start appendices | ||||
| \def\appendix{ | ||||
|   \vfill | ||||
|   \pagebreak | ||||
|  | ||||
|   % counter | ||||
|   \setcounter{sectioncount}0 | ||||
|  | ||||
|   % prefix | ||||
|   \def\sectionprefix{A} | ||||
|  | ||||
|   % write | ||||
|   {\bf \LARGE Appendices}\par\penalty10000\bigskip\penalty10000 | ||||
|  | ||||
|   % add a mention in the table of contents | ||||
|   \iftoc | ||||
|     \immediate\write\tocoutput{\noexpand\tocappendices}\penalty10000 | ||||
|   \fi | ||||
|  | ||||
|   %% uncomment for new page for each appendix | ||||
|   %\def\seqskip{\vfill\pagebreak} | ||||
| } | ||||
|  | ||||
|  | ||||
| %% bibliography | ||||
| % size of header | ||||
| \newlength\bibheader | ||||
| \def\thebibliography#1{ | ||||
|   \hrefanchor | ||||
|  | ||||
|   % add a mention in the table of contents | ||||
|   \iftoc | ||||
|     % save lncount in aux variable which is written to toc | ||||
|     \immediate\write\tocoutput{\noexpand\expandafter\noexpand\edef\noexpand\csname toc@references\endcsname{\thelncount}} | ||||
|     \write\tocoutput{\noexpand\tocreferences{\thepage}}\penalty10000 | ||||
|   \fi | ||||
|  | ||||
|   % write | ||||
|   {\bf \LARGE References}\par\penalty10000\bigskip\penalty10000 | ||||
|   % width of header | ||||
|   \settowidth\bibheader{[#1]} | ||||
|   \leftskip\bibheader | ||||
| } | ||||
| % end environment | ||||
| \def\endthebibliography{ | ||||
|   \par\leftskip0pt | ||||
| }  | ||||
|  | ||||
| %% bibitem command | ||||
| \def\bibitem[#1]#2{% | ||||
|   \hrefanchor% | ||||
|   \outdef{label@cite#2}{#1}% | ||||
|   \hskip-\bibheader% | ||||
|   \makebox[\bibheader]{\cite{#2}\hfill}% | ||||
| } | ||||
|  | ||||
| %% cite command (adapted from latex.ltx) | ||||
| % @tempswa is set to true when there is an optional argument | ||||
| \newif\@tempswa | ||||
| \def\cite{% | ||||
|   % check whether there is an optional argument (if there is none, add on empty '[]') | ||||
|   \@ifnextchar [{\@tempswatrue\@citex}{\@tempswafalse\@citex[]}% | ||||
| } | ||||
| % command with optional argument | ||||
| \def\@citex[#1]#2{\leavevmode% | ||||
|   % initialize loop | ||||
|   \let\@citea\@empty% | ||||
|   % format | ||||
|   \@cite{% | ||||
|     % loop over ',' separated list | ||||
|     \@for\@citeb:=#2\do{% | ||||
|       % text to add at each iteration of the loop (separator between citations) | ||||
|       \@citea\def\@citea{,\ }% | ||||
|       % add entry to citelist | ||||
|       \@writecitation{\@citeb}% | ||||
|       \ref{cite\@citeb}% | ||||
|     }% | ||||
|   }% | ||||
|   % add optional argument text (as an argument to '\@cite') | ||||
|   {#1}% | ||||
| } | ||||
| \def\@cite#1#2{% | ||||
|   [#1\if@tempswa , #2\fi]% | ||||
| } | ||||
| %% add entry to citelist after checking it has not already been added | ||||
| \def\@writecitation#1{% | ||||
|   \ifcsname if#1cited\endcsname% | ||||
|   \else% | ||||
|     \expandafter\newif\csname if#1cited\endcsname% | ||||
|     \immediate\write\@auxout{\string\citation{#1}}% | ||||
|   \fi% | ||||
| } | ||||
|  | ||||
| %% table of contents | ||||
| % boolean | ||||
| \newif\iftoc | ||||
| \def\tableofcontents{ | ||||
|   {\bf \large Table of contents:}\par\penalty10000\bigskip\penalty10000 | ||||
|  | ||||
|   % copy content from file | ||||
|   \IfFileExists{\jobname.toc}{\input{\jobname.toc}}{{\tt error: table of contents missing}} | ||||
|  | ||||
|   % open new toc | ||||
|   \newwrite\tocoutput | ||||
|   \immediate\openout\tocoutput=\jobname.toc | ||||
|  | ||||
|   \toctrue | ||||
| } | ||||
| %% close file | ||||
| \AtEndDocument{ | ||||
|   % close toc | ||||
|   \iftoc | ||||
|     \immediate\closeout\tocoutput | ||||
|   \fi | ||||
| } | ||||
|  | ||||
|  | ||||
| %% fill line with dots | ||||
| \def\leaderfill{\leaders\hbox to 1em {\hss. \hss}\hfill} | ||||
|  | ||||
| %% same as sectionprefix | ||||
| \def\tocsectionprefix{} | ||||
|  | ||||
| %% toc formats | ||||
| \newcounter{tocsectioncount} | ||||
| \def\tocsection #1#2{ | ||||
|   \stepcounter{tocsectioncount} | ||||
|   \setcounter{tocsubsectioncount}{0} | ||||
|   \setcounter{tocsubsubsectioncount}{0} | ||||
|   % write | ||||
|   \smallskip\hyperlink{ln.\csname toc@sec.\thetocsectioncount\endcsname}{{\bf \tocsectionprefix\thetocsectioncount}.\hskip5pt {\color{blue}#1}\leaderfill#2}\par | ||||
| } | ||||
| \newcounter{tocsubsectioncount} | ||||
| \def\tocsubsection #1#2{ | ||||
|   \stepcounter{tocsubsectioncount} | ||||
|   \setcounter{tocsubsubsectioncount}{0} | ||||
|   % write | ||||
|   {\hskip10pt\hyperlink{ln.\csname toc@subsec.\thetocsectioncount.\thetocsubsectioncount\endcsname}{{\bf \thetocsubsectioncount}.\hskip5pt {\color{blue}\small #1}\leaderfill#2}}\par | ||||
| } | ||||
| \newcounter{tocsubsubsectioncount} | ||||
| \def\tocsubsubsection #1#2{ | ||||
|   \stepcounter{tocsubsubsectioncount} | ||||
|   % write | ||||
|   {\hskip20pt\hyperlink{ln.\csname toc@subsubsec.\thetocsectioncount.\thetocsubsectioncount.\thetocsubsubsectioncount\endcsname}{{\bf \thetocsubsubsectioncount}.\hskip5pt {\color{blue}\small #1}\leaderfill#2}}\par | ||||
| } | ||||
| \def\tocappendices{ | ||||
|   \medskip | ||||
|   \setcounter{tocsectioncount}0 | ||||
|   {\bf Appendices}\par | ||||
|   \smallskip | ||||
|   \def\tocsectionprefix{A} | ||||
| } | ||||
| \def\tocreferences#1{ | ||||
|   \medskip | ||||
|   {\hyperlink{ln.\csname toc@references\endcsname}{{\color{blue}\bf References}\leaderfill#1}}\par | ||||
|   \smallskip | ||||
| } | ||||
|  | ||||
|  | ||||
| %% definitions that must be loaded at begin document | ||||
| \let\ian@olddocument\document | ||||
| \def\document{ | ||||
|   \ian@olddocument | ||||
|  | ||||
|   \deflabel | ||||
|   \defcaption | ||||
| } | ||||
|  | ||||
| %% end | ||||
| \ian@defaultoptions | ||||
| \endinput | ||||
							
								
								
									
										162
									
								
								libs/iantheo.sty
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										162
									
								
								libs/iantheo.sty
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,162 @@ | ||||
| %% | ||||
| %% iantheorem package: | ||||
| %%   Ian's customized theorem command | ||||
| %% | ||||
|  | ||||
| %% boolean to signal that this package was loaded | ||||
| \newif\ifiantheo | ||||
|  | ||||
| %% TeX format | ||||
| \NeedsTeXFormat{LaTeX2e}[1995/12/01] | ||||
|  | ||||
| %% package name | ||||
| \ProvidesPackage{iantheo}[2016/11/10] | ||||
|  | ||||
| %% options | ||||
| \newif\ifsectionintheo | ||||
| \DeclareOption{section_in_theo}{\sectionintheotrue} | ||||
| \DeclareOption{no_section_in_theo}{\sectionintheofalse} | ||||
| \newif\ifsubsectionintheo | ||||
| \DeclareOption{subsection_in_theo}{\subsectionintheotrue} | ||||
| \DeclareOption{no_subsection_in_theo}{\subsectionintheofalse} | ||||
|  | ||||
| \def\iantheo@defaultoptions{ | ||||
|   \ExecuteOptions{section_in_theo, no_subsection_in_theo} | ||||
|   \ProcessOptions | ||||
|  | ||||
|   %%% reset at every new section | ||||
|   \ifsectionintheo | ||||
|     \let\iantheo@oldsection\section | ||||
|     \gdef\section{\setcounter{theocount}{0}\iantheo@oldsection} | ||||
|   \fi | ||||
|  | ||||
|   %% reset at every new subsection | ||||
|   \ifsubsectionintheo | ||||
|     \let\iantheo@oldsubsection\subsection | ||||
|     \gdef\subsection{\setcounter{theocount}{0}\iantheo@oldsubsection} | ||||
|   \fi | ||||
| } | ||||
|  | ||||
|  | ||||
| %% delimiters | ||||
| \def\delimtitle#1{ | ||||
|   \par% | ||||
|   \leavevmode% | ||||
|   \raise.3em\hbox to\hsize{% | ||||
|     \lower0.3em\hbox{\vrule height0.3em}% | ||||
|     \hrulefill% | ||||
|     \ \lower.3em\hbox{#1}\ % | ||||
|     \hrulefill% | ||||
|     \lower0.3em\hbox{\vrule height0.3em}% | ||||
|   }% | ||||
|   \par\penalty10000% | ||||
| } | ||||
|  | ||||
| %% callable by ref | ||||
| \def\delimtitleref#1{ | ||||
|   \par% | ||||
| % | ||||
|   \ifdefined\ianclass% | ||||
|     % hyperref anchor% | ||||
|     \hrefanchor% | ||||
|     % define tag (for \label)% | ||||
|     \xdef\tag{#1}% | ||||
|   \fi% | ||||
| % | ||||
|   \leavevmode% | ||||
|   \raise.3em\hbox to\hsize{% | ||||
|     \lower0.3em\hbox{\vrule height0.3em}% | ||||
|     \hrulefill% | ||||
|     \ \lower.3em\hbox{\bf #1}\ % | ||||
|     \hrulefill% | ||||
|     \lower0.3em\hbox{\vrule height0.3em}% | ||||
|   }% | ||||
|   \par\penalty10000% | ||||
| } | ||||
|  | ||||
| %% no title | ||||
| \def\delim{ | ||||
|   \par% | ||||
|   \leavevmode\raise.3em\hbox to\hsize{% | ||||
|     \lower0.3em\hbox{\vrule height0.3em}% | ||||
|     \hrulefill% | ||||
|     \lower0.3em\hbox{\vrule height0.3em}% | ||||
|   }% | ||||
|   \par\penalty10000% | ||||
| } | ||||
|  | ||||
| %% end delim | ||||
| \def\enddelim{ | ||||
|   \par\penalty10000% | ||||
|   \leavevmode% | ||||
|   \raise.3em\hbox to\hsize{% | ||||
|     \vrule height0.3em\hrulefill\vrule height0.3em% | ||||
|   }% | ||||
|   \par% | ||||
| } | ||||
|  | ||||
|  | ||||
| %% theorem | ||||
| % counter | ||||
| \newcounter{theocount} | ||||
| % booleans (write section or subsection in equation number) | ||||
| \def\theo#1{ | ||||
|   \stepcounter{theocount} | ||||
|   \ifdefined\ianclass | ||||
|     % hyperref anchor | ||||
|     \hrefanchor | ||||
|   \fi | ||||
|   % the number | ||||
|   \def\formattheo{\thetheocount} | ||||
|   % add subsection number | ||||
|   \ifsubsectionintheo | ||||
|     \let\tmp\formattheo | ||||
|     \edef\formattheo{\thesubsectioncount.\tmp} | ||||
|   \fi | ||||
|   % add section number | ||||
|   \ifsectionintheo | ||||
|     \let\tmp\formattheo | ||||
|     \edef\formattheo{\sectionprefix\thesectioncount.\tmp} | ||||
|   \fi | ||||
|   % define tag (for \label) | ||||
|   \xdef\tag{\formattheo} | ||||
|   % write | ||||
|   \delimtitle{\bf #1 \formattheo} | ||||
| } | ||||
| \let\endtheo\enddelim | ||||
| %% theorem headers with name | ||||
| \def\theoname#1#2{ | ||||
|   \theo{#1}\hfil({\it #2})\par\penalty10000\medskip% | ||||
| } | ||||
|  | ||||
|  | ||||
| %% qed symbol | ||||
| \def\qedsymbol{$\square$} | ||||
| \def\qed{\penalty10000\hfill\penalty10000\qedsymbol} | ||||
|  | ||||
|  | ||||
| %% compatibility with article class | ||||
| \ifdefined\ianclasstrue | ||||
|   \relax | ||||
| \else | ||||
|   \def\thesectioncount{\thesection} | ||||
|   \def\thesubsectioncount{\thesubsection} | ||||
|   \def\sectionprefix{} | ||||
| \fi | ||||
|  | ||||
|  | ||||
| %% prevent page breaks after displayed equations | ||||
| \newcount\prevpostdisplaypenalty | ||||
| \def\nopagebreakaftereq{ | ||||
|   \prevpostdisplaypenalty=\postdisplaypenalty | ||||
|   \postdisplaypenalty=10000 | ||||
| } | ||||
| %% back to previous value | ||||
| \def\restorepagebreakaftereq{ | ||||
|   \postdisplaypenalty=\prevpostdisplaypenalty | ||||
| } | ||||
|  | ||||
|  | ||||
| %% end | ||||
| \iantheo@defaultoptions | ||||
| \endinput | ||||
							
								
								
									
										107
									
								
								libs/point.sty
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										107
									
								
								libs/point.sty
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,107 @@ | ||||
| %% | ||||
| %% Points package: | ||||
| %%   \point commands | ||||
| %% | ||||
|  | ||||
| %% TeX format | ||||
| \NeedsTeXFormat{LaTeX2e}[1995/12/01] | ||||
|  | ||||
| %% package name | ||||
| \ProvidesPackage{point}[2017/06/13] | ||||
|  | ||||
| %% options | ||||
| \newif\ifresetatsection | ||||
| \DeclareOption{reset_at_section}{\resetatsectiontrue} | ||||
| \DeclareOption{no_reset_at_section}{\resetatsectionfalse} | ||||
| \newif\ifresetatsubsection | ||||
| \DeclareOption{reset_at_subsection}{\resetatsubsectiontrue} | ||||
| \DeclareOption{no_reset_at_subsection}{\resetatsubsectionfalse} | ||||
| \newif\ifresetattheo | ||||
| \DeclareOption{reset_at_theo}{\resetattheotrue} | ||||
| \DeclareOption{no_reset_at_theo}{\resetattheofalse} | ||||
|  | ||||
| \def\point@defaultoptions{ | ||||
|   \ExecuteOptions{reset_at_section, reset_at_subsection, no_reset_at_theo} | ||||
|   \ProcessOptions | ||||
|  | ||||
|   %% reset at every new section | ||||
|   \ifresetatsection | ||||
|     \let\point@oldsection\section | ||||
|     \gdef\section{\resetpointcounter\point@oldsection} | ||||
|   \fi | ||||
|   %% reset at every new subsection | ||||
|   \ifresetatsubsection | ||||
|     \let\point@oldsubsection\subsection | ||||
|     \gdef\subsection{\resetpointcounter\point@oldsubsection} | ||||
|   \fi | ||||
|  | ||||
|   %% reset at every new theorem | ||||
|   \ifresetattheo | ||||
|     \ifdefined\iantheotrue | ||||
|       \let\point@oldtheo\theo | ||||
|       \gdef\theo{\resetpointcounter\point@oldtheo} | ||||
|     \fi | ||||
|   \fi | ||||
| } | ||||
|  | ||||
|  | ||||
| %% point | ||||
| % counter | ||||
| \newcounter{pointcount} | ||||
| \def\point{ | ||||
|   \stepcounter{pointcount} | ||||
|   \setcounter{subpointcount}{0} | ||||
|   % hyperref anchor (only if the class is 'ian') | ||||
|   \ifdefined\ifianclass | ||||
|     \hrefanchor | ||||
|     % define tag (for \label) | ||||
|     \xdef\tag{\arabic{pointcount}} | ||||
|   \fi | ||||
|   % header | ||||
|   \indent{\bf \arabic{pointcount}\ - } | ||||
| } | ||||
|  | ||||
| %% subpoint | ||||
| % counter | ||||
| \newcounter{subpointcount} | ||||
| \def\subpoint{ | ||||
|   \stepcounter{subpointcount} | ||||
|   \setcounter{subsubpointcount}0 | ||||
|   % hyperref anchor (only if the class is 'ian') | ||||
|   \ifdefined\ifianclass | ||||
|     \hrefanchor | ||||
|     % define tag (for \label) | ||||
|     \xdef\tag{\arabic{pointcount}-\arabic{subpointcount}} | ||||
|   \fi | ||||
|   % header | ||||
|   \indent\hskip.5cm{\bf \arabic{pointcount}-\arabic{subpointcount}\ - } | ||||
| } | ||||
|  | ||||
| %% subsubpoint | ||||
| % counter | ||||
| \newcounter{subsubpointcount} | ||||
| \def\subsubpoint{ | ||||
|   \stepcounter{subsubpointcount} | ||||
|   % hyperref anchor (only if the class is 'ian') | ||||
|   \ifdefined\ifianclass | ||||
|     \hrefanchor | ||||
|     % define tag (for \label) | ||||
|     \xdef\tag{\arabic{pointcount}-\arabic{subpointcount}-\arabic{subsubpointcount}} | ||||
|   \fi | ||||
|   \indent\hskip1cm{\bf | ||||
| \arabic{pointcount}-\arabic{subpointcount}-\arabic{subsubpointcount}\ - } | ||||
| } | ||||
|  | ||||
|  | ||||
| %% reset point counters | ||||
| \def\resetpointcounter{ | ||||
|   \setcounter{pointcount}{0} | ||||
|   \setcounter{subpointcount}{0} | ||||
|   \setcounter{subsubpointcount}{0} | ||||
| } | ||||
|  | ||||
|  | ||||
|  | ||||
| %% end | ||||
| \point@defaultoptions | ||||
| \endinput | ||||
		Reference in New Issue
	
	Block a user