Added labels to some equations
This commit is contained in:
parent
06e19c0db2
commit
0f4a4b8702
@ -227,7 +227,7 @@ The strategy of the proof is very similar to the one of \cite{DG13}, in which a
|
||||
probability in the big parameter $\rho k^{2+\alpha}$. Once this is proved, the rest of the proof follows closely the one in \cite{DG13} and, therefore, we will not spell out all the details of the proofs, and, instead, refer the reader to~\cite{DG13} in which very similar arguments are expounded.
|
||||
|
||||
As far as we know, our result is the first rigorous one for the onset of a nematic-like phase in systems of finite-size particles, with finite-range interactions, in the three dimensional
|
||||
continuum. For previous results, see \cite{AZ82,BKL84,HL79,IVZ06,Ru71,Za96}. We refer to the introduction of \cite{DG13} for a thorough, comparative, discussion of previous results. See also \cite{JL17} for a recent proof of the existence of nematic-like order in a monomer-dimer system with attractive interactions.
|
||||
continuum. For previous results, see \cite{AZ82,BKL84,HL79,IVZ06,Ru71,Za96}. We refer to the introduction of \cite{DG13} for a thorough, comparative, discussion of previous results. See also \cite{JL17c} for a recent proof of the existence of nematic-like order in a monomer-dimer system with attractive interactions.
|
||||
|
||||
Our inability to rigorously control the bi-axial nematic phase, as well as the optimal range of densities where uni-axial nematic is expected, is related to the highly anisotropic
|
||||
shape of the excluded regions created by the hard core interaction around any given plate. For instance, consider the range of densities between $k^{-2}$ and $k^{-1-\alpha}$, where
|
||||
@ -253,8 +253,8 @@ if $R_p\cap X\neq\emptyset$; $p$ is said to be {\it contained} in $X$ if $R_p\su
|
||||
\end{equation}
|
||||
where $\int_{\omega_\Lambda} dp$ is a shorthand for $\int_\Lambda dx\sum_{o\in\mathcal O}$, and
|
||||
\begin{equation}
|
||||
\varphi(p_1,\ldots p_n)=\prod_{i<j}\varphi(p_i,p_j),\qquad \varphi(p,p')=\begin{cases}1\ {\rm if}\ p\cap p'= \emptyset,\\
|
||||
0\ {\rm if}\ p\cap p'\neq \emptyset.\end{cases}.
|
||||
\varphi(p_1,\ldots p_n)=\prod_{i<j}\varphi(p_i,p_j),\qquad \varphi(p,p')=\left\{\begin{array}{>\displaystyle l}1\ {\rm if}\ p\cap p'= \emptyset,\\
|
||||
0\ {\rm if}\ p\cap p'\neq \emptyset.\end{array}\right.
|
||||
\end{equation}
|
||||
As we shall see below, see the first remark after Theorem~\ref{theorem:nematic},
|
||||
fixing the activity is equivalent to fixing the densities, at least in the range of densities we are interested in.
|
||||
@ -440,9 +440,9 @@ The Mayer expansion allows us to estimate the partition function of uniformly ma
|
||||
We split the block $\Delta$ into smaller $k^\alpha/2\times k^\alpha/2\times k^\alpha/2$ cubes, which we call {\it pebbles}. Because of the hard core interaction between plates,
|
||||
each pebble may only contain plates of a single type. Since $zk^{3\alpha }\gg 1$ each pebble $\delta$ still contains many plates, and the
|
||||
corresponding partition function can be evaluated by a Mayer expansion: for $q=1,2,3$ we have by~(\ref{mayer1}),
|
||||
\[
|
||||
\begin{equation}
|
||||
Z^q(\delta):=\int_{\Omega^q_\delta}dP\ \varphi(P)z^{|P|}=e^{\frac14zk^{3\alpha}(1+O(zk^{2}))}
|
||||
\]
|
||||
\end{equation}
|
||||
where we used the fact that the volume of the pebble is $|\delta|=k^{3\alpha }/8$.
|
||||
|
||||
Given a configuration of plates in $\Delta$, we color each pebble according to the following.
|
||||
@ -541,7 +541,8 @@ terms in the sum over $\underline\Delta^{(t)}$ and $\underline\delta$: in fact,
|
||||
most a factor $3^{N'}$, where $N'$ is the number of connected components of $\Delta^{(t)}$, and $3$ is the number of `colors' (that is, $1,2$ or $3$) that we can attach to
|
||||
each connected component. As observed above, $N'\le 6N$, so that the constant $C$ in (\ref{eq.3.13}) is smaller than $3^6$.
|
||||
From (\ref{eq.3.13}) we immediately get:
|
||||
\begin{equation}\begin{array}{>\displaystyle r>\displaystyle c>\displaystyle l}
|
||||
\begin{equation}
|
||||
\begin{array}{>\displaystyle r>\displaystyle c>\displaystyle l}
|
||||
\frac{Z^{\ge2}(\Delta)}{Z^q(\Delta)}
|
||||
& \le& e^{O(zk^3zk^2)} e^{-\frac1{32} k^{2(1-\alpha)}\cdot zk^{3\alpha}(1+O(zk^2))}
|
||||
\sum_{N=0}^{k^{3(1-\alpha)}}
|
||||
@ -553,7 +554,9 @@ From (\ref{eq.3.13}) we immediately get:
|
||||
\left(
|
||||
1+O(zk^{3-\alpha})+O(z^{-1}k^{1-4\alpha}e^{-\frac1{17}zk^{3\alpha}})\right),
|
||||
\right)
|
||||
\end{array}\end{equation}
|
||||
\end{array}
|
||||
\label{ineq_twodir_inproof}
|
||||
\end{equation}
|
||||
where the exponent $\frac1{17}$ in the last line may be replaced by any exponent smaller than $\frac1{16}$, for $zk^2$ sufficiently small.
|
||||
The last term can be bounded as follows $z^{-1}k^{1-4\alpha}e^{-\frac1{17}zk^{3\alpha}}=
|
||||
\frac{1}{zk^{3\alpha }}k^{1-\alpha } e^{-\frac1{17}zk^{3\alpha}}\ll k^{1-\alpha } e^{-\frac1{17}zk^{3\alpha}}.$
|
||||
@ -804,9 +807,12 @@ one of the plates in the contour (in this case we may have $|P|=1$). \medskip
|
||||
d\tilde P\ \varphi (\tilde P\cup P)z^{|\tilde P|},\end{equation}
|
||||
where $\partial A=\cup_{\xi\in A': d_\infty'(\xi,({\rm Ext}A)')\le 8}\Delta_\xi$ is the layer of blocks that are uniformly magnetized by the boundary conditions, and $A^\circ=A\setminus \partial A$. On the other hand,
|
||||
this expression is equivalent to
|
||||
\begin{equation}Z^{(\gamma)}(A|m)=\int_{\Omega^m_{\partial A}\setminus V_m(P_\gamma)}
|
||||
\begin{equation}
|
||||
Z^{(\gamma)}(A|m)=\int_{\Omega^m_{\partial A}\setminus V_m(P_\gamma)}
|
||||
dP\ \varphi (P)z^{|P|}\int_{\Omega_{A^{\circ}}}
|
||||
d\tilde P\ \varphi (\tilde P\cup P)z^{|\tilde P|}=: Z(A\setminus V_m(P_\gamma)\,|\,m),\end{equation}
|
||||
d\tilde P\ \varphi (\tilde P\cup P)z^{|\tilde P|}=: Z(A\setminus V_m(P_\gamma)\,|\,m),
|
||||
\label{Z_with_g}
|
||||
\end{equation}
|
||||
where $V_m(P_\gamma)$ is the excluded volume created by the plates in $P_\gamma$ on those in $P$. Note that $A\setminus V_m(P_\gamma)$ is an element of $\mathfrak{Int}'$, where
|
||||
\begin{equation} \mathfrak{Int}':=\Bigg\{A\setminus V:\ A\in\mathfrak{Int}\ {\rm and}\ V\subset \mathbb R^3\ {\rm such}\ {\rm that}\ V\subset\hskip-.5truecm \bigcup\limits_{\displaystyle\mathop{\scriptstyle xi\in A':}_{ d_\infty'(\xi,({\rm Ext}A)')\le 2}}
|
||||
\hskip-.5truecm\Delta_\xi\Bigg\}.\label{int'}\end{equation}
|
||||
@ -876,11 +882,12 @@ are $D$-connected with at least two contours in $\partial$.
|
||||
|
||||
\indent The proof of this lemma is fairly straightforward, and virtually identical to~\cite[Lemma~2]{DG13}.
|
||||
The key identity is
|
||||
\[
|
||||
e^{W^{(\Lambda )} (\partial)} = e^{\sum_{n\geq 2} \frac{(-1)^{n}}{n!} \sum^*_{\gamma_1,\cdots,\gamma_n\in\partial}
|
||||
\int_{\Omega^q_\Lambda}dP\ \varphi^T(P)z^{|P|}F_{\gamma_1}(P)\cdots F_{\gamma_n}(P)}=
|
||||
\prod_{Y\in \mathfrak B^{T}(\Lambda)} \left[ (e^{ \mathcal F_\partial(Y)} -1)+1\right].
|
||||
\]
|
||||
\begin{equation}
|
||||
e^{W^{(\Lambda )} (\partial)} = e^{\sum_{n\geq 2} \frac{(-1)^{n}}{n!} \sum^*_{\gamma_1,\cdots,\gamma_n\in\partial}
|
||||
\int_{\Omega^q_\Lambda}dP\ \varphi^T(P)z^{|P|}F_{\gamma_1}(P)\cdots F_{\gamma_n}(P)}=
|
||||
\prod_{Y\in \mathfrak B^{T}(\Lambda)} \left[ (e^{ \mathcal F_\partial(Y)} -1)+1\right].
|
||||
\label{mayer_id}
|
||||
\end{equation}
|
||||
The only real difference is that the sets $Y_i$ cover all the plates responsible for the interaction between contours, whereas in~\cite{DG13}, only the extremal blocks are kept (in~\cite{DG13}, the analog of the sets $Y_i$ are
|
||||
denoted by $\overline Y_i$). The details are left to the reader.
|
||||
|
||||
@ -1003,29 +1010,32 @@ it must contain at least $1+c_0|Y'|$ plates, for a suitable constant $c_0$, whic
|
||||
dist is the Euclidean distance.
|
||||
Therefore, letting: $l_Y:=1+\max(2,c_0|Y'|)$, $N$ be the number of contours in $\partial$ that are $D$-connected to the set $Y$,
|
||||
$\Delta_{\xi_1}$ be the `first' block of $Y$ (with respect to any given order of its blocks) and $S_Y$ the union of the sampling cubes intersecting $\Delta_{\xi_1}$,
|
||||
\begin{equation}\begin{array}{>\displaystyle r@{\ }>\displaystyle l}
|
||||
|\mathcal F_\partial(Y)|&\le
|
||||
\sum_{n=2}^{N}\frac{1}{n!}\sum_{\gamma_1,\cdots,\gamma_n\subset\partial}^*\int_{\Omega^{\ge l_Y,q}_\Lambda}dP\ z^{|P|}|\varphi^T(P)|\mathds{1}(p_1\ {\rm belongs}\ {\rm to}\ S_Y)
|
||||
\mathds 1_{\mathrm{dist}(Y,X_0)=0}
|
||||
\label{boundeF}\\
|
||||
& \leq 2^{N} zk^{3} (Czk^2)^{\max(2,c_0|Y'|)}\mathds 1_{\mathrm{dist}(Y,X_0)=0} \leq
|
||||
zk^3(C'zk^2)^{\max(2, c_0|Y'|)}\mathds 1_{\mathrm{dist}(Y,X_0)=0}
|
||||
\end{array}\end{equation}
|
||||
\begin{equation}
|
||||
\begin{array}{>\displaystyle r@{\ }>\displaystyle l}
|
||||
|\mathcal F_\partial(Y)|&\le
|
||||
\sum_{n=2}^{N}\frac{1}{n!}\sum_{\gamma_1,\cdots,\gamma_n\subset\partial}^*\int_{\Omega^{\ge l_Y,q}_\Lambda}dP\ z^{|P|}|\varphi^T(P)|\mathds{1}(p_1\ {\rm belongs}\ {\rm to}\ S_Y)
|
||||
\mathds 1_{\mathrm{dist}(Y,X_0)=0}
|
||||
\\
|
||||
& \leq 2^{N} zk^{3} (Czk^2)^{\max(2,c_0|Y'|)}\mathds 1_{\mathrm{dist}(Y,X_0)=0} \leq
|
||||
zk^3(C'zk^2)^{\max(2, c_0|Y'|)}\mathds 1_{\mathrm{dist}(Y,X_0)=0}
|
||||
\end{array}
|
||||
\label{boundeF}
|
||||
\end{equation}
|
||||
for some constants $C,C'>0$, where we used (\ref{eqcvce_plate}) and, in the final bound, we used $N\leq |Y'|$.
|
||||
Moreover we have
|
||||
\[
|
||||
\begin{equation}
|
||||
\prod_{j=1}^p\left |e^{\mathcal F_\partial(Y_j)}-1\right | \leq e^{\sum_{j=1}^{p} |\mathcal F_\partial(Y_j) | } \prod_{j=1}^p |\mathcal F_\partial(Y_j) |,
|
||||
\]
|
||||
\end{equation}
|
||||
where
|
||||
\[
|
||||
\begin{equation}
|
||||
\sum_{j=1}^{p} |\mathcal F_\partial(Y_j) |\leq \sum_{\displaystyle\mathop{\scriptstyle Y\in\mathfrak B^{T}(X_{1})}_{\mathrm{dist}(Y,X_0)=0}} |\mathcal F_\partial(Y) |
|
||||
\leq C'' zk^3(zk^2)^2|X_0'|
|
||||
\]
|
||||
\end{equation}
|
||||
and, using $\sum_{j}|Y_{j}'|\geq |X_{1}'|,$
|
||||
\[
|
||||
\begin{equation}
|
||||
\prod_{j=1}^p |\mathcal F_\partial(Y_j) |\leq (zk^2)^{\frac{c_0}2|X_1'|}
|
||||
\prod_{j=1}^p |\mathcal F_\partial(Y_j) | (zk^2)^{-\frac{1}{2}\max(2,c_0|Y'_{j}|)}
|
||||
\]
|
||||
\end{equation}
|
||||
Inserting these estimates in the sum over $p$
|
||||
\begin{equation}\begin{array}{>\displaystyle c}
|
||||
\sum_{p\ge1}\frac{1}{p!}\sum_{\displaystyle\mathop{\scriptstyle Y_1,\cdots,Y_p\subset\mathfrak B^T(X)}_{Y_1\cup\cdots\cup Y_p=X_1}}^* \prod_{j=1}^p |\mathcal F_\partial(Y_j) | (zk^2)^{-\frac{1}{2}\max(2,c_0|Y'_{j}|)} \\
|
||||
@ -1163,6 +1173,7 @@ We also let $\mathfrak N_\gamma$ be the set of blocks in $\mathcal P$ that are n
|
||||
\left(\prod_{n\in\mathfrak N_\gamma}\frac{Z^{\sigma_n}(n)}{Z^q(n)}\right)
|
||||
e^{O(zk^3zk^2)|\Gamma'_\gamma|}
|
||||
\end{largearray}
|
||||
\label{ineqF1}
|
||||
\end{equation}
|
||||
where the $2$ in the first factor in the right side is due to the activity associated with spin 0, see (\ref{eq:2.8}), and the factor $e^{O(zk^3zk^2)|\Gamma'_\gamma|}$ comes from splitting $Z^q$ into blocks and dipoles, as per~(\ref{mayer1}). We now use Lemma~\ref{lemma:twodircubes} and Corollary~\ref{corollary:twodircubes},
|
||||
and note that $Z^{\sigma_n}(n)=Z^q(n)$, thus getting
|
||||
@ -1189,10 +1200,11 @@ hold also in this case with the natural modifications, mostly of notational natu
|
||||
\bigskip
|
||||
|
||||
\indent We first prove the estimate on the 1-point function, (\ref{dens}). Let $p_0=(x,m_i)$, with $x\in\mathbb R^3$ and $m_i\in\{1_a,1_b,2_a,2_b,3_a,3_b\}$. Recall the definition of the 1-point correlation function $\rho_1^{(q,\Lambda)}(p_0)$ in the state with $q$ boundary conditions, given in (\ref{eq:2.11}). Using (\ref{eq:generating}), we can write it as
|
||||
\begin{equation}
|
||||
\rho_1^{(q,\Lambda)} (p_0) =z\left.\frac{\delta}{\delta\tilde z(p_0)}\log Z(\Lambda|q)\right|_{\tilde z(p)\equiv z}=
|
||||
z\left.\frac{\delta}{\delta\tilde z(p_0)}\log Z^q(\Lambda)\right|_{\tilde z(p)\equiv z} +
|
||||
z\left.\frac{\delta}{\delta\tilde z(p_0)}\log \frac{Z(\Lambda|q)}{Z^{q} (\Lambda )}\right|_{\tilde z(p)\equiv z}
|
||||
\begin{equation}
|
||||
\rho_1^{(q,\Lambda)} (p_0) =z\left.\frac{\delta}{\delta\tilde z(p_0)}\log Z(\Lambda|q)\right|_{\tilde z(p)\equiv z}=
|
||||
z\left.\frac{\delta}{\delta\tilde z(p_0)}\log Z^q(\Lambda)\right|_{\tilde z(p)\equiv z} +
|
||||
z\left.\frac{\delta}{\delta\tilde z(p_0)}\log \frac{Z(\Lambda|q)}{Z^{q} (\Lambda )}\right|_{\tilde z(p)\equiv z}
|
||||
\label{rho1_inproof}
|
||||
\end{equation}
|
||||
The Mayer expansion of the plate model implies that
|
||||
\begin{equation}\label{eq:derivlnZ}
|
||||
@ -1217,12 +1229,14 @@ If $\bar A$ is so small that $A$ cannot contain any contours, then
|
||||
$Z(A|q)=Z^{q} (A)$ and (\ref{bound}) is trivially true.
|
||||
Assume now by induction that (\ref{bound}) holds for all $a\in\mathfrak{Int}'$ such that $|\bar a|< |\bar A|$, and let us prove (\ref{bound}).
|
||||
By the analogue of Theorem~\ref{theorem:cluster} with $\Lambda$ replaced by $A\in{\mathfrak{Int}'}$ and plate-dependent activities,
|
||||
\begin{equation}\begin{array}{>\displaystyle r>\displaystyle c>\displaystyle l}
|
||||
&& z\left.\frac{\delta}{\delta\tilde z(p_0)}\log \frac{Z(A|q)}{Z^{q} (A)}\right|_{\tilde z(p)\equiv z} = \label{eq:6.4}\\
|
||||
&&\qquad =\sum_{n\ge 0}\frac1{n!}\sum_{X_0,\ldots, X_n\in \mathfrak{B}^T(\bar A)}\phi^T(X_0,\ldots,X_n)
|
||||
z\left.\frac{\delta}{\delta\tilde z(p_0)}K_q^{(A)}(X_0)\right|_{\tilde z(p)\equiv z}\prod_{i=1}^nK_q^{(A)}(X_i).
|
||||
|
||||
\end{array}\end{equation}
|
||||
\begin{equation}
|
||||
\begin{array}{>\displaystyle r>\displaystyle c>\displaystyle l}
|
||||
&& z\left.\frac{\delta}{\delta\tilde z(p_0)}\log \frac{Z(A|q)}{Z^{q} (A)}\right|_{\tilde z(p)\equiv z} = \\
|
||||
&&\qquad =\sum_{n\ge 0}\frac1{n!}\sum_{X_0,\ldots, X_n\in \mathfrak{B}^T(\bar A)}\phi^T(X_0,\ldots,X_n)
|
||||
z\left.\frac{\delta}{\delta\tilde z(p_0)}K_q^{(A)}(X_0)\right|_{\tilde z(p)\equiv z}\prod_{i=1}^nK_q^{(A)}(X_i).
|
||||
\end{array}
|
||||
\label{eq:6.4}
|
||||
\end{equation}
|
||||
We claim that $\left.\frac{\delta}{\delta\tilde z(p_0)}K_q^{(A)}(X)\right|_{\tilde z(p)\equiv z}$ admits a bound similar to the one for $K_q^{(A)}(X)$, namely
|
||||
\begin{equation} \big|\left.\frac{\delta}{\delta\tilde z(p_0)}K_q^{(A)}(X)\right|_{\tilde z(p)\equiv z}\big|\le \bar\epsilon^{\, c|X'|}e^{-m\,{\rm dist}'(X',\xi_{x})},\label{eq:6.5}\end{equation}
|
||||
for some constants $c,m>0$, where $\xi_x$ is the center of the block containing $x$. Inserting (\ref{eq:6.5}) in (\ref{eq:6.4}), together with $|K_q^{(A)}(X)|\le \bar\epsilon^{\,|X'|}$, the result follows. We are left with proving
|
120
libs/symbols.sty
120
libs/symbols.sty
@ -1,120 +0,0 @@
|
||||
\let\a=\alpha
|
||||
\let\b=\beta
|
||||
\let\g=\gamma
|
||||
\let\d=\delta
|
||||
\let\e=\varepsilon
|
||||
\let\z=\zeta
|
||||
\let\h=\eta
|
||||
\let\th=\theta
|
||||
\let\k=\kappa
|
||||
\let\l=\lambda
|
||||
\let\m=\mu
|
||||
\let\n=\nu
|
||||
\let\x=\xi
|
||||
\let\p=\pi
|
||||
\let\r=\rho
|
||||
\let\s=\sigma
|
||||
\let\t=\tau
|
||||
\let\f=\varphi
|
||||
\let\ph=\varphi
|
||||
\let\c=\chi
|
||||
\let\ps=\psi
|
||||
\let\y=\upsilon
|
||||
\let\o=\omega
|
||||
\let\si=\varsigma
|
||||
\let\G=\Gamma
|
||||
\let\D=\Delta
|
||||
\let\Th=\Theta
|
||||
\let\L=\Lambda
|
||||
\let\X=\Xi
|
||||
\let\P=\Pi
|
||||
\let\Si=\Sigma
|
||||
\let\F=\Phi
|
||||
\let\Ps=\Psi
|
||||
\let\O=\Omega
|
||||
\let\Y=\Upsilon
|
||||
|
||||
\def\AAA{\mathcal A}
|
||||
\def\XXX{\mathcal X}
|
||||
\def\PPP{\mathcal P}
|
||||
\def\HHH{\mathcal H}
|
||||
\def\BBB{\mathcal B}
|
||||
\def\III{\mathcal I}
|
||||
\def\EE{\mathcal E}
|
||||
\def\MM{\mathcal M}
|
||||
\def\VV{\mathcal V}
|
||||
\def\CC{\mathcal C}
|
||||
\def\FF{\mathcal F}
|
||||
\def\WW{\mathcal W}
|
||||
\def\TT{\mathcal T}
|
||||
\def\NN{\mathcal N}
|
||||
\def\RR{\mathcal R}
|
||||
\def\LL{\mathcal L}
|
||||
\def\JJ{\mathcal J}
|
||||
\def\OO{\mathcal O}
|
||||
\def\DD{\mathcal D}
|
||||
\def\GG{\mathcal G}
|
||||
\def\SS{\mathcal S}
|
||||
\def\KK{\mathcal K}
|
||||
\def\UU{\mathcal U}
|
||||
\def\QQ{\mathcal Q}
|
||||
|
||||
\def\aaa{\mathbf a}
|
||||
\def\bbb{\mathbf b}
|
||||
\def\hhh{\mathbf h}
|
||||
\def\hh{\mathbf h}
|
||||
\def\HH{\mathbf H}
|
||||
\def\AA{\mathbf A}
|
||||
\def\qq{\mathbf q}
|
||||
\def\BB{\mathbf B}
|
||||
\def\YY{\mathbf Y}
|
||||
\def\XX{\mathbf X}
|
||||
\def\PP{\mathbf P}
|
||||
\def\pp{\mathbf p}
|
||||
\def\vv{\mathbf v}
|
||||
\def\xx{\mathbf x}
|
||||
\def\yy{\mathbf y}
|
||||
\def\zz{\mathbf z}
|
||||
\def\II{\mathbf I}
|
||||
\def\ii{\mathbf i}
|
||||
\def\jj{\mathbf j}
|
||||
\def\kk{\mathbf k}
|
||||
\def\bS{\mathbf S}
|
||||
\def\mm{\mathbf m}
|
||||
\def\Vn{\mathbf n}
|
||||
|
||||
\def\ch{\chi}
|
||||
\def\Exp{\mathrm exp}
|
||||
\def\Log{\mathrm log}
|
||||
\def\Ft{\varphi}
|
||||
\def\E{H}
|
||||
|
||||
\def\RRR{\mathbb R}
|
||||
\def\ZZZ{\mathbb Z}
|
||||
|
||||
\def\ss{\underline{\sigma}}
|
||||
|
||||
\let\==\equiv
|
||||
\let\io=\infty
|
||||
\let\0=\noindent
|
||||
\def\media#1{\left<#1\right>}
|
||||
\let\dpr=\partial
|
||||
\def\sign{\mathrm{sign}}
|
||||
\def\const{\mathrm{const}}
|
||||
\def\wt{\widetilde}
|
||||
\def\wh{\widehat}
|
||||
\def\Val{\mathrm{Val}}
|
||||
\let\ul=\underline
|
||||
\def\lis{\overline}
|
||||
\let\V=\mathbf
|
||||
\def\be{\begin{equation}}
|
||||
\def\ee{\end{equation}}
|
||||
\def\bea{\begin{eqnarray}}
|
||||
\def\eea{\end{eqnarray}}
|
||||
\def\nn{\nonumber}
|
||||
|
||||
\def\supp{\mathrm{supp}}
|
||||
\def\dist{\mathrm{dist}}
|
||||
\def\Ext{\mathrm{Ext}}
|
||||
\def\Int{\mathrm{Int}}
|
||||
\def\diam{\mathrm{diam}}
|
Loading…
Reference in New Issue
Block a user