Added labels to some equations
This commit is contained in:
		| @@ -227,7 +227,7 @@ The strategy of the proof is very similar to the one of \cite{DG13}, in which a | ||||
| probability in the big parameter $\rho k^{2+\alpha}$. Once this is proved, the rest of the proof follows closely the one in \cite{DG13} and, therefore, we will not spell out all the details of the proofs, and, instead, refer the reader to~\cite{DG13} in which very similar arguments are expounded.  | ||||
| 
 | ||||
| As far as we know, our result is the first rigorous one for the onset of a nematic-like phase in systems of finite-size particles, with finite-range interactions, in the three dimensional  | ||||
| continuum. For previous results, see \cite{AZ82,BKL84,HL79,IVZ06,Ru71,Za96}. We refer to the introduction of \cite{DG13} for a thorough, comparative, discussion of previous results. See also \cite{JL17} for a recent proof of the existence of nematic-like order in a monomer-dimer system with attractive interactions.  | ||||
| continuum. For previous results, see \cite{AZ82,BKL84,HL79,IVZ06,Ru71,Za96}. We refer to the introduction of \cite{DG13} for a thorough, comparative, discussion of previous results. See also \cite{JL17c} for a recent proof of the existence of nematic-like order in a monomer-dimer system with attractive interactions.  | ||||
| 
 | ||||
| Our inability to rigorously control the bi-axial nematic phase, as well as the optimal range of densities where uni-axial nematic is expected, is related to the highly anisotropic  | ||||
| shape of the excluded regions created by the hard core interaction around any given plate. For instance, consider the range of densities between $k^{-2}$ and $k^{-1-\alpha}$, where | ||||
| @@ -253,8 +253,8 @@ if $R_p\cap X\neq\emptyset$; $p$ is said to be {\it contained} in $X$ if $R_p\su | ||||
| \end{equation} | ||||
| where $\int_{\omega_\Lambda} dp$ is a shorthand for $\int_\Lambda dx\sum_{o\in\mathcal O}$, and  | ||||
| \begin{equation} | ||||
|   \varphi(p_1,\ldots p_n)=\prod_{i<j}\varphi(p_i,p_j),\qquad \varphi(p,p')=\begin{cases}1\ {\rm if}\  p\cap p'= \emptyset,\\ | ||||
| 0\ {\rm if}\  p\cap p'\neq \emptyset.\end{cases}. | ||||
|   \varphi(p_1,\ldots p_n)=\prod_{i<j}\varphi(p_i,p_j),\qquad \varphi(p,p')=\left\{\begin{array}{>\displaystyle l}1\ {\rm if}\  p\cap p'= \emptyset,\\ | ||||
| 0\ {\rm if}\  p\cap p'\neq \emptyset.\end{array}\right. | ||||
| \end{equation} | ||||
| As we shall see below, see the first remark after Theorem~\ref{theorem:nematic},  | ||||
| fixing the activity is equivalent to fixing the densities, at least in the range of densities we are interested in.  | ||||
| @@ -440,9 +440,9 @@ The Mayer expansion allows us to estimate the partition function of uniformly ma | ||||
| We split the block $\Delta$ into smaller $k^\alpha/2\times k^\alpha/2\times k^\alpha/2$ cubes, which we call {\it pebbles}. Because of the hard core interaction between plates, | ||||
| each pebble may only contain plates of a single type. Since $zk^{3\alpha }\gg 1$ each pebble $\delta$ still contains many plates, and the | ||||
| corresponding partition function can be evaluated by a Mayer expansion: for  $q=1,2,3$ we have by~(\ref{mayer1}), | ||||
| \[ | ||||
| \begin{equation} | ||||
|   Z^q(\delta):=\int_{\Omega^q_\delta}dP\ \varphi(P)z^{|P|}=e^{\frac14zk^{3\alpha}(1+O(zk^{2}))}  | ||||
| \] | ||||
| \end{equation} | ||||
| where we used the fact that the volume of the pebble is $|\delta|=k^{3\alpha }/8$. | ||||
| 
 | ||||
| Given a configuration of plates in $\Delta$, we color each pebble according to the following. | ||||
| @@ -541,7 +541,8 @@ terms in the sum over $\underline\Delta^{(t)}$ and $\underline\delta$: in fact, | ||||
| most a factor $3^{N'}$, where $N'$ is the number of connected components of $\Delta^{(t)}$, and $3$ is the number of `colors' (that is, $1,2$ or $3$) that we can attach to  | ||||
| each connected component. As observed above, $N'\le 6N$, so that the constant $C$ in (\ref{eq.3.13}) is smaller than $3^6$.  | ||||
| From (\ref{eq.3.13}) we immediately get: | ||||
|  \begin{equation}\begin{array}{>\displaystyle r>\displaystyle c>\displaystyle l}    | ||||
| \begin{equation} | ||||
|   \begin{array}{>\displaystyle r>\displaystyle c>\displaystyle l}    | ||||
|     \frac{Z^{\ge2}(\Delta)}{Z^q(\Delta)} | ||||
|   &  \le&     e^{O(zk^3zk^2)}  e^{-\frac1{32} k^{2(1-\alpha)}\cdot zk^{3\alpha}(1+O(zk^2))} | ||||
|     \sum_{N=0}^{k^{3(1-\alpha)}} | ||||
| @@ -553,7 +554,9 @@ From (\ref{eq.3.13}) we immediately get: | ||||
|       \left( | ||||
| 	1+O(zk^{3-\alpha})+O(z^{-1}k^{1-4\alpha}e^{-\frac1{17}zk^{3\alpha}})\right), | ||||
|     \right) | ||||
| \end{array}\end{equation} | ||||
|   \end{array} | ||||
|   \label{ineq_twodir_inproof} | ||||
| \end{equation} | ||||
| where the exponent $\frac1{17}$ in the last line may be replaced by any exponent smaller than $\frac1{16}$, for $zk^2$ sufficiently small.  | ||||
| The last term can be bounded as follows $z^{-1}k^{1-4\alpha}e^{-\frac1{17}zk^{3\alpha}}= | ||||
| \frac{1}{zk^{3\alpha }}k^{1-\alpha } e^{-\frac1{17}zk^{3\alpha}}\ll k^{1-\alpha } e^{-\frac1{17}zk^{3\alpha}}.$ | ||||
| @@ -804,9 +807,12 @@ one of the plates in the contour (in this case we may have $|P|=1$). \medskip | ||||
|   d\tilde P\ \varphi (\tilde P\cup P)z^{|\tilde P|},\end{equation} | ||||
| where $\partial A=\cup_{\xi\in A': d_\infty'(\xi,({\rm Ext}A)')\le 8}\Delta_\xi$ is the layer of blocks that are uniformly magnetized by the boundary conditions, and $A^\circ=A\setminus \partial A$. On the other hand,  | ||||
| this expression is equivalent to  | ||||
| \begin{equation}Z^{(\gamma)}(A|m)=\int_{\Omega^m_{\partial A}\setminus V_m(P_\gamma)}  | ||||
| \begin{equation} | ||||
|   Z^{(\gamma)}(A|m)=\int_{\Omega^m_{\partial A}\setminus V_m(P_\gamma)}  | ||||
|   dP\ \varphi (P)z^{|P|}\int_{\Omega_{A^{\circ}}}  | ||||
|   d\tilde P\ \varphi (\tilde P\cup P)z^{|\tilde P|}=: Z(A\setminus V_m(P_\gamma)\,|\,m),\end{equation} | ||||
|   d\tilde P\ \varphi (\tilde P\cup P)z^{|\tilde P|}=: Z(A\setminus V_m(P_\gamma)\,|\,m), | ||||
|   \label{Z_with_g} | ||||
| \end{equation} | ||||
| where $V_m(P_\gamma)$ is the excluded volume created by the plates in $P_\gamma$ on those in $P$. Note that $A\setminus V_m(P_\gamma)$ is an element of $\mathfrak{Int}'$, where | ||||
| \begin{equation} \mathfrak{Int}':=\Bigg\{A\setminus V:\ A\in\mathfrak{Int}\ {\rm and}\ V\subset \mathbb R^3\ {\rm such}\ {\rm that}\ V\subset\hskip-.5truecm \bigcup\limits_{\displaystyle\mathop{\scriptstyle xi\in A':}_{ d_\infty'(\xi,({\rm Ext}A)')\le 2}} | ||||
| \hskip-.5truecm\Delta_\xi\Bigg\}.\label{int'}\end{equation} | ||||
| @@ -876,11 +882,12 @@ are $D$-connected with at least two contours in $\partial$. | ||||
| 
 | ||||
| \indent The proof of this lemma is fairly straightforward, and virtually identical to~\cite[Lemma~2]{DG13}. | ||||
| The key identity is | ||||
| \[ | ||||
| e^{W^{(\Lambda )} (\partial)} = e^{\sum_{n\geq 2} \frac{(-1)^{n}}{n!} \sum^*_{\gamma_1,\cdots,\gamma_n\in\partial}  | ||||
| \int_{\Omega^q_\Lambda}dP\ \varphi^T(P)z^{|P|}F_{\gamma_1}(P)\cdots F_{\gamma_n}(P)}= | ||||
| \prod_{Y\in \mathfrak B^{T}(\Lambda)} \left[ (e^{ \mathcal F_\partial(Y)} -1)+1\right]. | ||||
| \] | ||||
| \begin{equation} | ||||
|   e^{W^{(\Lambda )} (\partial)} = e^{\sum_{n\geq 2} \frac{(-1)^{n}}{n!} \sum^*_{\gamma_1,\cdots,\gamma_n\in\partial}  | ||||
|   \int_{\Omega^q_\Lambda}dP\ \varphi^T(P)z^{|P|}F_{\gamma_1}(P)\cdots F_{\gamma_n}(P)}= | ||||
|   \prod_{Y\in \mathfrak B^{T}(\Lambda)} \left[ (e^{ \mathcal F_\partial(Y)} -1)+1\right]. | ||||
|   \label{mayer_id} | ||||
| \end{equation} | ||||
| The only real difference is that the sets $Y_i$ cover all the plates responsible for the interaction between contours, whereas in~\cite{DG13}, only the extremal blocks are kept (in~\cite{DG13}, the analog of the sets $Y_i$ are  | ||||
| denoted by $\overline Y_i$). The details are left to the reader.  | ||||
| 
 | ||||
| @@ -1003,29 +1010,32 @@ it must contain at least $1+c_0|Y'|$ plates, for a suitable constant $c_0$, whic | ||||
| dist is the Euclidean distance.  | ||||
| Therefore, letting: $l_Y:=1+\max(2,c_0|Y'|)$, $N$ be the number of contours in $\partial$ that are $D$-connected to the set $Y$, | ||||
| $\Delta_{\xi_1}$ be the `first' block of $Y$ (with respect to any given order of its blocks) and $S_Y$ the union of the sampling cubes intersecting $\Delta_{\xi_1}$,  | ||||
| \begin{equation}\begin{array}{>\displaystyle r@{\ }>\displaystyle l} | ||||
|  |\mathcal F_\partial(Y)|&\le  | ||||
|  \sum_{n=2}^{N}\frac{1}{n!}\sum_{\gamma_1,\cdots,\gamma_n\subset\partial}^*\int_{\Omega^{\ge l_Y,q}_\Lambda}dP\ z^{|P|}|\varphi^T(P)|\mathds{1}(p_1\ {\rm belongs}\ {\rm to}\ S_Y) | ||||
|  \mathds 1_{\mathrm{dist}(Y,X_0)=0} | ||||
| \label{boundeF}\\ | ||||
| & \leq 2^{N} zk^{3} (Czk^2)^{\max(2,c_0|Y'|)}\mathds 1_{\mathrm{dist}(Y,X_0)=0} \leq  | ||||
| zk^3(C'zk^2)^{\max(2, c_0|Y'|)}\mathds 1_{\mathrm{dist}(Y,X_0)=0} | ||||
| \end{array}\end{equation} | ||||
| \begin{equation} | ||||
|   \begin{array}{>\displaystyle r@{\ }>\displaystyle l} | ||||
|     |\mathcal F_\partial(Y)|&\le  | ||||
|     \sum_{n=2}^{N}\frac{1}{n!}\sum_{\gamma_1,\cdots,\gamma_n\subset\partial}^*\int_{\Omega^{\ge l_Y,q}_\Lambda}dP\ z^{|P|}|\varphi^T(P)|\mathds{1}(p_1\ {\rm belongs}\ {\rm to}\ S_Y) | ||||
|     \mathds 1_{\mathrm{dist}(Y,X_0)=0} | ||||
|     \\ | ||||
|     & \leq 2^{N} zk^{3} (Czk^2)^{\max(2,c_0|Y'|)}\mathds 1_{\mathrm{dist}(Y,X_0)=0} \leq  | ||||
|   zk^3(C'zk^2)^{\max(2, c_0|Y'|)}\mathds 1_{\mathrm{dist}(Y,X_0)=0} | ||||
|   \end{array} | ||||
|   \label{boundeF} | ||||
| \end{equation} | ||||
| for some constants $C,C'>0$, where we used (\ref{eqcvce_plate}) and, in the final bound, we used $N\leq |Y'|$. | ||||
| Moreover we have | ||||
| \[ | ||||
| \begin{equation} | ||||
| \prod_{j=1}^p\left |e^{\mathcal F_\partial(Y_j)}-1\right | \leq e^{\sum_{j=1}^{p}  |\mathcal F_\partial(Y_j) | } \prod_{j=1}^p |\mathcal F_\partial(Y_j) |, | ||||
| \] | ||||
| \end{equation} | ||||
| where | ||||
| \[ | ||||
| \begin{equation} | ||||
| \sum_{j=1}^{p}  |\mathcal F_\partial(Y_j) |\leq \sum_{\displaystyle\mathop{\scriptstyle Y\in\mathfrak B^{T}(X_{1})}_{\mathrm{dist}(Y,X_0)=0}} |\mathcal F_\partial(Y) | | ||||
| \leq  C'' zk^3(zk^2)^2|X_0'| | ||||
| \] | ||||
| \end{equation} | ||||
| and, using $\sum_{j}|Y_{j}'|\geq |X_{1}'|,$ | ||||
| \[ | ||||
| \begin{equation} | ||||
| \prod_{j=1}^p |\mathcal F_\partial(Y_j) |\leq  (zk^2)^{\frac{c_0}2|X_1'|} | ||||
| \prod_{j=1}^p  |\mathcal F_\partial(Y_j) | (zk^2)^{-\frac{1}{2}\max(2,c_0|Y'_{j}|)} | ||||
| \] | ||||
| \end{equation} | ||||
| Inserting these estimates in the sum over $p$ | ||||
| \begin{equation}\begin{array}{>\displaystyle c} | ||||
| \sum_{p\ge1}\frac{1}{p!}\sum_{\displaystyle\mathop{\scriptstyle Y_1,\cdots,Y_p\subset\mathfrak B^T(X)}_{Y_1\cup\cdots\cup Y_p=X_1}}^* \prod_{j=1}^p  |\mathcal F_\partial(Y_j) | (zk^2)^{-\frac{1}{2}\max(2,c_0|Y'_{j}|)} \\ | ||||
| @@ -1163,6 +1173,7 @@ We also let $\mathfrak N_\gamma$ be the set of blocks in $\mathcal P$ that are n | ||||
|     \left(\prod_{n\in\mathfrak N_\gamma}\frac{Z^{\sigma_n}(n)}{Z^q(n)}\right) | ||||
|     e^{O(zk^3zk^2)|\Gamma'_\gamma|} | ||||
|   \end{largearray} | ||||
|   \label{ineqF1} | ||||
| \end{equation} | ||||
| where the $2$ in  the first factor in the right side is due to the activity associated with spin 0, see (\ref{eq:2.8}), and the factor $e^{O(zk^3zk^2)|\Gamma'_\gamma|}$ comes from splitting $Z^q$ into blocks and dipoles, as per~(\ref{mayer1}). We now use Lemma~\ref{lemma:twodircubes} and Corollary~\ref{corollary:twodircubes},  | ||||
| and note that $Z^{\sigma_n}(n)=Z^q(n)$, thus getting  | ||||
| @@ -1189,10 +1200,11 @@ hold also in this case with the natural modifications, mostly of notational natu | ||||
| \bigskip | ||||
| 
 | ||||
| \indent We first prove the estimate on the 1-point function, (\ref{dens}). Let $p_0=(x,m_i)$, with $x\in\mathbb R^3$ and $m_i\in\{1_a,1_b,2_a,2_b,3_a,3_b\}$. Recall the definition of the 1-point correlation function $\rho_1^{(q,\Lambda)}(p_0)$ in the state with $q$ boundary conditions, given in (\ref{eq:2.11}). Using (\ref{eq:generating}), we can write it as | ||||
|  \begin{equation} | ||||
|    \rho_1^{(q,\Lambda)} (p_0) =z\left.\frac{\delta}{\delta\tilde z(p_0)}\log Z(\Lambda|q)\right|_{\tilde z(p)\equiv z}= | ||||
|     z\left.\frac{\delta}{\delta\tilde z(p_0)}\log Z^q(\Lambda)\right|_{\tilde z(p)\equiv z} + | ||||
|     z\left.\frac{\delta}{\delta\tilde z(p_0)}\log \frac{Z(\Lambda|q)}{Z^{q} (\Lambda )}\right|_{\tilde z(p)\equiv z} | ||||
| \begin{equation} | ||||
|   \rho_1^{(q,\Lambda)} (p_0) =z\left.\frac{\delta}{\delta\tilde z(p_0)}\log Z(\Lambda|q)\right|_{\tilde z(p)\equiv z}= | ||||
|   z\left.\frac{\delta}{\delta\tilde z(p_0)}\log Z^q(\Lambda)\right|_{\tilde z(p)\equiv z} + | ||||
|   z\left.\frac{\delta}{\delta\tilde z(p_0)}\log \frac{Z(\Lambda|q)}{Z^{q} (\Lambda )}\right|_{\tilde z(p)\equiv z} | ||||
|   \label{rho1_inproof} | ||||
| \end{equation} | ||||
|  The Mayer expansion of the plate model implies that | ||||
| \begin{equation}\label{eq:derivlnZ} | ||||
| @@ -1217,12 +1229,14 @@ If $\bar A$ is so small that $A$ cannot contain any contours, then | ||||
| $Z(A|q)=Z^{q} (A)$ and (\ref{bound}) is trivially true. | ||||
| Assume now by induction that  (\ref{bound}) holds for all $a\in\mathfrak{Int}'$ such that $|\bar a|< |\bar A|$, and let us prove (\ref{bound}).  | ||||
| By the analogue of Theorem~\ref{theorem:cluster} with $\Lambda$ replaced by $A\in{\mathfrak{Int}'}$ and plate-dependent activities, | ||||
| \begin{equation}\begin{array}{>\displaystyle r>\displaystyle c>\displaystyle l} | ||||
| &&   z\left.\frac{\delta}{\delta\tilde z(p_0)}\log \frac{Z(A|q)}{Z^{q} (A)}\right|_{\tilde z(p)\equiv z} = \label{eq:6.4}\\ | ||||
| &&\qquad =\sum_{n\ge 0}\frac1{n!}\sum_{X_0,\ldots, X_n\in \mathfrak{B}^T(\bar A)}\phi^T(X_0,\ldots,X_n) | ||||
|     z\left.\frac{\delta}{\delta\tilde z(p_0)}K_q^{(A)}(X_0)\right|_{\tilde z(p)\equiv z}\prod_{i=1}^nK_q^{(A)}(X_i). | ||||
|    | ||||
| \end{array}\end{equation} | ||||
| \begin{equation} | ||||
|   \begin{array}{>\displaystyle r>\displaystyle c>\displaystyle l} | ||||
|   &&   z\left.\frac{\delta}{\delta\tilde z(p_0)}\log \frac{Z(A|q)}{Z^{q} (A)}\right|_{\tilde z(p)\equiv z} = \\ | ||||
|   &&\qquad =\sum_{n\ge 0}\frac1{n!}\sum_{X_0,\ldots, X_n\in \mathfrak{B}^T(\bar A)}\phi^T(X_0,\ldots,X_n) | ||||
|       z\left.\frac{\delta}{\delta\tilde z(p_0)}K_q^{(A)}(X_0)\right|_{\tilde z(p)\equiv z}\prod_{i=1}^nK_q^{(A)}(X_i). | ||||
|   \end{array} | ||||
|   \label{eq:6.4} | ||||
| \end{equation} | ||||
| We claim that $\left.\frac{\delta}{\delta\tilde z(p_0)}K_q^{(A)}(X)\right|_{\tilde z(p)\equiv z}$ admits a bound similar to the one for $K_q^{(A)}(X)$, namely | ||||
| \begin{equation} \big|\left.\frac{\delta}{\delta\tilde z(p_0)}K_q^{(A)}(X)\right|_{\tilde z(p)\equiv z}\big|\le \bar\epsilon^{\, c|X'|}e^{-m\,{\rm dist}'(X',\xi_{x})},\label{eq:6.5}\end{equation} | ||||
| for some constants $c,m>0$, where $\xi_x$ is the center of the block containing $x$. Inserting (\ref{eq:6.5}) in (\ref{eq:6.4}), together with $|K_q^{(A)}(X)|\le \bar\epsilon^{\,|X'|}$, the result follows. We are left with proving  | ||||
							
								
								
									
										120
									
								
								libs/symbols.sty
									
									
									
									
									
								
							
							
						
						
									
										120
									
								
								libs/symbols.sty
									
									
									
									
									
								
							| @@ -1,120 +0,0 @@ | ||||
| \let\a=\alpha | ||||
| \let\b=\beta | ||||
| \let\g=\gamma | ||||
| \let\d=\delta | ||||
| \let\e=\varepsilon | ||||
| \let\z=\zeta | ||||
| \let\h=\eta | ||||
| \let\th=\theta | ||||
| \let\k=\kappa | ||||
| \let\l=\lambda | ||||
| \let\m=\mu | ||||
| \let\n=\nu | ||||
| \let\x=\xi | ||||
| \let\p=\pi | ||||
| \let\r=\rho | ||||
| \let\s=\sigma | ||||
| \let\t=\tau | ||||
| \let\f=\varphi | ||||
| \let\ph=\varphi | ||||
| \let\c=\chi | ||||
| \let\ps=\psi | ||||
| \let\y=\upsilon | ||||
| \let\o=\omega | ||||
| \let\si=\varsigma | ||||
| \let\G=\Gamma | ||||
| \let\D=\Delta | ||||
| \let\Th=\Theta | ||||
| \let\L=\Lambda | ||||
| \let\X=\Xi | ||||
| \let\P=\Pi | ||||
| \let\Si=\Sigma | ||||
| \let\F=\Phi | ||||
| \let\Ps=\Psi | ||||
| \let\O=\Omega | ||||
| \let\Y=\Upsilon | ||||
|  | ||||
| \def\AAA{\mathcal A} | ||||
| \def\XXX{\mathcal X} | ||||
| \def\PPP{\mathcal P} | ||||
| \def\HHH{\mathcal H} | ||||
| \def\BBB{\mathcal B} | ||||
| \def\III{\mathcal I} | ||||
| \def\EE{\mathcal E} | ||||
| \def\MM{\mathcal M} | ||||
| \def\VV{\mathcal V} | ||||
| \def\CC{\mathcal C} | ||||
| \def\FF{\mathcal F} | ||||
| \def\WW{\mathcal W} | ||||
| \def\TT{\mathcal T} | ||||
| \def\NN{\mathcal N} | ||||
| \def\RR{\mathcal R} | ||||
| \def\LL{\mathcal L} | ||||
| \def\JJ{\mathcal J} | ||||
| \def\OO{\mathcal O} | ||||
| \def\DD{\mathcal D} | ||||
| \def\GG{\mathcal G} | ||||
| \def\SS{\mathcal S} | ||||
| \def\KK{\mathcal K} | ||||
| \def\UU{\mathcal U} | ||||
| \def\QQ{\mathcal Q} | ||||
|  | ||||
| \def\aaa{\mathbf a} | ||||
| \def\bbb{\mathbf b} | ||||
| \def\hhh{\mathbf h} | ||||
| \def\hh{\mathbf h} | ||||
| \def\HH{\mathbf H} | ||||
| \def\AA{\mathbf A} | ||||
| \def\qq{\mathbf q} | ||||
| \def\BB{\mathbf B} | ||||
| \def\YY{\mathbf Y} | ||||
| \def\XX{\mathbf X} | ||||
| \def\PP{\mathbf P} | ||||
| \def\pp{\mathbf p} | ||||
| \def\vv{\mathbf v} | ||||
| \def\xx{\mathbf x} | ||||
| \def\yy{\mathbf y} | ||||
| \def\zz{\mathbf z} | ||||
| \def\II{\mathbf I} | ||||
| \def\ii{\mathbf i} | ||||
| \def\jj{\mathbf j} | ||||
| \def\kk{\mathbf k} | ||||
| \def\bS{\mathbf S} | ||||
| \def\mm{\mathbf m} | ||||
| \def\Vn{\mathbf n} | ||||
|  | ||||
| \def\ch{\chi} | ||||
| \def\Exp{\mathrm exp} | ||||
| \def\Log{\mathrm log} | ||||
| \def\Ft{\varphi} | ||||
| \def\E{H} | ||||
|  | ||||
| \def\RRR{\mathbb R} | ||||
| \def\ZZZ{\mathbb Z} | ||||
|  | ||||
| \def\ss{\underline{\sigma}} | ||||
|  | ||||
| \let\==\equiv | ||||
| \let\io=\infty  | ||||
| \let\0=\noindent | ||||
| \def\media#1{\left<#1\right>} | ||||
| \let\dpr=\partial | ||||
| \def\sign{\mathrm{sign}} | ||||
| \def\const{\mathrm{const}} | ||||
| \def\wt{\widetilde} | ||||
| \def\wh{\widehat} | ||||
| \def\Val{\mathrm{Val}} | ||||
| \let\ul=\underline | ||||
| \def\lis{\overline} | ||||
| \let\V=\mathbf | ||||
| \def\be{\begin{equation}} | ||||
| \def\ee{\end{equation}} | ||||
| \def\bea{\begin{eqnarray}} | ||||
| \def\eea{\end{eqnarray}} | ||||
| \def\nn{\nonumber} | ||||
|  | ||||
| \def\supp{\mathrm{supp}} | ||||
| \def\dist{\mathrm{dist}} | ||||
| \def\Ext{\mathrm{Ext}} | ||||
| \def\Int{\mathrm{Int}} | ||||
| \def\diam{\mathrm{diam}} | ||||
		Reference in New Issue
	
	Block a user