Add direction for magnetic field
This commit is contained in:
parent
0334c43102
commit
276335e730
@ -66,10 +66,11 @@ V_h=& -h \, \sum_{\alpha\in\uparrow,\downarrow}d^+_\alpha\sigma^3_{\alpha,\alpha
|
||||
\label{e1.1}\end{array}\end{equation}
|
||||
where $\lambda_0,h$ are the interaction and magnetic field strengths and
|
||||
\begin{enumerate}[\ \ (1)\ \ ]
|
||||
\item$c_\alpha^\pm(x),d^\pm_\alpha, \,\alpha=\uparrow,\downarrow$ are creation and annihilation operators corresponding respectively to electrons and the impurity
|
||||
\item$\sigma^j,\,j=1,2,3$, are the Pauli matrices
|
||||
\item$x$ is on the unit lattice and $-{L}/2$, ${L}/2$ are identified (periodic boundary)
|
||||
\item$\Delta f(x)= f(x+1)-2f(x)+f(x-1)$ is the discrete Laplacian.
|
||||
\item$c_\alpha^\pm(x),d^\pm_\alpha, \,\alpha=\uparrow,\downarrow$ are creation and annihilation operators corresponding respectively to electrons and the impurity,
|
||||
\item$\sigma^j,\,j=1,2,3$, are the Pauli matrices,
|
||||
\item$x$ is on the unit lattice and $-{L}/2$, ${L}/2$ are identified (periodic boundary),
|
||||
\item$\Delta f(x)= f(x+1)-2f(x)+f(x-1)$ is the discrete Laplacian,
|
||||
\item$\bm\omega=(\bm\omega_1,\bm\omega_2,\bm\omega_3)$ is the direction of the field, which is a norm-1 vector.
|
||||
\end{enumerate}
|
||||
\medskip
|
||||
|
||||
@ -167,7 +168,7 @@ If $\beta,L$ are finite, $\int\,\frac{dk_0 dk}{(2\pi)^2}$ in Eq.(\ref{e2.5}) has
|
||||
\begin{equation}\begin{array}{r@{\ }>{\displaystyle}l}
|
||||
V(\psi,\varphi)=&
|
||||
-\lambda_0 \sum_{{j\in\{1,2,3\}}\atop{\alpha_1,\alpha'_1,\alpha_2,\alpha_2'}}\int dt \,(\psi^+_{\alpha_1}(0,t)\sigma^j_{\alpha_1,\alpha'_1} \psi^-_{\alpha'_1}(0,t)) (\varphi^+_{\alpha_2}(t)\sigma^j_{\alpha_2,\alpha_2'} \varphi^-_{\alpha_2'}(t))\\
|
||||
&-h \int dt\sum_{\alpha\in\uparrow,\downarrow}\varphi^+_{\alpha}(t)\sigma^3_{\alpha,\alpha} \varphi^-_{\alpha}(t)\\
|
||||
&-h \sum_{j\in\{1,2,3\}}\bm\omega_j \int dt\sum_{\alpha\in\uparrow,\downarrow}\varphi^+_{\alpha}(t)\sigma^j_{\alpha,\alpha} \varphi^-_{\alpha}(t)
|
||||
\end{array}\label{e2.6}\end{equation}
|
||||
Notice that $V$ only depends on the fields located at the site $x=0$. This is important because it will allow us to reduce the problem to a 1-dimensional one [\cite{aySN}, \cite{ayhSeZ}].
|
||||
|
||||
@ -314,7 +315,7 @@ from which we see that the hierarchical model boils down to neglecting the $m'$
|
||||
\begin{equation}\begin{array}{r@{\ }>{\displaystyle}l}
|
||||
V(\psi,\varphi)=&
|
||||
-\lambda_0 \sum_{{j\in\{1,2,3\}}\atop{\alpha_1,\alpha'_1,\alpha_2,\alpha_2'}}\int dt \,(\psi^+_{\alpha_1}(0,t)\sigma^j_{\alpha_1,\alpha'_1} \psi^-_{\alpha'_1}(0,t)) (\varphi^+_{\alpha_2}(t)\sigma^j_{\alpha_2,\alpha_2'} \varphi^-_{\alpha_2'}(t))\\
|
||||
&-h \int dt\sum_{\alpha\in\uparrow,\downarrow}\varphi^+_{\alpha}(t)\sigma^3_{\alpha,\alpha} \varphi^-_{\alpha}(t)\\
|
||||
&-h \sum_{j\in\{1,2,3\}}\bm\omega_j \int dt\sum_{\alpha\in\uparrow,\downarrow}\varphi^+_{\alpha}(t)\sigma^j_{\alpha,\alpha} \varphi^-_{\alpha}(t)
|
||||
\end{array}\label{e3.9}\end{equation}
|
||||
in which $\psi^\pm_\alpha(0,t)$ and $\varphi^\pm_\alpha(t)$ are now defined in Eq.(\ref{e3.5}).
|
||||
\medskip
|
||||
|
Loading…
Reference in New Issue
Block a user