meankondo/src/numkondo.c
Ian Jauslin 167980ea43 Update to v1.5.
The update to version 1.5 is rather substantial, and introduces some minor
  backward-incompatibilities:
    * The header "#!symbols" has been replaced by "#!virtual_fields"
    * Multiplying polynomials using the '*' symbol is no longer supported (or,
      rather, the symbolic capabilities of meankondo were enhanced, and the
      syntax has been changed).
    * 'meantools exp' has been removed (its functionality is now handled by
      other means)
    * 'meantoolds derive' has been replaced by 'meantools differentiate'

  * The symbolic capabilities were enhanced: polynomials can now be
    multiplied, added, exponentiated, and their logarithms can be taken
    directly in the configuration file.

  * The flow equation can now be processed after being computed using the
    various "#!postprocess_*" entries.

  * Deprecated kondo_preprocess.

  * Compute the mean using an LU decomposition if possible.

  * More detailed checks for syntax errors in configuration file.

  * Check that different '#!group' entries are indeed uncorrelated.

  * New flags in meankondo: '-p' and '-A'.

  * New tool: meantools expand.

  * Improve conversion to LaTeX using meantools-convert

  * Assign terms randomly to different threads.

  * Multiple bug fixes
2022-06-14 09:26:07 +02:00

276 lines
6.6 KiB
C

/*
Copyright 2015-2022 Ian Jauslin
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
/*
numkondo
Compute the flow of a flow equation numerically
*/
#include <stdio.h>
#include <stdlib.h>
// pre-compiler definitions
#include "definitions.cpp"
// rccs
#include "rcc.h"
#include "rcc_mpfr.h"
// grouped representation of polynomials
#include "grouped_polynomial.h"
// command line parser
#include "cli_parser.h"
// parse input file
#include "parse_file.h"
// numerical flow
#include "flow.h"
#include "flow_mpfr.h"
// arrays
#include "array.h"
// read cli arguments
int read_args_numkondo(int argc,const char* argv[], Str_Array* str_args, Numkondo_Options* opts);
// print usage message
int print_usage_numkondo();
// compute flow
int numflow(Str_Array str_args, Numkondo_Options opts);
int main (int argc, const char* argv[]){
// string arguments
Str_Array str_args;
// options
Numkondo_Options opts;
// read command-line arguments
read_args_numkondo(argc,argv,&str_args,&opts);
numflow(str_args, opts);
//free memory
free_Str_Array(str_args);
return(0);
}
// parse command-line arguments
#define CP_FLAG_NITER 1
#define CP_FLAG_RCCS 2
#define CP_FLAG_MPFR_PREC 3
#define CP_FLAG_MPFR_EXP 4
int read_args_numkondo(int argc,const char* argv[], Str_Array* str_args, Numkondo_Options* opts){
int i;
// temporary long int
long int tmp_lint;
// pointers
char* ptr;
// file to read the polynomial from in flow mode
const char* file="";
// flag that indicates what argument is being read
int flag=0;
// whether a file was specified on the command-line
int exists_file=0;
// defaults
// display entire flow
(*opts).display_mode=DISPLAY_NUMERICAL;
// default niter
(*opts).niter=100;
// mark rccstring so that it can be recognized whether it has been set or not
(*opts).eval_rccstring.length=-1;
// no mpfr
(*opts).mpfr_prec=0;
(*opts).mpfr_emax=0;
// loop over arguments
for(i=1;i<argc;i++){
// flag
if(argv[i][0]=='-'){
for(ptr=((char*)argv[i])+1;*ptr!='\0';ptr++){
switch(*ptr){
// final step: display the final step of the integration with maximal precision
case 'F':
(*opts).display_mode=DISPLAY_FINAL;
break;
// niter
case 'N':
flag=CP_FLAG_NITER;
break;
// initial condition
case 'I':
flag=CP_FLAG_RCCS;
break;
// mpfr precision
case 'P':
flag=CP_FLAG_MPFR_PREC;
break;
// mpfr emax
case 'E':
flag=CP_FLAG_MPFR_EXP;
break;
// print version
case 'v':
printf("numkondo " VERSION "\n");
exit(1);
break;
}
}
}
// if the niter flag is up
else if (flag==CP_FLAG_NITER){
// read niter
sscanf(argv[i],"%d",&((*opts).niter));
// reset flag
flag=0;
}
// init condition
else if(flag==CP_FLAG_RCCS){
str_to_char_array((char*)argv[i], &((*opts).eval_rccstring));
flag=0;
}
// mpfr precision
else if(flag==CP_FLAG_MPFR_PREC){
sscanf(argv[i],"%ld",&tmp_lint);
(*opts).mpfr_prec=(mpfr_prec_t)tmp_lint;
flag=0;
}
// mpfr emax
else if(flag==CP_FLAG_MPFR_EXP){
sscanf(argv[i],"%ld",&tmp_lint);
(*opts).mpfr_emax=(mpfr_exp_t)tmp_lint;
flag=0;
}
// read file name from command-line
else{
file=argv[i];
exists_file=1;
}
}
read_config_file(str_args, file, 1-exists_file);
return(0);
}
// print usage message
int print_usage_numkondo(){
printf("\nusage:\n numkondo [-F] [-N niter] [-I initial_condition] [-P precision] [-E exponent_range] <filename>\n\n");
return(0);
}
// numerical computation of the flow
int numflow(Str_Array str_args, Numkondo_Options opts){
// index of the entry in the input file
int arg_index;
// list of rccs
Labels labels;
// initial condition
RCC init_cd;
RCC_mpfr init_cd_mpfr;
// flow equation
Grouped_Polynomial flow_equation;
// whether or not to use mpfr floats
int mpfr_flag=0;
// postprocess flow equation
Grouped_Polynomial postprocess_flow_equation;
// set mpfr defaults
if(opts.mpfr_prec!=0){
mpfr_set_default_prec(opts.mpfr_prec);
mpfr_flag=1;
}
if(opts.mpfr_emax!=0){
mpfr_set_emax(opts.mpfr_emax);
mpfr_flag=1;
}
// parse labels
arg_index=find_str_arg("labels", str_args);
if(arg_index<0){
fprintf(stderr,"error: no labels entry in the configuration file\n");
exit(-1);
}
else{
parse_labels(str_args.strs[arg_index], &labels);
}
// parse flow equation
arg_index=find_str_arg("flow_equation", str_args);
if(arg_index<0){
fprintf(stderr,"error: no flow equation entry in the configuration file\n");
exit(-1);
}
else{
char_array_to_Grouped_Polynomial(str_args.strs[arg_index], &flow_equation);
}
// parse postprocess operation
arg_index=find_str_arg("postprocess_operation", str_args);
if(arg_index>=0){
char_array_to_Grouped_Polynomial(str_args.strs[arg_index], &postprocess_flow_equation);
}
else{
init_Grouped_Polynomial(&postprocess_flow_equation,1);
}
// initial conditions
// check they were not specified on the command line
if(opts.eval_rccstring.length==-1){
arg_index=find_str_arg("initial_condition", str_args);
if(arg_index<0){
fprintf(stderr,"error: no initial condition in the configuration file or on the command line\n");
exit(-1);
}
else{
char_array_cpy(str_args.strs[arg_index],&(opts.eval_rccstring));
}
}
// initialize the rccs
if(mpfr_flag==0){
prepare_init(flow_equation.indices,flow_equation.length,&init_cd);
}
else{
prepare_init_mpfr(flow_equation.indices,flow_equation.length,&init_cd_mpfr);
}
// read rccs from string
if(opts.eval_rccstring.length!=-1){
parse_init_cd(opts.eval_rccstring, &init_cd, &init_cd_mpfr, mpfr_flag);
free_Char_Array(opts.eval_rccstring);
}
if(mpfr_flag==0){
numerical_flow(flow_equation, init_cd, postprocess_flow_equation, labels, opts.niter, opts.display_mode);
free_RCC(init_cd);
}
else{
numerical_flow_mpfr(flow_equation, init_cd_mpfr, postprocess_flow_equation, labels, opts.niter, opts.display_mode);
free_RCC_mpfr(init_cd_mpfr);
}
// free memory
free_Labels(labels);
free_Grouped_Polynomial(postprocess_flow_equation);
free_Grouped_Polynomial(flow_equation);
return(0);
}