Compare commits
12 Commits
03c2d1b02a
...
master
| Author | SHA1 | Date | |
|---|---|---|---|
| 35352a6460 | |||
| 8fa9e7f556 | |||
| afe0498f21 | |||
| 72455cbb65 | |||
| 7471296e59 | |||
| 08ded444b8 | |||
| 8a1f3987f4 | |||
| 89791be6d6 | |||
| 50c09cf164 | |||
| 21e8dcdb8a | |||
| e607a4abf9 | |||
| 6f0f1749a4 |
19
README.md
19
README.md
@@ -40,12 +40,14 @@ The available commands are
|
||||
* `enstrophy`: to compute the enstrophy and various other observables. This
|
||||
command prints
|
||||
```
|
||||
step_index time average(alpha) average(energy) average(enstrophy) alpha energy enstrophy
|
||||
step_index time average(alpha) average(energy) average(enstrophy) alpha energy enstrophy Re(u(1,1)) Re(u(1,2))
|
||||
```
|
||||
where the averages are running averages over `print_freq`. In addition, if
|
||||
the algorithm has an adaptive step, an extra column is printed with `delta`.
|
||||
In addition, if alpha has a negative value (even in between `print_freq`
|
||||
intervals), a line is printed with the information.
|
||||
intervals), a line is printed with the information. The two components (1,1)
|
||||
and (1,2) of u are included to more easily identify periodic trajectories, or
|
||||
the presence of multiple attractors.
|
||||
|
||||
* `lyapunov`: to compute the Lyapunov exponents. This command prints
|
||||
```
|
||||
@@ -56,7 +58,14 @@ The available commands are
|
||||
|
||||
* `uk`: to compute the Fourier transform of the solution.
|
||||
|
||||
* `quiet`: does not print anything, useful for debugging.
|
||||
* `quiet`: does not print anything (useful for debugging).
|
||||
|
||||
* `enstrophy_print_init`: to compute the enstrophy and various other
|
||||
observables for the initial condition (useful for debugging). The command
|
||||
prints
|
||||
```
|
||||
alpha energy enstrophy
|
||||
```
|
||||
|
||||
|
||||
# Parameters
|
||||
@@ -148,12 +157,12 @@ should be a `;` sperated list of `key=value` pairs. The possible keys are
|
||||
is negative, its value is printed as a comment.
|
||||
|
||||
* `lyapunov_reset` (double, default: `print_freq`): if this is set, then, when
|
||||
computing the Lyapnuov exponents, the tangent flow will renormalize itself at
|
||||
computing the Lyapunov exponents, the tangent flow will renormalize itself at
|
||||
times proportional to `lyapunov_reset`. This option is incompatible with
|
||||
`lyapunov_maxu`.
|
||||
|
||||
* `lyapunov_maxu` (double, default: unset): if this is set, then, when
|
||||
computing the Lyapnuov exponents, the tangent flow will renormalize itself
|
||||
computing the Lyapunov exponents, the tangent flow will renormalize itself
|
||||
whenever the norm of the tangent flow exceeds `lyapunov_maxu`. This option
|
||||
is incompatible with `lyapunov_reset`.
|
||||
|
||||
|
||||
@@ -21,6 +21,7 @@ limitations under the License.
|
||||
#define COMMAND_QUIET 3
|
||||
#define COMMAND_RESUME 4
|
||||
#define COMMAND_LYAPUNOV 5
|
||||
#define COMMAND_ENSTROPHY_PRINT_INIT 6
|
||||
|
||||
#define DRIVING_ZERO 1
|
||||
#define DRIVING_TEST 2
|
||||
|
||||
31
src/io.c
31
src/io.c
@@ -258,23 +258,38 @@ int remove_entry(
|
||||
char* rw_ptr;
|
||||
char* bfr;
|
||||
char* entry_ptr=entry;
|
||||
// whether to write the entry
|
||||
int go=1;
|
||||
// whether the pointer is at the beginning of the entry
|
||||
int at_top=1;
|
||||
|
||||
for(ptr=param_str, rw_ptr=ptr; *ptr!='\0'; ptr++){
|
||||
for(bfr=ptr,entry_ptr=entry; *bfr==*entry_ptr; bfr++, entry_ptr++){
|
||||
// check if reached end of entry
|
||||
if(*(bfr+1)=='=' && *(entry_ptr+1)=='\0'){
|
||||
go=0;
|
||||
break;
|
||||
// only match entries if one is at the beginning of an entry
|
||||
if(at_top==1){
|
||||
// check that the entry under ptr matches entry
|
||||
for(bfr=ptr,entry_ptr=entry; *bfr==*entry_ptr; bfr++, entry_ptr++){
|
||||
// check if reached end of entry
|
||||
if(*(bfr+1)=='=' && *(entry_ptr+1)=='\0'){
|
||||
// match: do not write entry
|
||||
go=0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// write entry
|
||||
if(go==1){
|
||||
*rw_ptr=*ptr;
|
||||
rw_ptr++;
|
||||
}
|
||||
|
||||
// next iterate will no longer be at the beginning of the entry
|
||||
at_top=0;
|
||||
|
||||
//reset
|
||||
if(*ptr==';'){
|
||||
go=1;
|
||||
at_top=1;
|
||||
}
|
||||
}
|
||||
*rw_ptr='\0';
|
||||
@@ -322,6 +337,8 @@ int save_state(
|
||||
strcpy(params, params_string);
|
||||
remove_entry(params, "starting_time");
|
||||
remove_entry(params, "init");
|
||||
remove_entry(params, "init_enstrophy");
|
||||
remove_entry(params, "init_energy");
|
||||
if(algorithm>ALGORITHM_ADAPTIVE_THRESHOLD){
|
||||
remove_entry(params, "delta");
|
||||
}
|
||||
@@ -335,10 +352,6 @@ int save_state(
|
||||
if(savefile==stderr || savefile==stdout){
|
||||
fprintf(savefile,";starting_time=%.15e", time);
|
||||
}
|
||||
// instruction to read init flow from file if computation is lyapunov
|
||||
if(command==COMMAND_LYAPUNOV){
|
||||
fprintf(savefile,";init_flow=file");
|
||||
}
|
||||
fprintf(savefile,"\"");
|
||||
}
|
||||
|
||||
|
||||
@@ -125,19 +125,20 @@ int lyapunov(
|
||||
// size of flow (for reset)
|
||||
for(i=0;i<MATSIZE;i++){
|
||||
for(j=0;j<MATSIZE;j++){
|
||||
norm+=fabs(flow[i*MATSIZE+j]);
|
||||
if(norm>lyapunov_reset){
|
||||
norm+=flow[i*MATSIZE+j]*flow[i*MATSIZE+j]/MATSIZE;
|
||||
if(sqrt(norm)>lyapunov_reset){
|
||||
break;
|
||||
}
|
||||
}
|
||||
if(norm>lyapunov_reset){
|
||||
if(sqrt(norm)>lyapunov_reset){
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// QR decomposition
|
||||
if((lyapunov_trigger==LYAPUNOV_TRIGGER_TIME && time>(n+1)*lyapunov_reset) || (lyapunov_trigger==LYAPUNOV_TRIGGER_SIZE && norm>lyapunov_reset)){
|
||||
// Do it also if it is the last step
|
||||
if((lyapunov_trigger==LYAPUNOV_TRIGGER_TIME && time>(n+1)*lyapunov_reset) || (lyapunov_trigger==LYAPUNOV_TRIGGER_SIZE && norm>lyapunov_reset) || time>=final_time){
|
||||
n++;
|
||||
|
||||
// QR decomposition
|
||||
@@ -148,8 +149,8 @@ int lyapunov(
|
||||
lyapunov[i]=log(fabs(flow[i*MATSIZE+i]))/(time-prevtime);
|
||||
}
|
||||
|
||||
// sort lyapunov exponents
|
||||
qsort(lyapunov, MATSIZE, sizeof(double), compare_double);
|
||||
//// sort lyapunov exponents
|
||||
//qsort(lyapunov, MATSIZE, sizeof(double), compare_double);
|
||||
|
||||
// average lyapunov
|
||||
for(i=0; i<MATSIZE; i++){
|
||||
@@ -164,11 +165,11 @@ int lyapunov(
|
||||
printf("% .15e % .15e % .15e\n",time, lyapunov[i], lyapunov_avg[i]);
|
||||
}
|
||||
printf("\n");
|
||||
fprintf(stderr,"% .15e",time);
|
||||
// print largest and smallest lyapunov exponent to stderr
|
||||
if(MATSIZE>0){
|
||||
fprintf(stderr," % .15e % .15e\n", lyapunov[0], lyapunov[MATSIZE-1]);
|
||||
}
|
||||
fprintf(stderr,"% .15e\n",time);
|
||||
//// print largest and smallest lyapunov exponent to stderr
|
||||
//if(MATSIZE>0){
|
||||
// fprintf(stderr," % .15e % .15e\n", lyapunov[0], lyapunov[MATSIZE-1]);
|
||||
//}
|
||||
|
||||
// set flow to Q:
|
||||
LAPACKE_dorgqr(LAPACK_COL_MAJOR, MATSIZE, MATSIZE, MATSIZE, flow, MATSIZE, tmp11);
|
||||
|
||||
47
src/main.c
47
src/main.c
@@ -63,7 +63,6 @@ typedef struct nstrophy_parameters {
|
||||
FILE* drivingfile;
|
||||
double lyapunov_reset;
|
||||
unsigned int lyapunov_trigger;
|
||||
bool init_flow_file;
|
||||
bool print_alpha;
|
||||
} nstrophy_parameters;
|
||||
|
||||
@@ -85,7 +84,7 @@ _Complex double* set_driving(nstrophy_parameters parameters);
|
||||
// set initial condition
|
||||
_Complex double* set_init(nstrophy_parameters* parameters);
|
||||
// set initial tangent flow for lyapunov exponents
|
||||
int set_lyapunov_flow_init( double** lyapunov_flow0, double** lyapunov_avg0, double* lyapunov_prevtime, double* lyapunov_startingtime, nstrophy_parameters parameters);
|
||||
int set_lyapunov_flow_init( double** lyapunov_flow0, double** lyapunov_avg0, double* lyapunov_prevtime, double* lyapunov_startingtime, bool fromfile, nstrophy_parameters parameters);
|
||||
|
||||
// signal handler
|
||||
void sig_handler (int signo);
|
||||
@@ -130,6 +129,7 @@ int main (
|
||||
dstring resumefile_str;
|
||||
FILE* savefile=NULL;
|
||||
FILE* utfile=NULL;
|
||||
bool resume=false;
|
||||
|
||||
command=0;
|
||||
|
||||
@@ -169,6 +169,8 @@ int main (
|
||||
|
||||
// if command is 'resume', then read args from file
|
||||
if(command==COMMAND_RESUME){
|
||||
// remember that the original command was resume (to set values from init file)
|
||||
resume=true;
|
||||
ret=args_from_file(¶m_str, &command, &nthreads, &savefile_str, &utfile_str, dstring_to_str_noinit(&resumefile_str));
|
||||
if(ret<0){
|
||||
dstring_free(param_str);
|
||||
@@ -232,9 +234,19 @@ int main (
|
||||
g=set_driving(parameters);
|
||||
// set initial condition
|
||||
u0=set_init(¶meters);
|
||||
// read extra values from init file when resuming a computation
|
||||
if(resume){
|
||||
// read start time
|
||||
fread(&(parameters.starting_time), sizeof(double), 1, parameters.initfile);
|
||||
// if adaptive step algorithm
|
||||
if(parameters.algorithm>ALGORITHM_ADAPTIVE_THRESHOLD){
|
||||
// read delta
|
||||
fread(&(parameters.delta), sizeof(double), 1, parameters.initfile);
|
||||
}
|
||||
}
|
||||
// set initial condition for the lyapunov flow
|
||||
if (command==COMMAND_LYAPUNOV){
|
||||
set_lyapunov_flow_init(&lyapunov_flow0, &lyapunov_avg0, &lyapunov_prevtime, &lyapunov_startingtime, parameters);
|
||||
set_lyapunov_flow_init(&lyapunov_flow0, &lyapunov_avg0, &lyapunov_prevtime, &lyapunov_startingtime, resume, parameters);
|
||||
}
|
||||
|
||||
// if init_enstrophy is not set in the parameters, then compute it from the initial condition
|
||||
@@ -305,7 +317,7 @@ int main (
|
||||
|
||||
// run command
|
||||
if (command==COMMAND_UK){
|
||||
uk(parameters.K1, parameters.K2, parameters.N1, parameters.N2, parameters.final_time, parameters.nu, parameters.delta, parameters.L, parameters.adaptive_tolerance, parameters.adaptive_factor, parameters.max_delta, parameters.adaptive_cost, u0, g, parameters.irreversible, parameters.keep_en_cst, parameters.init_enstrophy, parameters.algorithm, parameters.print_freq, parameters.starting_time, nthreads, savefile);
|
||||
uk(parameters.K1, parameters.K2, parameters.N1, parameters.N2, parameters.final_time, parameters.nu, parameters.delta, parameters.L, parameters.adaptive_tolerance, parameters.adaptive_factor, parameters.max_delta, parameters.adaptive_cost, u0, g, parameters.irreversible, parameters.keep_en_cst, parameters.init_enstrophy, parameters.algorithm, parameters.print_freq, parameters.starting_time, nthreads, savefile, utfile, (char*)argv[0], dstring_to_str_noinit(¶m_str), dstring_to_str_noinit(&savefile_str), dstring_to_str_noinit(&utfile_str));
|
||||
}
|
||||
else if(command==COMMAND_ENSTROPHY){
|
||||
// register signal handler to handle aborts
|
||||
@@ -313,6 +325,9 @@ int main (
|
||||
signal(SIGTERM, sig_handler);
|
||||
enstrophy(parameters.K1, parameters.K2, parameters.N1, parameters.N2, parameters.final_time, parameters.nu, parameters.delta, parameters.L, parameters.adaptive_tolerance, parameters.adaptive_factor, parameters.max_delta, parameters.adaptive_cost, u0, g, parameters.irreversible, parameters.keep_en_cst, parameters.init_enstrophy, parameters.algorithm, parameters.print_freq, parameters.starting_time, parameters.print_alpha, nthreads, savefile, utfile, (char*)argv[0], dstring_to_str_noinit(¶m_str), dstring_to_str_noinit(&savefile_str), dstring_to_str_noinit(&utfile_str));
|
||||
}
|
||||
else if(command==COMMAND_ENSTROPHY_PRINT_INIT){
|
||||
enstrophy_print_init(parameters.K1, parameters.K2, parameters.L, u0, g);
|
||||
}
|
||||
else if(command==COMMAND_QUIET){
|
||||
quiet(parameters.K1, parameters.K2, parameters.N1, parameters.N2, parameters.final_time, parameters.nu, parameters.delta, parameters.L, parameters.adaptive_tolerance, parameters.adaptive_factor, parameters.max_delta, parameters.adaptive_cost, parameters.starting_time, u0, g, parameters.irreversible, parameters.keep_en_cst, parameters.init_enstrophy, parameters.algorithm, nthreads, savefile);
|
||||
}
|
||||
@@ -549,6 +564,9 @@ int read_args(
|
||||
else if(strcmp(argv[i], "enstrophy")==0){
|
||||
*command=COMMAND_ENSTROPHY;
|
||||
}
|
||||
else if(strcmp(argv[i], "enstrophy_print_init")==0){
|
||||
*command=COMMAND_ENSTROPHY_PRINT_INIT;
|
||||
}
|
||||
else if(strcmp(argv[i], "quiet")==0){
|
||||
*command=COMMAND_QUIET;
|
||||
}
|
||||
@@ -607,7 +625,6 @@ int set_default_params(
|
||||
parameters->algorithm_lyapunov=ALGORITHM_RK4;
|
||||
// default lyapunov_reset will be print_time (set later) for now set target to 0 to indicate it hasn't been set explicitly
|
||||
parameters->lyapunov_trigger=0;
|
||||
parameters->init_flow_file=false;
|
||||
|
||||
parameters->print_alpha=false;
|
||||
|
||||
@@ -1005,16 +1022,6 @@ int set_parameter(
|
||||
return(-1);
|
||||
}
|
||||
}
|
||||
else if (strcmp(lhs,"init_flow")==0){
|
||||
if(strcmp(rhs,"file")==0){
|
||||
parameters->init_flow_file=true;
|
||||
} else if (strcmp(rhs,"identity")==0){
|
||||
parameters->init_flow_file=false;
|
||||
} else {
|
||||
fprintf(stderr, "error: parameter 'init_flow' should be 'file' or 'identity'\n got '%s'\n",rhs);
|
||||
return(-1);
|
||||
}
|
||||
}
|
||||
else{
|
||||
fprintf(stderr, "error: unrecognized parameter '%s'\n",lhs);
|
||||
return(-1);
|
||||
@@ -1130,12 +1137,6 @@ _Complex double* set_init(
|
||||
|
||||
case INIT_FILE:
|
||||
init_file_bin(u0, parameters->K1, parameters->K2, parameters->initfile);
|
||||
// read start time
|
||||
fread(&(parameters->starting_time), sizeof(double), 1, parameters->initfile);
|
||||
if(parameters->algorithm>ALGORITHM_ADAPTIVE_THRESHOLD){
|
||||
// read delta
|
||||
fread(&(parameters->delta), sizeof(double), 1, parameters->initfile);
|
||||
}
|
||||
break;
|
||||
|
||||
case INIT_FILE_TXT:
|
||||
@@ -1177,12 +1178,14 @@ int set_lyapunov_flow_init(
|
||||
double** lyapunov_avg0,
|
||||
double* lyapunov_prevtime,
|
||||
double* lyapunov_startingtime,
|
||||
bool fromfile, // whether to initialize from file
|
||||
nstrophy_parameters parameters
|
||||
){
|
||||
*lyapunov_flow0=calloc(4*(parameters.K1*(2*parameters.K2+1)+parameters.K2)*(parameters.K1*(2*parameters.K2+1)+parameters.K2),sizeof(double));
|
||||
*lyapunov_avg0=calloc(2*(parameters.K1*(2*parameters.K2+1)+parameters.K2),sizeof(double));
|
||||
|
||||
if(parameters.init_flow_file){
|
||||
// read from file or init from identity matrix
|
||||
if(fromfile){
|
||||
// read flow
|
||||
read_mat2_bin(*lyapunov_flow0, parameters.K1, parameters.K2, parameters.initfile);
|
||||
// read time of last QR decomposition
|
||||
|
||||
@@ -23,6 +23,8 @@ limitations under the License.
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#define USIZE (K1*(2*K2+1)+K2)
|
||||
|
||||
// compute solution as a function of time
|
||||
int uk(
|
||||
int K1,
|
||||
@@ -46,7 +48,13 @@ int uk(
|
||||
double print_freq,
|
||||
double starting_time,
|
||||
unsigned int nthreads,
|
||||
FILE* savefile
|
||||
FILE* savefile,
|
||||
FILE* utfile,
|
||||
// for interrupt recovery
|
||||
const char* cmd_string,
|
||||
const char* params_string,
|
||||
const char* savefile_string,
|
||||
const char* utfile_string
|
||||
){
|
||||
_Complex double* u;
|
||||
_Complex double* tmp1;
|
||||
@@ -93,7 +101,6 @@ int uk(
|
||||
ns_step(algorithm, u, K1, K2, N1, N2, nu, &step, &next_step, adaptive_tolerance, adaptive_factor, max_delta, adaptive_cost, L, g, time, starting_time, fft1, fft2, ifft, &tmp1, &tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, irreversible, keep_en_cst, target_en);
|
||||
|
||||
time+=step;
|
||||
step=next_step;
|
||||
|
||||
if(time>(n+1)*print_freq){
|
||||
n++;
|
||||
@@ -113,11 +120,25 @@ int uk(
|
||||
fprintf(stderr,"\n");
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
// get ready for next step
|
||||
step=next_step;
|
||||
|
||||
// catch abort signal
|
||||
if (g_abort){
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: update handling of savefile
|
||||
// save final entry to savefile
|
||||
write_vec_bin(u, K1, K2, savefile);
|
||||
if(savefile!=NULL){
|
||||
save_state(u, savefile, K1, K2, cmd_string, params_string, savefile_string, utfile_string, utfile, COMMAND_UK, algorithm, step, time, nthreads);
|
||||
}
|
||||
|
||||
// save final u to utfile in txt format
|
||||
if(utfile!=NULL){
|
||||
write_vec(u, K1, K2, utfile);
|
||||
}
|
||||
|
||||
ns_free_tmps(u, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, fft1, fft2, ifft, algorithm);
|
||||
return(0);
|
||||
@@ -223,10 +244,18 @@ int enstrophy(
|
||||
// print to stderr so user can follow along
|
||||
if(algorithm>ALGORITHM_ADAPTIVE_THRESHOLD){
|
||||
fprintf(stderr,"% .8e % .8e % .8e % .8e % .8e % .8e % .8e % .8e\n",time, avg_a, avg_energy, avg_enstrophy, alpha, energy, enstrophy, step);
|
||||
printf("% .15e % .15e % .15e % .15e % .15e % .15e % .15e % .15e\n",time, avg_a, avg_energy, avg_enstrophy, alpha, energy, enstrophy, step);
|
||||
if(K1>=1 && K2>=2){
|
||||
printf("% .15e % .15e % .15e % .15e % .15e % .15e % .15e % .15e % .15e % .15e\n",time, avg_a, avg_energy, avg_enstrophy, alpha, energy, enstrophy, step, __real__ u[klookup_sym(1,1,K2)], __real__ u[klookup_sym(1,2,K2)]);
|
||||
}else{
|
||||
printf("% .15e % .15e % .15e % .15e % .15e % .15e % .15e % .15e\n",time, avg_a, avg_energy, avg_enstrophy, alpha, energy, enstrophy, step);
|
||||
}
|
||||
} else {
|
||||
fprintf(stderr,"% .8e % .8e % .8e % .8e % .8e % .8e % .8e\n",time, avg_a, avg_energy, avg_enstrophy, alpha, energy, enstrophy);
|
||||
printf("% .15e % .15e % .15e % .15e % .15e % .15e % .15e\n",time, avg_a, avg_energy, avg_enstrophy, alpha, energy, enstrophy);
|
||||
if(K1>=1 && K2>=2){
|
||||
printf("% .15e % .15e % .15e % .15e % .15e % .15e % .15e % .15e % .15e\n",time, avg_a, avg_energy, avg_enstrophy, alpha, energy, enstrophy, __real__ u[klookup_sym(1,1,K2)], __real__ u[klookup_sym(1,2,K2)]);
|
||||
}else{
|
||||
printf("% .15e % .15e % .15e % .15e % .15e % .15e % .15e\n",time, avg_a, avg_energy, avg_enstrophy, alpha, energy, enstrophy);
|
||||
}
|
||||
}
|
||||
|
||||
// reset averages
|
||||
@@ -268,6 +297,25 @@ int enstrophy(
|
||||
return(0);
|
||||
}
|
||||
|
||||
// compute enstrophy, alpha for the initial condition (useful for debugging)
|
||||
int enstrophy_print_init(
|
||||
int K1,
|
||||
int K2,
|
||||
double L,
|
||||
_Complex double* u0,
|
||||
_Complex double* g
|
||||
){
|
||||
double alpha, enstrophy, energy;
|
||||
|
||||
alpha=compute_alpha(u0, K1, K2, g, L);
|
||||
enstrophy=compute_enstrophy(u0, K1, K2, L);
|
||||
energy=compute_energy(u0, K1, K2);
|
||||
|
||||
// print
|
||||
printf("% .15e % .15e % .15e\n", alpha, energy, enstrophy);
|
||||
return(0);
|
||||
}
|
||||
|
||||
// compute solution as a function of time, but do not print anything (useful for debugging)
|
||||
int quiet(
|
||||
int K1,
|
||||
@@ -353,30 +401,30 @@ int ns_init_tmps(
|
||||
unsigned int algorithm
|
||||
){
|
||||
// velocity field
|
||||
*u=calloc(K1*(2*K2+1)+K2,sizeof(_Complex double));
|
||||
*u=calloc(USIZE,sizeof(_Complex double));
|
||||
|
||||
// allocate tmp vectors for computation
|
||||
if(algorithm==ALGORITHM_RK2){
|
||||
*tmp1=calloc(K1*(2*K2+1)+K2,sizeof(_Complex double));
|
||||
*tmp2=calloc(K1*(2*K2+1)+K2,sizeof(_Complex double));
|
||||
*tmp1=calloc(USIZE,sizeof(_Complex double));
|
||||
*tmp2=calloc(USIZE,sizeof(_Complex double));
|
||||
} else if (algorithm==ALGORITHM_RK4){
|
||||
*tmp1=calloc(K1*(2*K2+1)+K2,sizeof(_Complex double));
|
||||
*tmp2=calloc(K1*(2*K2+1)+K2,sizeof(_Complex double));
|
||||
*tmp3=calloc(K1*(2*K2+1)+K2,sizeof(_Complex double));
|
||||
*tmp1=calloc(USIZE,sizeof(_Complex double));
|
||||
*tmp2=calloc(USIZE,sizeof(_Complex double));
|
||||
*tmp3=calloc(USIZE,sizeof(_Complex double));
|
||||
} else if (algorithm==ALGORITHM_RKF45 || algorithm==ALGORITHM_RKDP54){
|
||||
*tmp1=calloc(K1*(2*K2+1)+K2,sizeof(_Complex double));
|
||||
*tmp2=calloc(K1*(2*K2+1)+K2,sizeof(_Complex double));
|
||||
*tmp3=calloc(K1*(2*K2+1)+K2,sizeof(_Complex double));
|
||||
*tmp4=calloc(K1*(2*K2+1)+K2,sizeof(_Complex double));
|
||||
*tmp5=calloc(K1*(2*K2+1)+K2,sizeof(_Complex double));
|
||||
*tmp6=calloc(K1*(2*K2+1)+K2,sizeof(_Complex double));
|
||||
*tmp7=calloc(K1*(2*K2+1)+K2,sizeof(_Complex double));
|
||||
*tmp1=calloc(USIZE,sizeof(_Complex double));
|
||||
*tmp2=calloc(USIZE,sizeof(_Complex double));
|
||||
*tmp3=calloc(USIZE,sizeof(_Complex double));
|
||||
*tmp4=calloc(USIZE,sizeof(_Complex double));
|
||||
*tmp5=calloc(USIZE,sizeof(_Complex double));
|
||||
*tmp6=calloc(USIZE,sizeof(_Complex double));
|
||||
*tmp7=calloc(USIZE,sizeof(_Complex double));
|
||||
} else if (algorithm==ALGORITHM_RKBS32){
|
||||
*tmp1=calloc(K1*(2*K2+1)+K2,sizeof(_Complex double));
|
||||
*tmp2=calloc(K1*(2*K2+1)+K2,sizeof(_Complex double));
|
||||
*tmp3=calloc(K1*(2*K2+1)+K2,sizeof(_Complex double));
|
||||
*tmp4=calloc(K1*(2*K2+1)+K2,sizeof(_Complex double));
|
||||
*tmp5=calloc(K1*(2*K2+1)+K2,sizeof(_Complex double));
|
||||
*tmp1=calloc(USIZE,sizeof(_Complex double));
|
||||
*tmp2=calloc(USIZE,sizeof(_Complex double));
|
||||
*tmp3=calloc(USIZE,sizeof(_Complex double));
|
||||
*tmp4=calloc(USIZE,sizeof(_Complex double));
|
||||
*tmp5=calloc(USIZE,sizeof(_Complex double));
|
||||
} else {
|
||||
fprintf(stderr,"bug: unknown algorithm: %u, contact ian.jauslin@rutgers,edu\n",algorithm);
|
||||
};
|
||||
@@ -462,7 +510,7 @@ int copy_u(
|
||||
){
|
||||
int i;
|
||||
|
||||
for(i=0;i<K1*(2*K2+1)+K2;i++){
|
||||
for(i=0;i<USIZE;i++){
|
||||
u[i]=u0[i];
|
||||
}
|
||||
|
||||
@@ -524,7 +572,6 @@ int ns_step(
|
||||
return (0);
|
||||
}
|
||||
|
||||
// TODO: do not need to use klookup in any of the rk routines
|
||||
// RK 4 algorithm
|
||||
int ns_step_rk4(
|
||||
_Complex double* u,
|
||||
@@ -546,69 +593,53 @@ int ns_step_rk4(
|
||||
bool keep_en_cst,
|
||||
double target_en
|
||||
){
|
||||
int kx,ky;
|
||||
int i;
|
||||
|
||||
// k1
|
||||
ns_rhs(tmp1, u, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft, irreversible);
|
||||
// add to output
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
tmp3[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+delta/6*tmp1[klookup_sym(kx,ky,K2)];
|
||||
}
|
||||
for(i=0;i<USIZE;i++){
|
||||
tmp3[i]=u[i]+delta/6*tmp1[i];
|
||||
}
|
||||
|
||||
// u+h*k1/2
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
tmp2[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+delta/2*tmp1[klookup_sym(kx,ky,K2)];
|
||||
}
|
||||
for(i=0;i<USIZE;i++){
|
||||
tmp2[i]=u[i]+delta/2*tmp1[i];
|
||||
}
|
||||
// k2
|
||||
ns_rhs(tmp1, tmp2, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft, irreversible);
|
||||
// add to output
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
tmp3[klookup_sym(kx,ky,K2)]+=delta/3*tmp1[klookup_sym(kx,ky,K2)];
|
||||
}
|
||||
for(i=0;i<USIZE;i++){
|
||||
tmp3[i]+=delta/3*tmp1[i];
|
||||
}
|
||||
|
||||
// u+h*k2/2
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
tmp2[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+delta/2*tmp1[klookup_sym(kx,ky,K2)];
|
||||
}
|
||||
for(i=0;i<USIZE;i++){
|
||||
tmp2[i]=u[i]+delta/2*tmp1[i];
|
||||
}
|
||||
// k3
|
||||
ns_rhs(tmp1, tmp2, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft, irreversible);
|
||||
// add to output
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
tmp3[klookup_sym(kx,ky,K2)]+=delta/3*tmp1[klookup_sym(kx,ky,K2)];
|
||||
}
|
||||
for(i=0;i<USIZE;i++){
|
||||
tmp3[i]+=delta/3*tmp1[i];
|
||||
}
|
||||
|
||||
// u+h*k3
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
tmp2[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+delta*tmp1[klookup_sym(kx,ky,K2)];
|
||||
}
|
||||
for(i=0;i<USIZE;i++){
|
||||
tmp2[i]=u[i]+delta*tmp1[i];
|
||||
}
|
||||
// k4
|
||||
ns_rhs(tmp1, tmp2, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft, irreversible);
|
||||
// add to output
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
u[klookup_sym(kx,ky,K2)]=tmp3[klookup_sym(kx,ky,K2)]+delta/6*tmp1[klookup_sym(kx,ky,K2)];
|
||||
}
|
||||
for(i=0;i<USIZE;i++){
|
||||
u[i]=tmp3[i]+delta/6*tmp1[i];
|
||||
}
|
||||
|
||||
// keep enstrophy constant
|
||||
if(keep_en_cst){
|
||||
double en=compute_enstrophy(u, K1, K2, L);
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
u[klookup_sym(kx,ky,K2)]*=sqrt(target_en/en);
|
||||
}
|
||||
for(i=0;i<USIZE;i++){
|
||||
u[i]*=sqrt(target_en/en);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -635,33 +666,27 @@ int ns_step_rk2(
|
||||
bool keep_en_cst,
|
||||
double target_en
|
||||
){
|
||||
int kx,ky;
|
||||
int i;
|
||||
|
||||
// k1
|
||||
ns_rhs(tmp1, u, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft, irreversible);
|
||||
|
||||
// u+h*k1/2
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
tmp2[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+delta/2*tmp1[klookup_sym(kx,ky,K2)];
|
||||
}
|
||||
for(i=0;i<USIZE;i++){
|
||||
tmp2[i]=u[i]+delta/2*tmp1[i];
|
||||
}
|
||||
// k2
|
||||
ns_rhs(tmp1, tmp2, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft, irreversible);
|
||||
// add to output
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
u[klookup_sym(kx,ky,K2)]+=delta*tmp1[klookup_sym(kx,ky,K2)];
|
||||
}
|
||||
for(i=0;i<USIZE;i++){
|
||||
u[i]+=delta*tmp1[i];
|
||||
}
|
||||
|
||||
// keep enstrophy constant
|
||||
if(keep_en_cst){
|
||||
double en=compute_enstrophy(u, K1, K2, L);
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
u[klookup_sym(kx,ky,K2)]*=sqrt(target_en/en);
|
||||
}
|
||||
for(i=0;i<USIZE;i++){
|
||||
u[i]*=sqrt(target_en/en);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -701,7 +726,7 @@ int ns_step_rkf45(
|
||||
// whether to compute k1 or leave it as is
|
||||
bool compute_k1
|
||||
){
|
||||
int kx,ky;
|
||||
int i;
|
||||
double cost;
|
||||
|
||||
// k1: u(t)
|
||||
@@ -710,53 +735,41 @@ int ns_step_rkf45(
|
||||
}
|
||||
|
||||
// k2 : u(t+1/4*delta)
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
tmp[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+(*delta)/4*k1[klookup_sym(kx,ky,K2)];
|
||||
}
|
||||
for(i=0;i<USIZE;i++){
|
||||
tmp[i]=u[i]+(*delta)/4*k1[i];
|
||||
}
|
||||
ns_rhs(k2, tmp, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft, irreversible);
|
||||
|
||||
// k3 : u(t+3/8*delta)
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
tmp[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+(*delta)*(3./32*k1[klookup_sym(kx,ky,K2)]+9./32*k2[klookup_sym(kx,ky,K2)]);
|
||||
}
|
||||
for(i=0;i<USIZE;i++){
|
||||
tmp[i]=u[i]+(*delta)*(3./32*k1[i]+9./32*k2[i]);
|
||||
}
|
||||
ns_rhs(k3, tmp, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft, irreversible);
|
||||
|
||||
// k4 : u(t+12./13*delta)
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
tmp[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+(*delta)*(1932./2197*k1[klookup_sym(kx,ky,K2)]-7200./2197*k2[klookup_sym(kx,ky,K2)]+7296./2197*k3[klookup_sym(kx,ky,K2)]);
|
||||
}
|
||||
for(i=0;i<USIZE;i++){
|
||||
tmp[i]=u[i]+(*delta)*(1932./2197*k1[i]-7200./2197*k2[i]+7296./2197*k3[i]);
|
||||
}
|
||||
ns_rhs(k4, tmp, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft, irreversible);
|
||||
|
||||
// k5 : u(t+1*delta)
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
tmp[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+(*delta)*(439./216*k1[klookup_sym(kx,ky,K2)]-8*k2[klookup_sym(kx,ky,K2)]+3680./513*k3[klookup_sym(kx,ky,K2)]-845./4104*k4[klookup_sym(kx,ky,K2)]);
|
||||
}
|
||||
for(i=0;i<USIZE;i++){
|
||||
tmp[i]=u[i]+(*delta)*(439./216*k1[i]-8*k2[i]+3680./513*k3[i]-845./4104*k4[i]);
|
||||
}
|
||||
ns_rhs(k5, tmp, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft, irreversible);
|
||||
|
||||
// k6 : u(t+1./2*delta)
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
tmp[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+(*delta)*(-8./27*k1[klookup_sym(kx,ky,K2)]+2*k2[klookup_sym(kx,ky,K2)]-3544./2565*k3[klookup_sym(kx,ky,K2)]+1859./4104*k4[klookup_sym(kx,ky,K2)]-11./40*k5[klookup_sym(kx,ky,K2)]);
|
||||
}
|
||||
for(i=0;i<USIZE;i++){
|
||||
tmp[i]=u[i]+(*delta)*(-8./27*k1[i]+2*k2[i]-3544./2565*k3[i]+1859./4104*k4[i]-11./40*k5[i]);
|
||||
}
|
||||
ns_rhs(k6, tmp, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft, irreversible);
|
||||
|
||||
// next step
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
// u
|
||||
tmp[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+(*delta)*(25./216*k1[klookup_sym(kx,ky,K2)]+1408./2565*k3[klookup_sym(kx,ky,K2)]+2197./4104*k4[klookup_sym(kx,ky,K2)]-1./5*k5[klookup_sym(kx,ky,K2)]);
|
||||
// U: save to k6, which is no longer needed
|
||||
k6[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+(*delta)*(16./135*k1[klookup_sym(kx,ky,K2)]+6656./12825*k3[klookup_sym(kx,ky,K2)]+28561./56430*k4[klookup_sym(kx,ky,K2)]-9./50*k5[klookup_sym(kx,ky,K2)]+2./55*k6[klookup_sym(kx,ky,K2)]);
|
||||
}
|
||||
for(i=0;i<USIZE;i++){
|
||||
// u
|
||||
tmp[i]=u[i]+(*delta)*(25./216*k1[i]+1408./2565*k3[i]+2197./4104*k4[i]-1./5*k5[i]);
|
||||
// U: save to k6, which is no longer needed
|
||||
k6[i]=u[i]+(*delta)*(16./135*k1[i]+6656./12825*k3[i]+28561./56430*k4[i]-9./50*k5[i]+2./55*k6[i]);
|
||||
}
|
||||
|
||||
// cost function
|
||||
@@ -765,10 +778,8 @@ int ns_step_rkf45(
|
||||
// compare relative error with tolerance
|
||||
if(cost<tolerance){
|
||||
// copy to output
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
u[klookup_sym(kx,ky,K2)]=tmp[klookup_sym(kx,ky,K2)];
|
||||
}
|
||||
for(i=0;i<USIZE;i++){
|
||||
u[i]=tmp[i];
|
||||
}
|
||||
// next delta to use in future steps (do not exceed max_delta)
|
||||
*next_delta=fmin(max_delta, (*delta)*pow(tolerance/cost,0.2));
|
||||
@@ -776,10 +787,8 @@ int ns_step_rkf45(
|
||||
// keep enstrophy constant
|
||||
if(keep_en_cst){
|
||||
double en=compute_enstrophy(u, K1, K2, L);
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
u[klookup_sym(kx,ky,K2)]*=sqrt(target_en/en);
|
||||
}
|
||||
for(i=0;i<USIZE;i++){
|
||||
u[i]*=sqrt(target_en/en);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -826,7 +835,7 @@ int ns_step_rkbs32(
|
||||
// whether to compute k1
|
||||
bool compute_k1
|
||||
){
|
||||
int kx,ky;
|
||||
int i;
|
||||
double cost;
|
||||
|
||||
// k1: u(t)
|
||||
@@ -836,36 +845,28 @@ int ns_step_rkbs32(
|
||||
}
|
||||
|
||||
// k2 : u(t+1/4*delta)
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
tmp[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+(*delta)/2*(*k1)[klookup_sym(kx,ky,K2)];
|
||||
}
|
||||
for(i=0;i<USIZE;i++){
|
||||
tmp[i]=u[i]+(*delta)/2*(*k1)[i];
|
||||
}
|
||||
ns_rhs(k2, tmp, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft, irreversible);
|
||||
|
||||
// k3 : u(t+3/4*delta)
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
tmp[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+(*delta)*(3./4*k2[klookup_sym(kx,ky,K2)]);
|
||||
}
|
||||
for(i=0;i<USIZE;i++){
|
||||
tmp[i]=u[i]+(*delta)*(3./4*k2[i]);
|
||||
}
|
||||
ns_rhs(k3, tmp, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft, irreversible);
|
||||
|
||||
// k4 : u(t+delta)
|
||||
// tmp computed here is the next step
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
tmp[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+(*delta)*(2./9*(*k1)[klookup_sym(kx,ky,K2)]+1./3*k2[klookup_sym(kx,ky,K2)]+4./9*k3[klookup_sym(kx,ky,K2)]);
|
||||
}
|
||||
for(i=0;i<USIZE;i++){
|
||||
tmp[i]=u[i]+(*delta)*(2./9*(*k1)[i]+1./3*k2[i]+4./9*k3[i]);
|
||||
}
|
||||
ns_rhs(*k4, tmp, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft, irreversible);
|
||||
|
||||
// next step
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
// U: store in k3, which is no longer needed
|
||||
k3[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+(*delta)*(7./24*(*k1)[klookup_sym(kx,ky,K2)]+1./4*k2[klookup_sym(kx,ky,K2)]+1./3*k3[klookup_sym(kx,ky,K2)]+1./8*(*k4)[klookup_sym(kx,ky,K2)]);
|
||||
}
|
||||
for(i=0;i<USIZE;i++){
|
||||
// U: store in k3, which is no longer needed
|
||||
k3[i]=u[i]+(*delta)*(7./24*(*k1)[i]+1./4*k2[i]+1./3*k3[i]+1./8*(*k4)[i]);
|
||||
}
|
||||
|
||||
// compute cost
|
||||
@@ -874,10 +875,8 @@ int ns_step_rkbs32(
|
||||
// compare cost with tolerance
|
||||
if(cost<tolerance){
|
||||
// add to output
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
u[klookup_sym(kx,ky,K2)]=tmp[klookup_sym(kx,ky,K2)];
|
||||
}
|
||||
for(i=0;i<USIZE;i++){
|
||||
u[i]=tmp[i];
|
||||
}
|
||||
// next delta to use in future steps (do not exceed max_delta)
|
||||
*next_delta=fmin(max_delta, (*delta)*pow(tolerance/cost,1./3));
|
||||
@@ -890,10 +889,8 @@ int ns_step_rkbs32(
|
||||
// keep enstrophy constant
|
||||
if(keep_en_cst){
|
||||
double en=compute_enstrophy(u, K1, K2, L);
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
u[klookup_sym(kx,ky,K2)]*=sqrt(target_en/en);
|
||||
}
|
||||
for(i=0;i<USIZE;i++){
|
||||
u[i]*=sqrt(target_en/en);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -941,7 +938,7 @@ int ns_step_rkdp54(
|
||||
// whether to compute k1
|
||||
bool compute_k1
|
||||
){
|
||||
int kx,ky;
|
||||
int i;
|
||||
double cost;
|
||||
|
||||
// k1: u(t)
|
||||
@@ -951,61 +948,47 @@ int ns_step_rkdp54(
|
||||
}
|
||||
|
||||
// k2 : u(t+1/5*delta)
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
tmp[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+(*delta)/5*(*k1)[klookup_sym(kx,ky,K2)];
|
||||
}
|
||||
for(i=0;i<USIZE;i++){
|
||||
tmp[i]=u[i]+(*delta)/5*(*k1)[i];
|
||||
}
|
||||
ns_rhs(*k2, tmp, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft, irreversible);
|
||||
|
||||
// k3 : u(t+3/10*delta)
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
tmp[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+(*delta)*(3./40*(*k1)[klookup_sym(kx,ky,K2)]+9./40*(*k2)[klookup_sym(kx,ky,K2)]);
|
||||
}
|
||||
for(i=0;i<USIZE;i++){
|
||||
tmp[i]=u[i]+(*delta)*(3./40*(*k1)[i]+9./40*(*k2)[i]);
|
||||
}
|
||||
ns_rhs(k3, tmp, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft, irreversible);
|
||||
|
||||
// k4 : u(t+4/5*delta)
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
tmp[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+(*delta)*(44./45*(*k1)[klookup_sym(kx,ky,K2)]-56./15*(*k2)[klookup_sym(kx,ky,K2)]+32./9*k3[klookup_sym(kx,ky,K2)]);
|
||||
}
|
||||
for(i=0;i<USIZE;i++){
|
||||
tmp[i]=u[i]+(*delta)*(44./45*(*k1)[i]-56./15*(*k2)[i]+32./9*k3[i]);
|
||||
}
|
||||
ns_rhs(k4, tmp, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft, irreversible);
|
||||
|
||||
// k5 : u(t+8/9*delta)
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
tmp[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+(*delta)*(19372./6561*(*k1)[klookup_sym(kx,ky,K2)]-25360./2187*(*k2)[klookup_sym(kx,ky,K2)]+64448./6561*k3[klookup_sym(kx,ky,K2)]-212./729*k4[klookup_sym(kx,ky,K2)]);
|
||||
}
|
||||
for(i=0;i<USIZE;i++){
|
||||
tmp[i]=u[i]+(*delta)*(19372./6561*(*k1)[i]-25360./2187*(*k2)[i]+64448./6561*k3[i]-212./729*k4[i]);
|
||||
}
|
||||
ns_rhs(k5, tmp, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft, irreversible);
|
||||
|
||||
// k6 : u(t+delta)
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
tmp[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+(*delta)*(9017./3168*(*k1)[klookup_sym(kx,ky,K2)]-355./33*(*k2)[klookup_sym(kx,ky,K2)]+46732./5247*k3[klookup_sym(kx,ky,K2)]+49./176*k4[klookup_sym(kx,ky,K2)]-5103./18656*k5[klookup_sym(kx,ky,K2)]);
|
||||
}
|
||||
for(i=0;i<USIZE;i++){
|
||||
tmp[i]=u[i]+(*delta)*(9017./3168*(*k1)[i]-355./33*(*k2)[i]+46732./5247*k3[i]+49./176*k4[i]-5103./18656*k5[i]);
|
||||
}
|
||||
ns_rhs(k6, tmp, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft, irreversible);
|
||||
|
||||
// k7 : u(t+delta)
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
// tmp computed here is the step
|
||||
tmp[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+(*delta)*(35./384*(*k1)[klookup_sym(kx,ky,K2)]+500./1113*k3[klookup_sym(kx,ky,K2)]+125./192*k4[klookup_sym(kx,ky,K2)]-2187./6784*k5[klookup_sym(kx,ky,K2)]+11./84*k6[klookup_sym(kx,ky,K2)]);
|
||||
}
|
||||
for(i=0;i<USIZE;i++){
|
||||
// tmp computed here is the step
|
||||
tmp[i]=u[i]+(*delta)*(35./384*(*k1)[i]+500./1113*k3[i]+125./192*k4[i]-2187./6784*k5[i]+11./84*k6[i]);
|
||||
}
|
||||
// store in k2, which is not needed anymore
|
||||
ns_rhs(*k2, tmp, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft, irreversible);
|
||||
|
||||
//next step
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
// U: store in k6, which is not needed anymore
|
||||
k6[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+(*delta)*(5179./57600*(*k1)[klookup_sym(kx,ky,K2)]+7571./16695*k3[klookup_sym(kx,ky,K2)]+393./640*k4[klookup_sym(kx,ky,K2)]-92097./339200*k5[klookup_sym(kx,ky,K2)]+187./2100*k6[klookup_sym(kx,ky,K2)]+1./40*(*k2)[klookup_sym(kx,ky,K2)]);
|
||||
}
|
||||
for(i=0;i<USIZE;i++){
|
||||
// U: store in k6, which is not needed anymore
|
||||
k6[i]=u[i]+(*delta)*(5179./57600*(*k1)[i]+7571./16695*k3[i]+393./640*k4[i]-92097./339200*k5[i]+187./2100*k6[i]+1./40*(*k2)[i]);
|
||||
}
|
||||
|
||||
// compute cost
|
||||
@@ -1014,10 +997,8 @@ int ns_step_rkdp54(
|
||||
// compare relative error with tolerance
|
||||
if(cost<tolerance){
|
||||
// add to output
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
u[klookup_sym(kx,ky,K2)]=tmp[klookup_sym(kx,ky,K2)];
|
||||
}
|
||||
for(i=0;i<USIZE;i++){
|
||||
u[i]=tmp[i];
|
||||
}
|
||||
// next delta to use in future steps (do not exceed max_delta)
|
||||
*next_delta=fmin(max_delta, (*delta)*pow(tolerance/cost,0.2));
|
||||
@@ -1030,10 +1011,8 @@ int ns_step_rkdp54(
|
||||
// keep enstrophy constant
|
||||
if(keep_en_cst){
|
||||
double en=compute_enstrophy(u, K1, K2, L);
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
u[klookup_sym(kx,ky,K2)]*=sqrt(target_en/en);
|
||||
}
|
||||
for(i=0;i<USIZE;i++){
|
||||
u[i]*=sqrt(target_en/en);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1138,7 +1117,7 @@ int ns_rhs(
|
||||
alpha=compute_alpha(u,K1,K2,g,L);
|
||||
}
|
||||
|
||||
for(i=0; i<K1*(2*K2+1)+K2; i++){
|
||||
for(i=0; i<USIZE; i++){
|
||||
out[i]=0;
|
||||
}
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
|
||||
@@ -31,10 +31,12 @@ typedef struct fft_vects {
|
||||
} fft_vect;
|
||||
|
||||
// compute u_k
|
||||
int uk( int K1, int K2, int N1, int N2, double final_time, double nu, double delta, double L, double adaptive_tolerance, double adaptive_factor, double max_delta, unsigned int adaptive_cost, _Complex double* u0, _Complex double* g, bool irreversible, bool keep_en_cst, double target_en, unsigned int algorithm, double print_freq, double starting_time, unsigned int nthreadsl, FILE* savefile);
|
||||
int uk( int K1, int K2, int N1, int N2, double final_time, double nu, double delta, double L, double adaptive_tolerance, double adaptive_factor, double max_delta, unsigned int adaptive_cost, _Complex double* u0, _Complex double* g, bool irreversible, bool keep_en_cst, double target_en, unsigned int algorithm, double print_freq, double starting_time, unsigned int nthreadsl, FILE* savefile, FILE* utfile, const char* cmd_string, const char* params_string, const char* savefile_string, const char* utfile_string);
|
||||
|
||||
// compute enstrophy and alpha
|
||||
int enstrophy( int K1, int K2, int N1, int N2, double final_time, double nu, double delta, double L, double adaptive_tolerance, double adaptive_factor, double max_delta, unsigned int adaptive_cost, _Complex double* u0, _Complex double* g, bool irreversible, bool keep_en_cst, double target_en, unsigned int algorithm, double print_freq, double starting_time, bool print_alpha, unsigned int nthreads, FILE* savefile, FILE* utfile, const char* cmd_string, const char* params_string, const char* savefile_string, const char* utfile_string);
|
||||
// compute enstrophy, alpha for the initial condition (useful for debugging)
|
||||
int enstrophy_print_init( int K1, int K2, double L, _Complex double* u0, _Complex double* g);
|
||||
|
||||
// compute solution as a function of time, but do not print anything (useful for debugging)
|
||||
int quiet( int K1, int K2, int N1, int N2, double final_time, double nu, double delta, double L, double adaptive_tolerance, double adaptive_factor, double max_delta, unsigned int adaptive_cost, double starting_time, _Complex double* u0, _Complex double* g, bool irreversible, bool keep_en_cst, double target_en, unsigned int algorithm, unsigned int nthreads, FILE* savefile);
|
||||
|
||||
Reference in New Issue
Block a user