Rewrite: change cli arguments handling
This commit is contained in:
		
							
								
								
									
										17
									
								
								src/driving.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										17
									
								
								src/driving.c
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,17 @@
 | 
			
		||||
#include "driving.h"
 | 
			
		||||
#include <math.h>
 | 
			
		||||
 | 
			
		||||
_Complex double g_test(
 | 
			
		||||
  int kx,
 | 
			
		||||
  int ky
 | 
			
		||||
){
 | 
			
		||||
  //return sqrt(kx*kx*ky*ky)*exp(-(kx*kx+ky*ky));
 | 
			
		||||
  if(kx==2 && ky==-1){
 | 
			
		||||
    return 0.5+sqrt(3)/2*I;
 | 
			
		||||
  }
 | 
			
		||||
  else if(kx==-2 && ky==1){
 | 
			
		||||
     return 0.5-sqrt(3)/2*I;
 | 
			
		||||
  }
 | 
			
		||||
  return 0.;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										8
									
								
								src/driving.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										8
									
								
								src/driving.h
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,8 @@
 | 
			
		||||
#ifndef DRIVING_H
 | 
			
		||||
#define DRIVING_H
 | 
			
		||||
 | 
			
		||||
#include <complex.h>
 | 
			
		||||
 | 
			
		||||
_Complex double g_test( int kx, int ky);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
							
								
								
									
										502
									
								
								src/main.c
									
									
									
									
									
								
							
							
						
						
									
										502
									
								
								src/main.c
									
									
									
									
									
								
							@@ -1,43 +1,77 @@
 | 
			
		||||
#define VERSION "0.0"
 | 
			
		||||
#define VERSION "0.1"
 | 
			
		||||
 | 
			
		||||
#include <math.h>
 | 
			
		||||
#include <complex.h>
 | 
			
		||||
#include <fftw3.h>
 | 
			
		||||
#include <string.h>
 | 
			
		||||
#include <stdlib.h>
 | 
			
		||||
#include <stdbool.h>
 | 
			
		||||
#include "navier-stokes.h"
 | 
			
		||||
#include "driving.h"
 | 
			
		||||
 | 
			
		||||
// usage message
 | 
			
		||||
int print_usage();
 | 
			
		||||
 | 
			
		||||
// read command line arguments
 | 
			
		||||
int read_args(int argc, const char* argv[], ns_params* params, unsigned int* nsteps, unsigned int* computation_nr);
 | 
			
		||||
 | 
			
		||||
// compute enstrophy as a function of time in the I-NS equation
 | 
			
		||||
int enstrophy(ns_params params, unsigned int Nsteps);
 | 
			
		||||
int read_args(int argc, const char* argv[], char** params, unsigned int* driving_force, unsigned int* command);
 | 
			
		||||
int read_params(char* params, int* K1, int* K2, int* N1, int* N2, unsigned int* nsteps, double* nu, double* delta, unsigned int* print_freq);
 | 
			
		||||
int set_parameter(char* lhs, char* rhs, int* K1, int* K2, int* N1, int* N2, unsigned int* nsteps, double* nu, double* delta, unsigned int* print_freq, bool* setN1, bool* setN2);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#define COMPUTATION_ENSTROPHY 1
 | 
			
		||||
int main (int argc, const char* argv[]){
 | 
			
		||||
  ns_params params;
 | 
			
		||||
#define COMMAND_UK 1
 | 
			
		||||
#define COMMAND_ENSTROPHY 2
 | 
			
		||||
 | 
			
		||||
#define DRIVING_TEST 1
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
int main (
 | 
			
		||||
  int argc,
 | 
			
		||||
  const char* argv[]
 | 
			
		||||
){
 | 
			
		||||
  char* params=NULL;
 | 
			
		||||
  int K1,K2;
 | 
			
		||||
  int N1,N2;
 | 
			
		||||
  unsigned int nsteps;
 | 
			
		||||
  double nu,delta;
 | 
			
		||||
  _Complex double (*g)(int,int);
 | 
			
		||||
  int ret;
 | 
			
		||||
  unsigned int computation_nr;
 | 
			
		||||
  unsigned int driving,command;
 | 
			
		||||
  unsigned int print_freq;
 | 
			
		||||
 | 
			
		||||
  // default computation: phase diagram
 | 
			
		||||
  computation_nr=COMPUTATION_ENSTROPHY;
 | 
			
		||||
  command=0;
 | 
			
		||||
  driving=0;
 | 
			
		||||
 | 
			
		||||
  // read command line arguments
 | 
			
		||||
  ret=read_args(argc, argv, ¶ms, &nsteps, &computation_nr);
 | 
			
		||||
  ret=read_args(argc, argv, ¶ms, &driving, &command);
 | 
			
		||||
  if(ret<0){
 | 
			
		||||
    return(-1);
 | 
			
		||||
  }
 | 
			
		||||
  if(ret>0){
 | 
			
		||||
    return(0);
 | 
			
		||||
  // read params
 | 
			
		||||
  ret=read_params(params, &K1, &K2, &N1, &N2, &nsteps, &nu, &delta, &print_freq);
 | 
			
		||||
  if(ret<0){
 | 
			
		||||
    return(-1);
 | 
			
		||||
  }
 | 
			
		||||
  // set driving force
 | 
			
		||||
  switch(driving){
 | 
			
		||||
  case DRIVING_TEST:
 | 
			
		||||
    g=g_test;
 | 
			
		||||
    break;
 | 
			
		||||
 | 
			
		||||
  default:
 | 
			
		||||
    g=g_test;
 | 
			
		||||
    break;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // enstrophy
 | 
			
		||||
  if(computation_nr==COMPUTATION_ENSTROPHY){
 | 
			
		||||
    enstrophy(params, nsteps);
 | 
			
		||||
  // run command
 | 
			
		||||
  if (command==COMMAND_UK){
 | 
			
		||||
    uk(K1, K2, N1, N2, nsteps, nu, delta, g, print_freq);
 | 
			
		||||
  }
 | 
			
		||||
  else if(command==COMMAND_ENSTROPHY){
 | 
			
		||||
    enstrophy(K1, K2, N1, N2, nsteps, nu, delta, g, print_freq);
 | 
			
		||||
  }
 | 
			
		||||
  else if(command==0){
 | 
			
		||||
    fprintf(stderr, "error: no command specified\n");
 | 
			
		||||
    print_usage();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  return(0);
 | 
			
		||||
@@ -45,44 +79,25 @@ int main (int argc, const char* argv[]){
 | 
			
		||||
 | 
			
		||||
// usage message
 | 
			
		||||
int print_usage(){
 | 
			
		||||
  fprintf(stderr, "usage:\n       nstrophy enstrophy [-h timestep] [-K modes] [-v] [-N nsteps]\n\n       nstrophy -V [-v]\n\n");
 | 
			
		||||
  fprintf(stderr, "usage:\n       nstrophy [-p parameters] [-g driving_force] <command>\n\n");
 | 
			
		||||
  return(0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// read command line arguments
 | 
			
		||||
#define CP_FLAG_TIMESTEP 1
 | 
			
		||||
#define CP_FLAG_NSTEPS 2
 | 
			
		||||
#define CP_FLAG_MODES 3
 | 
			
		||||
#define CP_FLAG_NU 4
 | 
			
		||||
int read_args(int argc, const char* argv[], ns_params* params, unsigned int* nsteps, unsigned int* computation_nr){
 | 
			
		||||
#define CP_FLAG_PARAMS 1
 | 
			
		||||
#define CP_FLAG_DRIVING 2
 | 
			
		||||
int read_args(
 | 
			
		||||
  int argc,
 | 
			
		||||
  const char* argv[],
 | 
			
		||||
  char** params,
 | 
			
		||||
  unsigned int* driving_force,
 | 
			
		||||
  unsigned int* command
 | 
			
		||||
){
 | 
			
		||||
  int i;
 | 
			
		||||
  int ret;
 | 
			
		||||
  // temporary int
 | 
			
		||||
  int tmp_int;
 | 
			
		||||
  // temporary unsigned int
 | 
			
		||||
  unsigned int tmp_uint;
 | 
			
		||||
  // temporary double
 | 
			
		||||
  double tmp_double;
 | 
			
		||||
  // pointers
 | 
			
		||||
  char* ptr;
 | 
			
		||||
  // flag that indicates what argument is being read
 | 
			
		||||
  int flag=0;
 | 
			
		||||
  // print version and exit
 | 
			
		||||
  char Vflag=0;
 | 
			
		||||
 | 
			
		||||
  // defaults
 | 
			
		||||
  /*
 | 
			
		||||
  params->K=16;
 | 
			
		||||
  params->h=1e-3/(2*params->K+1);
 | 
			
		||||
  *nsteps=10000000;
 | 
			
		||||
  params->nu=1./1024/(2*params->K+1);
 | 
			
		||||
  */
 | 
			
		||||
  params->K=16;
 | 
			
		||||
  //h=2^-13
 | 
			
		||||
  params->h=0.0001220703125;
 | 
			
		||||
  //nu=2^-11
 | 
			
		||||
  *nsteps=10000000;
 | 
			
		||||
  params->nu=0.00048828125;
 | 
			
		||||
 | 
			
		||||
  // loop over arguments
 | 
			
		||||
  for(i=1;i<argc;i++){
 | 
			
		||||
@@ -91,24 +106,12 @@ int read_args(int argc, const char* argv[], ns_params* params, unsigned int* nst
 | 
			
		||||
      for(ptr=((char*)argv[i])+1;*ptr!='\0';ptr++){
 | 
			
		||||
	switch(*ptr){
 | 
			
		||||
	// timestep
 | 
			
		||||
	case 'h':
 | 
			
		||||
	  flag=CP_FLAG_TIMESTEP;
 | 
			
		||||
	case 'p':
 | 
			
		||||
	  flag=CP_FLAG_PARAMS;
 | 
			
		||||
	  break;
 | 
			
		||||
	// nsteps
 | 
			
		||||
	case 'N':
 | 
			
		||||
	  flag=CP_FLAG_NSTEPS;
 | 
			
		||||
	  break;
 | 
			
		||||
	// modes
 | 
			
		||||
	case 'K':
 | 
			
		||||
	  flag=CP_FLAG_MODES;
 | 
			
		||||
	  break;
 | 
			
		||||
	// friction
 | 
			
		||||
	case 'n':
 | 
			
		||||
	  flag=CP_FLAG_NU;
 | 
			
		||||
	  break;
 | 
			
		||||
	// print version
 | 
			
		||||
	case 'V':
 | 
			
		||||
	  Vflag=1;
 | 
			
		||||
	case 'g':
 | 
			
		||||
	  flag=CP_FLAG_DRIVING;
 | 
			
		||||
	  break;
 | 
			
		||||
	default:
 | 
			
		||||
	  fprintf(stderr, "unrecognized option '-%c'\n", *ptr);
 | 
			
		||||
@@ -118,206 +121,241 @@ int read_args(int argc, const char* argv[], ns_params* params, unsigned int* nst
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    // timestep
 | 
			
		||||
    else if(flag==CP_FLAG_TIMESTEP){
 | 
			
		||||
      ret=sscanf(argv[i],"%lf",&tmp_double);
 | 
			
		||||
      if(ret!=1){
 | 
			
		||||
	fprintf(stderr, "error: '-h' should be followed by a double\n       got '%s'\n",argv[i]);
 | 
			
		||||
	return(-1);
 | 
			
		||||
      }
 | 
			
		||||
      params->h=tmp_double;
 | 
			
		||||
    // params
 | 
			
		||||
    else if(flag==CP_FLAG_PARAMS){
 | 
			
		||||
      *params=(char*)argv[i];
 | 
			
		||||
      flag=0;
 | 
			
		||||
    }
 | 
			
		||||
    // nsteps
 | 
			
		||||
    else if(flag==CP_FLAG_NSTEPS){
 | 
			
		||||
      ret=sscanf(argv[i],"%u",&tmp_uint);
 | 
			
		||||
      if(ret!=1){
 | 
			
		||||
	fprintf(stderr, "error: '-N' should be followed by an unsigned int\n       got '%s'\n",argv[i]);
 | 
			
		||||
    // driving force
 | 
			
		||||
    else if(flag==CP_FLAG_DRIVING){
 | 
			
		||||
      if (strcmp(argv[i],"test")==0){
 | 
			
		||||
	*driving_force=DRIVING_TEST;
 | 
			
		||||
      }
 | 
			
		||||
      else{
 | 
			
		||||
	fprintf(stderr, "error: unrecognized driving force '%s'\n",argv[i]);
 | 
			
		||||
	return(-1);
 | 
			
		||||
      }
 | 
			
		||||
      *nsteps=tmp_uint;
 | 
			
		||||
      flag=0;
 | 
			
		||||
    }
 | 
			
		||||
    // modes
 | 
			
		||||
    else if(flag==CP_FLAG_MODES){
 | 
			
		||||
      ret=sscanf(argv[i],"%d",&tmp_int);
 | 
			
		||||
      if(ret!=1){
 | 
			
		||||
	fprintf(stderr, "error: '-K' should be followed by an int\n       got '%s'\n",argv[i]);
 | 
			
		||||
	return(-1);
 | 
			
		||||
      }
 | 
			
		||||
      params->K=tmp_int;
 | 
			
		||||
      flag=0;
 | 
			
		||||
    }
 | 
			
		||||
    // friction
 | 
			
		||||
    else if(flag==CP_FLAG_TIMESTEP){
 | 
			
		||||
      ret=sscanf(argv[i],"%lf",&tmp_double);
 | 
			
		||||
      if(ret!=1){
 | 
			
		||||
	fprintf(stderr, "error: '-n' should be followed by a double\n       got '%s'\n",argv[i]);
 | 
			
		||||
	return(-1);
 | 
			
		||||
      }
 | 
			
		||||
      params->nu=tmp_double;
 | 
			
		||||
      flag=0;
 | 
			
		||||
    }
 | 
			
		||||
    // computation to run
 | 
			
		||||
    else{
 | 
			
		||||
      if(strcmp(argv[i], "enstrophy")==0){
 | 
			
		||||
	*computation_nr=COMPUTATION_ENSTROPHY;
 | 
			
		||||
      if(strcmp(argv[i], "uk")==0){
 | 
			
		||||
	*command=COMMAND_UK;
 | 
			
		||||
      }
 | 
			
		||||
      else if(strcmp(argv[i], "enstrophy")==0){
 | 
			
		||||
	*command=COMMAND_ENSTROPHY;
 | 
			
		||||
      }
 | 
			
		||||
      else{
 | 
			
		||||
	fprintf(stderr, "error: unrecognized computation: '%s'\n",argv[i]);
 | 
			
		||||
	print_usage();
 | 
			
		||||
	fprintf(stderr, "error: unrecognized command: '%s'\n",argv[i]);
 | 
			
		||||
	return(-1);
 | 
			
		||||
      }
 | 
			
		||||
      flag=0;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // print version and exit
 | 
			
		||||
  if(Vflag==1){
 | 
			
		||||
    printf("nstrophy " VERSION "\n");
 | 
			
		||||
    return(1);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  return(0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// compute enstrophy as a function of time in the I-NS equation
 | 
			
		||||
int enstrophy(ns_params params, unsigned int Nsteps){
 | 
			
		||||
  _Complex double* u;
 | 
			
		||||
  _Complex double* tmp1;
 | 
			
		||||
  _Complex double* tmp2;
 | 
			
		||||
  _Complex double* tmp3;
 | 
			
		||||
  _Complex double alpha;
 | 
			
		||||
  _Complex double avg;
 | 
			
		||||
  unsigned int t;
 | 
			
		||||
  int kx,ky;
 | 
			
		||||
  fft_vects fft_vects;
 | 
			
		||||
  double rescale;
 | 
			
		||||
// read parameters string
 | 
			
		||||
int read_params(
 | 
			
		||||
  char* params,
 | 
			
		||||
  int* K1,
 | 
			
		||||
  int* K2,
 | 
			
		||||
  int* N1,
 | 
			
		||||
  int* N2,
 | 
			
		||||
  unsigned int* nsteps,
 | 
			
		||||
  double* nu,
 | 
			
		||||
  double* delta,
 | 
			
		||||
  unsigned int* print_freq
 | 
			
		||||
){
 | 
			
		||||
  int ret;
 | 
			
		||||
  // pointer in params
 | 
			
		||||
  char* ptr;
 | 
			
		||||
  // buffer and associated pointer
 | 
			
		||||
  char *buffer_lhs, *lhs_ptr;
 | 
			
		||||
  char *buffer_rhs, *rhs_ptr;
 | 
			
		||||
  // whether N was set explicitly
 | 
			
		||||
  bool setN1=false;
 | 
			
		||||
  bool setN2=false;
 | 
			
		||||
  // whether lhs (false is rhs)
 | 
			
		||||
  bool lhs=true;
 | 
			
		||||
 | 
			
		||||
  // sizes
 | 
			
		||||
  params.S=2*params.K+1;
 | 
			
		||||
  params.N=4*params.K+1;
 | 
			
		||||
  // defaults
 | 
			
		||||
  *K1=16;
 | 
			
		||||
  *K2=*K1;
 | 
			
		||||
  //delta=2^-13
 | 
			
		||||
  *delta=0.0001220703125;
 | 
			
		||||
  //nu=2^-11
 | 
			
		||||
  *nu=0.00048828125;
 | 
			
		||||
  *nsteps=10000000;
 | 
			
		||||
  *print_freq=1000;
 | 
			
		||||
 | 
			
		||||
  // velocity field
 | 
			
		||||
  u=calloc(sizeof(_Complex double),params.S*params.S);
 | 
			
		||||
  params.g=calloc(sizeof(_Complex double),params.S*params.S);
 | 
			
		||||
  // allocate tmp vectors for computation
 | 
			
		||||
  tmp1=calloc(sizeof(_Complex double),params.S*params.S);
 | 
			
		||||
  tmp2=calloc(sizeof(_Complex double),params.S*params.S);
 | 
			
		||||
  tmp3=calloc(sizeof(_Complex double),params.S*params.S);
 | 
			
		||||
  if (params!=NULL){
 | 
			
		||||
    // init
 | 
			
		||||
    buffer_lhs=calloc(sizeof(char),strlen(params));
 | 
			
		||||
    lhs_ptr=buffer_lhs;
 | 
			
		||||
    *lhs_ptr='\0';
 | 
			
		||||
    buffer_rhs=calloc(sizeof(char),strlen(params));
 | 
			
		||||
    rhs_ptr=buffer_rhs;
 | 
			
		||||
    *rhs_ptr='\0';
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
  srand(17);
 | 
			
		||||
 | 
			
		||||
  // initial value
 | 
			
		||||
  for(ky=0;ky<=params.K;ky++){
 | 
			
		||||
    u[KLOOKUP(0,ky,params.S)]=(-RAND_MAX*0.5+rand())*1.0/RAND_MAX+(-RAND_MAX*0.5+rand())*1.0/RAND_MAX*I;
 | 
			
		||||
    for(ptr=params;*ptr!='\0';ptr++){
 | 
			
		||||
      switch(*ptr){
 | 
			
		||||
      case '=':
 | 
			
		||||
	// reset buffer
 | 
			
		||||
	rhs_ptr=buffer_rhs;
 | 
			
		||||
	*rhs_ptr='\0';
 | 
			
		||||
	lhs=false;
 | 
			
		||||
	break;
 | 
			
		||||
      case ';':
 | 
			
		||||
	//set parameter
 | 
			
		||||
	ret=set_parameter(buffer_lhs,buffer_rhs,K1,K2,N1,N2,nsteps,nu,delta,print_freq,&setN1,&setN2);
 | 
			
		||||
	if(ret<0){
 | 
			
		||||
	  return ret;
 | 
			
		||||
	}
 | 
			
		||||
  for(kx=1;kx<=params.K;kx++){
 | 
			
		||||
    for(ky=-params.K;ky<=params.K;ky++){
 | 
			
		||||
      u[KLOOKUP(kx,ky,params.S)]=(-RAND_MAX*0.5+rand())*1.0/RAND_MAX+(-RAND_MAX*0.5+rand())*1.0/RAND_MAX*I;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  for(ky=-params.K;ky<=-1;ky++){
 | 
			
		||||
    u[KLOOKUP(0,ky,params.S)]=conj(u[KLOOKUP(0,-ky,params.S)]);
 | 
			
		||||
  }
 | 
			
		||||
  for(kx=-params.K;kx<=-1;kx++){
 | 
			
		||||
    for(ky=-params.K;ky<=params.K;ky++){
 | 
			
		||||
      u[KLOOKUP(kx,ky,params.S)]=conj(u[KLOOKUP(-kx,-ky,params.S)]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  rescale=0;
 | 
			
		||||
  for(kx=-params.K;kx<=params.K;kx++){
 | 
			
		||||
    for(ky=-params.K;ky<=params.K;ky++){
 | 
			
		||||
      rescale=rescale+((__real__ u[KLOOKUP(kx,ky,params.S)])*(__real__ u[KLOOKUP(kx,ky,params.S)])+(__imag__ u[KLOOKUP(kx,ky,params.S)])*(__imag__ u[KLOOKUP(kx,ky,params.S)]))*(kx*kx+ky*ky);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  for(kx=-params.K;kx<=params.K;kx++){
 | 
			
		||||
    for(ky=-params.K;ky<=params.K;ky++){
 | 
			
		||||
      u[KLOOKUP(kx,ky,params.S)]=u[KLOOKUP(kx,ky,params.S)]*sqrt(155.1/rescale);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  */
 | 
			
		||||
  /*
 | 
			
		||||
  for(kx=-params.K;kx<=params.K;kx++){
 | 
			
		||||
    for(ky=-params.K;ky<=params.K;ky++){
 | 
			
		||||
      u[KLOOKUP(kx,ky,params.S)]=1.;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  */
 | 
			
		||||
  for(kx=-params.K;kx<=params.K;kx++){
 | 
			
		||||
    for(ky=-params.K;ky<=params.K;ky++){
 | 
			
		||||
      u[KLOOKUP(kx,ky,params.S)]=exp(-sqrt(kx*kx+ky*ky));
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  // driving force
 | 
			
		||||
  for(kx=-params.K;kx<=params.K;kx++){
 | 
			
		||||
    for(ky=-params.K;ky<=params.K;ky++){
 | 
			
		||||
      //params.g[KLOOKUP(kx,ky,params.S)]=sqrt(kx*kx*ky*ky)*exp(-(kx*kx+ky*ky));
 | 
			
		||||
      if(kx==2 && ky==-1){
 | 
			
		||||
	params.g[KLOOKUP(kx,ky,params.S)]=0.5+sqrt(3)/2*I;
 | 
			
		||||
      }
 | 
			
		||||
      else if(kx==-2 && ky==1){
 | 
			
		||||
	params.g[KLOOKUP(kx,ky,params.S)]=0.5-sqrt(3)/2*I;
 | 
			
		||||
	// reset buffer
 | 
			
		||||
	lhs_ptr=buffer_lhs;
 | 
			
		||||
	*lhs_ptr='\0';
 | 
			
		||||
	lhs=true;
 | 
			
		||||
	break;
 | 
			
		||||
      default:
 | 
			
		||||
	// add to buffer
 | 
			
		||||
	if (lhs){
 | 
			
		||||
	  *lhs_ptr=*ptr;
 | 
			
		||||
	  lhs_ptr++;
 | 
			
		||||
	  *lhs_ptr='\0';
 | 
			
		||||
	}
 | 
			
		||||
	else{
 | 
			
		||||
	params.g[KLOOKUP(kx,ky,params.S)]=0;
 | 
			
		||||
	  *rhs_ptr=*ptr;
 | 
			
		||||
	  rhs_ptr++;
 | 
			
		||||
	  *rhs_ptr='\0';
 | 
			
		||||
	}
 | 
			
		||||
	break;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // set last param
 | 
			
		||||
    if (*params!='\0'){
 | 
			
		||||
      ret=set_parameter(buffer_lhs,buffer_rhs,K1,K2,N1,N2,nsteps,nu,delta,print_freq,&setN1,&setN2);
 | 
			
		||||
      if(ret<0){
 | 
			
		||||
	return ret;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
  // prepare vectors for fft
 | 
			
		||||
  fft_vects.fft1=fftw_malloc(sizeof(fftw_complex)*params.N*params.N);
 | 
			
		||||
  fft_vects.fft1_plan=fftw_plan_dft_2d((int)params.N,(int)params.N, fft_vects.fft1, fft_vects.fft1, FFTW_FORWARD, FFTW_MEASURE);
 | 
			
		||||
  fft_vects.fft2=fftw_malloc(sizeof(fftw_complex)*params.N*params.N);
 | 
			
		||||
  fft_vects.fft2_plan=fftw_plan_dft_2d((int)params.N,(int)params.N, fft_vects.fft2, fft_vects.fft2, FFTW_FORWARD, FFTW_MEASURE);
 | 
			
		||||
  fft_vects.invfft=fftw_malloc(sizeof(fftw_complex)*params.N*params.N);
 | 
			
		||||
  fft_vects.invfft_plan=fftw_plan_dft_2d((int)params.N,(int)params.N, fft_vects.invfft, fft_vects.invfft, FFTW_BACKWARD, FFTW_MEASURE);
 | 
			
		||||
 | 
			
		||||
  // init running average
 | 
			
		||||
  avg=0;
 | 
			
		||||
 | 
			
		||||
  // iterate
 | 
			
		||||
  for(t=0;t<Nsteps;t++){
 | 
			
		||||
    ins_step(u, params, fft_vects, tmp1, tmp2, tmp3);
 | 
			
		||||
    alpha=compute_alpha(u, params);
 | 
			
		||||
    
 | 
			
		||||
    /*
 | 
			
		||||
    // to avoid errors building up in imaginary part
 | 
			
		||||
    for(kx=-params.K;kx<=params.K;kx++){
 | 
			
		||||
      for(ky=-params.K;ky<=params.K;ky++){
 | 
			
		||||
	u[KLOOKUP(kx,ky,params.S)]=__real__ u[KLOOKUP(kx,ky,params.S)];
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    */
 | 
			
		||||
 | 
			
		||||
    // running average
 | 
			
		||||
    if(t>0){
 | 
			
		||||
      avg=avg-(avg-alpha)/t;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if(t>0 && t%1000==0){
 | 
			
		||||
      fprintf(stderr,"% .15e % .15e % .15e % .15e % .15e\n",t*params.h, __real__ avg, __imag__ avg, __real__ alpha, __imag__ alpha);
 | 
			
		||||
      printf("% .15e % .15e % .15e % .15e % .15e\n",t*params.h, __real__ avg, __imag__ avg, __real__ alpha, __imag__ alpha);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // free memory
 | 
			
		||||
  fftw_destroy_plan(fft_vects.fft1_plan);
 | 
			
		||||
  fftw_destroy_plan(fft_vects.fft2_plan);
 | 
			
		||||
  fftw_destroy_plan(fft_vects.invfft_plan);
 | 
			
		||||
  fftw_free(fft_vects.fft1);
 | 
			
		||||
  fftw_free(fft_vects.fft2);
 | 
			
		||||
  fftw_free(fft_vects.invfft);
 | 
			
		||||
 | 
			
		||||
  free(tmp3);
 | 
			
		||||
  free(tmp2);
 | 
			
		||||
  free(tmp1);
 | 
			
		||||
  free(params.g);
 | 
			
		||||
  free(u);
 | 
			
		||||
    // free vects
 | 
			
		||||
    free(buffer_lhs);
 | 
			
		||||
    free(buffer_rhs);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // if N not set explicitly, set it
 | 
			
		||||
  if (!setN1){
 | 
			
		||||
    *N1=4*(*K1)+1;
 | 
			
		||||
  }
 | 
			
		||||
  if (!setN2){
 | 
			
		||||
    *N2=4*(*K2)+1;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  return(0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// set a parameter from the parameter string
 | 
			
		||||
int set_parameter(
 | 
			
		||||
  char* lhs,
 | 
			
		||||
  char* rhs,
 | 
			
		||||
  int* K1,
 | 
			
		||||
  int* K2,
 | 
			
		||||
  int* N1,
 | 
			
		||||
  int* N2,
 | 
			
		||||
  unsigned int* nsteps,
 | 
			
		||||
  double* nu,
 | 
			
		||||
  double* delta,
 | 
			
		||||
  unsigned int* print_freq,
 | 
			
		||||
  bool* setN1,
 | 
			
		||||
  bool* setN2
 | 
			
		||||
){
 | 
			
		||||
  int ret;
 | 
			
		||||
 | 
			
		||||
  if (strcmp(lhs,"K1")==0){
 | 
			
		||||
    ret=sscanf(rhs,"%d",K1);
 | 
			
		||||
    if(ret!=1){
 | 
			
		||||
      fprintf(stderr, "error: parameter 'K1' should be an integer\n       got '%s'\n",rhs);
 | 
			
		||||
      return(-1);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  else if (strcmp(lhs,"K2")==0){
 | 
			
		||||
    ret=sscanf(rhs,"%d",K2);
 | 
			
		||||
    if(ret!=1){
 | 
			
		||||
      fprintf(stderr, "error: parameter 'K2' should be an integer\n       got '%s'\n",rhs);
 | 
			
		||||
      return(-1);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  else if (strcmp(lhs,"K")==0){
 | 
			
		||||
    ret=sscanf(rhs,"%d",K1);
 | 
			
		||||
    if(ret!=1){
 | 
			
		||||
      fprintf(stderr, "error: parameter 'K' should be an integer\n       got '%s'\n",rhs);
 | 
			
		||||
      return(-1);
 | 
			
		||||
    }
 | 
			
		||||
    *K2=*K1;
 | 
			
		||||
  }
 | 
			
		||||
  else if (strcmp(lhs,"N1")==0){
 | 
			
		||||
    ret=sscanf(rhs,"%d",N1);
 | 
			
		||||
    if(ret!=1){
 | 
			
		||||
      fprintf(stderr, "error: parameter 'N1' should be an integer\n       got '%s'\n",rhs);
 | 
			
		||||
      return(-1);
 | 
			
		||||
    }
 | 
			
		||||
    *setN1=true;
 | 
			
		||||
  }
 | 
			
		||||
  else if (strcmp(lhs,"N2")==0){
 | 
			
		||||
    ret=sscanf(rhs,"%d",N2);
 | 
			
		||||
    if(ret!=1){
 | 
			
		||||
      fprintf(stderr, "error: parameter 'N2' should be an integer\n       got '%s'\n",rhs);
 | 
			
		||||
      return(-1);
 | 
			
		||||
    }
 | 
			
		||||
    *setN2=true;
 | 
			
		||||
  }
 | 
			
		||||
  else if (strcmp(lhs,"N")==0){
 | 
			
		||||
    ret=sscanf(rhs,"%d",N1);
 | 
			
		||||
    if(ret!=1){
 | 
			
		||||
      fprintf(stderr, "error: parameter 'N' should be an integer\n       got '%s'\n",rhs);
 | 
			
		||||
      return(-1);
 | 
			
		||||
    }
 | 
			
		||||
    *N2=*N1;
 | 
			
		||||
    *setN1=true;
 | 
			
		||||
    *setN2=true;
 | 
			
		||||
  }
 | 
			
		||||
  else if (strcmp(lhs,"nsteps")==0){
 | 
			
		||||
    ret=sscanf(rhs,"%u",nsteps);
 | 
			
		||||
    if(ret!=1){
 | 
			
		||||
      fprintf(stderr, "error: parameter 'nsteps' should be an unsigned integer\n       got '%s'\n",rhs);
 | 
			
		||||
      return(-1);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  else if (strcmp(lhs,"nu")==0){
 | 
			
		||||
    ret=sscanf(rhs,"%lf",nu);
 | 
			
		||||
    if(ret!=1){
 | 
			
		||||
      fprintf(stderr, "error: parameter 'nu' should be a double\n       got '%s'\n",rhs);
 | 
			
		||||
      return(-1);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  else if (strcmp(lhs,"delta")==0){
 | 
			
		||||
    ret=sscanf(rhs,"%lf",delta);
 | 
			
		||||
    if(ret!=1){
 | 
			
		||||
      fprintf(stderr, "error: parameter 'delta' should be a double\n       got '%s'\n",rhs);
 | 
			
		||||
      return(-1);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  else if (strcmp(lhs,"print_freq")==0){
 | 
			
		||||
    ret=sscanf(rhs,"%u",print_freq);
 | 
			
		||||
    if(ret!=1){
 | 
			
		||||
      fprintf(stderr, "error: parameter 'print_freq' should be an unsigned integer\n       got '%s'\n",rhs);
 | 
			
		||||
      return(-1);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  else{
 | 
			
		||||
    fprintf(stderr, "error: unrecognized parameter '%s'\n",lhs);
 | 
			
		||||
    return(-1);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  return(0);
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
@@ -1,63 +1,311 @@
 | 
			
		||||
#include "navier-stokes.h"
 | 
			
		||||
#include <math.h>
 | 
			
		||||
#include <stdlib.h>
 | 
			
		||||
 | 
			
		||||
#define M_PI 3.14159265358979323846
 | 
			
		||||
 | 
			
		||||
// compute solution as a function of time
 | 
			
		||||
int uk(
 | 
			
		||||
  int K1,
 | 
			
		||||
  int K2,
 | 
			
		||||
  int N1,
 | 
			
		||||
  int N2,
 | 
			
		||||
  unsigned int nsteps,
 | 
			
		||||
  double nu,
 | 
			
		||||
  double delta,
 | 
			
		||||
  _Complex double (*g)(int,int),
 | 
			
		||||
  unsigned int print_freq
 | 
			
		||||
){
 | 
			
		||||
  _Complex double* u;
 | 
			
		||||
  _Complex double* tmp1;
 | 
			
		||||
  _Complex double* tmp2;
 | 
			
		||||
  _Complex double* tmp3;
 | 
			
		||||
  unsigned int t;
 | 
			
		||||
  fft_vect fft1;
 | 
			
		||||
  fft_vect fft2;
 | 
			
		||||
  fft_vect ifft;
 | 
			
		||||
  int kx,ky;
 | 
			
		||||
 | 
			
		||||
  ns_init_tmps(&u, &tmp1, &tmp2, &tmp3, &fft1, &fft2, &ifft, K1, K2, N1, N2);
 | 
			
		||||
  ns_init_u(u, K1, K2);
 | 
			
		||||
 | 
			
		||||
  // iterate
 | 
			
		||||
  for(t=0;t<nsteps;t++){
 | 
			
		||||
    ins_step(u, K1, K2, N1, N2, nu, delta, g, fft1, fft2, ifft, tmp1, tmp2, tmp3);
 | 
			
		||||
    
 | 
			
		||||
    if(t%print_freq==0){
 | 
			
		||||
      fprintf(stderr,"% .8e ",t*delta);
 | 
			
		||||
      printf("% .15e ",t*delta);
 | 
			
		||||
 | 
			
		||||
      for(kx=-K1;kx<=K1;kx++){
 | 
			
		||||
	for (ky=-K2;ky<=K2;ky++){
 | 
			
		||||
	  if (kx*kx+ky*ky<=1){
 | 
			
		||||
	    fprintf(stderr,"% .8e % .8e ",__real__ u[klookup(kx,ky,2*K1+1,2*K2+1)], __imag__ u[klookup(kx,ky,2*K1+1,2*K2+1)]);
 | 
			
		||||
	    
 | 
			
		||||
	  }
 | 
			
		||||
	  printf("% .8e % .8e ",__real__ u[klookup(kx,ky,2*K1+1,2*K2+1)], __imag__ u[klookup(kx,ky,2*K1+1,2*K2+1)]);
 | 
			
		||||
	}
 | 
			
		||||
      }
 | 
			
		||||
      fprintf(stderr,"\n");
 | 
			
		||||
      printf("\n");
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ns_free_tmps(u, tmp1, tmp2, tmp3, fft1, fft2, ifft);
 | 
			
		||||
  return(0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// compute enstrophy as a function of time in the I-NS equation
 | 
			
		||||
int enstrophy(
 | 
			
		||||
  int K1,
 | 
			
		||||
  int K2,
 | 
			
		||||
  int N1,
 | 
			
		||||
  int N2,
 | 
			
		||||
  unsigned int nsteps,
 | 
			
		||||
  double nu,
 | 
			
		||||
  double delta,
 | 
			
		||||
  _Complex double (*g)(int,int),
 | 
			
		||||
  unsigned int print_freq
 | 
			
		||||
){
 | 
			
		||||
  _Complex double* u;
 | 
			
		||||
  _Complex double* tmp1;
 | 
			
		||||
  _Complex double* tmp2;
 | 
			
		||||
  _Complex double* tmp3;
 | 
			
		||||
  _Complex double alpha;
 | 
			
		||||
  _Complex double avg;
 | 
			
		||||
  unsigned int t;
 | 
			
		||||
  fft_vect fft1;
 | 
			
		||||
  fft_vect fft2;
 | 
			
		||||
  fft_vect ifft;
 | 
			
		||||
 | 
			
		||||
  ns_init_tmps(&u, &tmp1, &tmp2, &tmp3, &fft1, &fft2, &ifft, K1, K2, N1, N2);
 | 
			
		||||
  ns_init_u(u, K1, K2);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  // init running average
 | 
			
		||||
  avg=0;
 | 
			
		||||
 | 
			
		||||
  // iterate
 | 
			
		||||
  for(t=0;t<nsteps;t++){
 | 
			
		||||
    ins_step(u, K1, K2, N1, N2, nu, delta, g, fft1, fft2, ifft, tmp1, tmp2, tmp3);
 | 
			
		||||
    alpha=compute_alpha(u, K1, K2, g);
 | 
			
		||||
    
 | 
			
		||||
    // running average
 | 
			
		||||
    if(t>0){
 | 
			
		||||
      avg=avg-(avg-alpha)/t;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if(t>0 && t%print_freq==0){
 | 
			
		||||
      fprintf(stderr,"% .15e % .15e % .15e % .15e % .15e\n",t*delta, __real__ avg, __imag__ avg, __real__ alpha, __imag__ alpha);
 | 
			
		||||
      printf("% .15e % .15e % .15e % .15e % .15e\n",t*delta, __real__ avg, __imag__ avg, __real__ alpha, __imag__ alpha);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  ns_free_tmps(u, tmp1, tmp2, tmp3, fft1, fft2, ifft);
 | 
			
		||||
  return(0);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// initialize vectors for computation
 | 
			
		||||
int  ns_init_tmps(
 | 
			
		||||
  _Complex double ** u,
 | 
			
		||||
  _Complex double ** tmp1,
 | 
			
		||||
  _Complex double ** tmp2,
 | 
			
		||||
  _Complex double ** tmp3,
 | 
			
		||||
  fft_vect* fft1,
 | 
			
		||||
  fft_vect* fft2,
 | 
			
		||||
  fft_vect* ifft,
 | 
			
		||||
  int K1,
 | 
			
		||||
  int K2,
 | 
			
		||||
  int N1,
 | 
			
		||||
  int N2
 | 
			
		||||
){
 | 
			
		||||
  // velocity field
 | 
			
		||||
  *u=calloc(sizeof(_Complex double),(2*K1+1)*(2*K2+1));
 | 
			
		||||
 | 
			
		||||
  // allocate tmp vectors for computation
 | 
			
		||||
  *tmp1=calloc(sizeof(_Complex double),(2*K1+1)*(2*K2+1));
 | 
			
		||||
  *tmp2=calloc(sizeof(_Complex double),(2*K1+1)*(2*K2+1));
 | 
			
		||||
  *tmp3=calloc(sizeof(_Complex double),(2*K1+1)*(2*K2+1));
 | 
			
		||||
 | 
			
		||||
  // prepare vectors for fft
 | 
			
		||||
  fft1->fft=fftw_malloc(sizeof(fftw_complex)*N1*N2);
 | 
			
		||||
  fft1->fft_plan=fftw_plan_dft_2d(N1,N2, fft1->fft, fft1->fft, FFTW_FORWARD, FFTW_MEASURE);
 | 
			
		||||
  fft2->fft=fftw_malloc(sizeof(fftw_complex)*N1*N2);
 | 
			
		||||
  fft2->fft_plan=fftw_plan_dft_2d(N1,N2, fft2->fft, fft2->fft, FFTW_FORWARD, FFTW_MEASURE);
 | 
			
		||||
  ifft->fft=fftw_malloc(sizeof(fftw_complex)*N1*N2);
 | 
			
		||||
  ifft->fft_plan=fftw_plan_dft_2d(N1,N2, ifft->fft, ifft->fft, FFTW_BACKWARD, FFTW_MEASURE);
 | 
			
		||||
 | 
			
		||||
  return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// release vectors
 | 
			
		||||
int ns_free_tmps(
 | 
			
		||||
  _Complex double* u,
 | 
			
		||||
  _Complex double* tmp1,
 | 
			
		||||
  _Complex double* tmp2,
 | 
			
		||||
  _Complex double* tmp3,
 | 
			
		||||
  fft_vect fft1,
 | 
			
		||||
  fft_vect fft2,
 | 
			
		||||
  fft_vect ifft
 | 
			
		||||
){
 | 
			
		||||
  // free memory
 | 
			
		||||
  fftw_destroy_plan(fft1.fft_plan);
 | 
			
		||||
  fftw_destroy_plan(fft2.fft_plan);
 | 
			
		||||
  fftw_destroy_plan(ifft.fft_plan);
 | 
			
		||||
  fftw_free(fft1.fft);
 | 
			
		||||
  fftw_free(fft2.fft);
 | 
			
		||||
  fftw_free(ifft.fft);
 | 
			
		||||
 | 
			
		||||
  fftw_cleanup();
 | 
			
		||||
 | 
			
		||||
  free(tmp3);
 | 
			
		||||
  free(tmp2);
 | 
			
		||||
  free(tmp1);
 | 
			
		||||
 | 
			
		||||
  free(u);
 | 
			
		||||
 | 
			
		||||
  return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// initial value
 | 
			
		||||
int ns_init_u(
 | 
			
		||||
  _Complex double* u,
 | 
			
		||||
  int K1,
 | 
			
		||||
  int K2
 | 
			
		||||
){
 | 
			
		||||
  int kx,ky;
 | 
			
		||||
  /*
 | 
			
		||||
  double rescale;
 | 
			
		||||
 | 
			
		||||
  srand(17);
 | 
			
		||||
 | 
			
		||||
  // random init (set half, then the other half are the conjugates)
 | 
			
		||||
  for(ky=0;ky<=K2;ky++){
 | 
			
		||||
    u[klookup(0,ky,2*K1+1,2*K2+1)]=(-RAND_MAX*0.5+rand())*1.0/RAND_MAX+(-RAND_MAX*0.5+rand())*1.0/RAND_MAX*I;
 | 
			
		||||
  }
 | 
			
		||||
  for(kx=1;kx<=K1;kx++){
 | 
			
		||||
    for(ky=-K2;ky<=K2;ky++){
 | 
			
		||||
      u[klookup(kx,ky,2*K1+1,2*K2+1)]=(-RAND_MAX*0.5+rand())*1.0/RAND_MAX+(-RAND_MAX*0.5+rand())*1.0/RAND_MAX*I;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  // conjugates
 | 
			
		||||
  for(ky=-K2;ky<=-1;ky++){
 | 
			
		||||
    u[klookup(0,ky,2*K1+1,2*K2+1)]=conj(u[klookup(0,-ky,2*K1+1,2*K2+1)]);
 | 
			
		||||
  }
 | 
			
		||||
  for(kx=-K1;kx<=-1;kx++){
 | 
			
		||||
    for(ky=-K2;ky<=K2;ky++){
 | 
			
		||||
      u[klookup(kx,ky,2*K1+1,2*K2+1)]=conj(u[klookup(-kx,-ky,2*K1+1,2*K2+1)]);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // rescale: 1/k decay
 | 
			
		||||
  rescale=0;
 | 
			
		||||
  for(kx=-K1;kx<=K1;kx++){
 | 
			
		||||
    for(ky=-K2;ky<=K2;ky++){
 | 
			
		||||
      rescale=rescale+((__real__ u[klookup(kx,ky,2*K1+1,2*K2+1)])*(__real__ u[klookup(kx,ky,2*K1+1,2*K2+1)])+(__imag__ u[klookup(kx,ky,2*K1+1,2*K2+1)])*(__imag__ u[klookup(kx,ky,2*K1+1,2*K2+1)]))*(kx*kx+ky*ky);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  for(kx=-K1;kx<=K1;kx++){
 | 
			
		||||
    for(ky=-K2;ky<=K2;ky++){
 | 
			
		||||
      u[klookup(kx,ky,2*K1+1,2*K2+1)]=u[klookup(kx,ky,2*K1+1,2*K2+1)]*sqrt(155.1/rescale);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  */
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
  // constant init
 | 
			
		||||
  for(kx=-K1;kx<=K1;kx++){
 | 
			
		||||
    for(ky=-K2;ky<=K2;ky++){
 | 
			
		||||
      u[klookup(kx,ky,2*K1+1,2*K2+1)]=1.;
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  */
 | 
			
		||||
 | 
			
		||||
  // exponentially decaying init
 | 
			
		||||
  for(kx=-K1;kx<=K1;kx++){
 | 
			
		||||
    for(ky=-K2;ky<=K2;ky++){
 | 
			
		||||
      u[klookup(kx,ky,2*K1+1,2*K2+1)]=exp(-sqrt(kx*kx+ky*ky));
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// next time step for Irreversible Navier-Stokes equation
 | 
			
		||||
int ins_step(_Complex double* u, ns_params params, fft_vects vects, _Complex double* tmp1, _Complex double* tmp2, _Complex double* tmp3){
 | 
			
		||||
int ins_step(
 | 
			
		||||
  _Complex double* u,
 | 
			
		||||
  int K1,
 | 
			
		||||
  int K2,
 | 
			
		||||
  int N1,
 | 
			
		||||
  int N2,
 | 
			
		||||
  double nu,
 | 
			
		||||
  double delta,
 | 
			
		||||
  _Complex double (*g)(int,int),
 | 
			
		||||
  fft_vect fft1,
 | 
			
		||||
  fft_vect fft2,
 | 
			
		||||
  fft_vect ifft,
 | 
			
		||||
  _Complex double* tmp1,
 | 
			
		||||
  _Complex double* tmp2,
 | 
			
		||||
  _Complex double* tmp3
 | 
			
		||||
){
 | 
			
		||||
  int kx,ky;
 | 
			
		||||
 | 
			
		||||
  // k1
 | 
			
		||||
  ins_rhs(tmp1, u, params, vects);
 | 
			
		||||
  ins_rhs(tmp1, u, K1, K2, N1, N2, nu, g, fft1, fft2, ifft);
 | 
			
		||||
  // add to output
 | 
			
		||||
  for(kx=-params.K;kx<=params.K;kx++){
 | 
			
		||||
    for(ky=-params.K;ky<=params.K;ky++){
 | 
			
		||||
      tmp3[KLOOKUP(kx,ky,params.S)]=u[KLOOKUP(kx,ky,params.S)]+params.h/6*tmp1[KLOOKUP(kx,ky,params.S)];
 | 
			
		||||
  for(kx=-K1;kx<=K1;kx++){
 | 
			
		||||
    for(ky=-K2;ky<=K2;ky++){
 | 
			
		||||
      tmp3[klookup(kx,ky,2*K1+1,2*K2+1)]=u[klookup(kx,ky,2*K1+1,2*K2+1)]+delta/6*tmp1[klookup(kx,ky,2*K1+1,2*K2+1)];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // u+h*k1/2
 | 
			
		||||
  for(kx=-params.K;kx<=params.K;kx++){
 | 
			
		||||
    for(ky=-params.K;ky<=params.K;ky++){
 | 
			
		||||
      tmp2[KLOOKUP(kx,ky,params.S)]=u[KLOOKUP(kx,ky,params.S)]+params.h/2*tmp1[KLOOKUP(kx,ky,params.S)];
 | 
			
		||||
  for(kx=-K1;kx<=K1;kx++){
 | 
			
		||||
    for(ky=-K2;ky<=K2;ky++){
 | 
			
		||||
      tmp2[klookup(kx,ky,2*K1+1,2*K2+1)]=u[klookup(kx,ky,2*K1+1,2*K2+1)]+delta/2*tmp1[klookup(kx,ky,2*K1+1,2*K2+1)];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  // k2
 | 
			
		||||
  ins_rhs(tmp1, tmp2, params, vects);
 | 
			
		||||
  ins_rhs(tmp1, tmp2, K1, K2, N1, N2, nu, g, fft1, fft2, ifft);
 | 
			
		||||
  // add to output
 | 
			
		||||
  for(kx=-params.K;kx<=params.K;kx++){
 | 
			
		||||
    for(ky=-params.K;ky<=params.K;ky++){
 | 
			
		||||
      tmp3[KLOOKUP(kx,ky,params.S)]+=params.h/3*tmp1[KLOOKUP(kx,ky,params.S)];
 | 
			
		||||
  for(kx=-K1;kx<=K1;kx++){
 | 
			
		||||
    for(ky=-K2;ky<=K2;ky++){
 | 
			
		||||
      tmp3[klookup(kx,ky,2*K1+1,2*K2+1)]+=delta/3*tmp1[klookup(kx,ky,2*K1+1,2*K2+1)];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // u+h*k2/2
 | 
			
		||||
  for(kx=-params.K;kx<=params.K;kx++){
 | 
			
		||||
    for(ky=-params.K;ky<=params.K;ky++){
 | 
			
		||||
      tmp2[KLOOKUP(kx,ky,params.S)]=u[KLOOKUP(kx,ky,params.S)]+params.h/2*tmp1[KLOOKUP(kx,ky,params.S)];
 | 
			
		||||
  for(kx=-K1;kx<=K1;kx++){
 | 
			
		||||
    for(ky=-K2;ky<=K2;ky++){
 | 
			
		||||
      tmp2[klookup(kx,ky,2*K1+1,2*K2+1)]=u[klookup(kx,ky,2*K1+1,2*K2+1)]+delta/2*tmp1[klookup(kx,ky,2*K1+1,2*K2+1)];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  // k3
 | 
			
		||||
  ins_rhs(tmp1, tmp2, params, vects);
 | 
			
		||||
  ins_rhs(tmp1, tmp2, K1, K2, N1, N2, nu, g, fft1, fft2, ifft);
 | 
			
		||||
  // add to output
 | 
			
		||||
  for(kx=-params.K;kx<=params.K;kx++){
 | 
			
		||||
    for(ky=-params.K;ky<=params.K;ky++){
 | 
			
		||||
      tmp3[KLOOKUP(kx,ky,params.S)]+=params.h/3*tmp1[KLOOKUP(kx,ky,params.S)];
 | 
			
		||||
  for(kx=-K1;kx<=K1;kx++){
 | 
			
		||||
    for(ky=-K2;ky<=K2;ky++){
 | 
			
		||||
      tmp3[klookup(kx,ky,2*K1+1,2*K2+1)]+=delta/3*tmp1[klookup(kx,ky,2*K1+1,2*K2+1)];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // u+h*k3
 | 
			
		||||
  for(kx=-params.K;kx<=params.K;kx++){
 | 
			
		||||
    for(ky=-params.K;ky<=params.K;ky++){
 | 
			
		||||
      tmp2[KLOOKUP(kx,ky,params.S)]=u[KLOOKUP(kx,ky,params.S)]+params.h*tmp1[KLOOKUP(kx,ky,params.S)];
 | 
			
		||||
  for(kx=-K1;kx<=K1;kx++){
 | 
			
		||||
    for(ky=-K2;ky<=K2;ky++){
 | 
			
		||||
      tmp2[klookup(kx,ky,2*K1+1,2*K2+1)]=u[klookup(kx,ky,2*K1+1,2*K2+1)]+delta*tmp1[klookup(kx,ky,2*K1+1,2*K2+1)];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  // k4
 | 
			
		||||
  ins_rhs(tmp1, tmp2, params, vects);
 | 
			
		||||
  ins_rhs(tmp1, tmp2, K1, K2, N1, N2, nu, g, fft1, fft2, ifft);
 | 
			
		||||
  // add to output
 | 
			
		||||
  for(kx=-params.K;kx<=params.K;kx++){
 | 
			
		||||
    for(ky=-params.K;ky<=params.K;ky++){
 | 
			
		||||
      u[KLOOKUP(kx,ky,params.S)]=tmp3[KLOOKUP(kx,ky,params.S)]+params.h/6*tmp1[KLOOKUP(kx,ky,params.S)];
 | 
			
		||||
  for(kx=-K1;kx<=K1;kx++){
 | 
			
		||||
    for(ky=-K2;ky<=K2;ky++){
 | 
			
		||||
      u[klookup(kx,ky,2*K1+1,2*K2+1)]=tmp3[klookup(kx,ky,2*K1+1,2*K2+1)]+delta/6*tmp1[klookup(kx,ky,2*K1+1,2*K2+1)];
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
@@ -65,74 +313,82 @@ int ins_step(_Complex double* u, ns_params params, fft_vects vects, _Complex dou
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// right side of Irreversible Navier-Stokes equation
 | 
			
		||||
int ins_rhs(_Complex double* out, _Complex double* u, ns_params params, fft_vects vects){
 | 
			
		||||
int ins_rhs(
 | 
			
		||||
  _Complex double* out,
 | 
			
		||||
  _Complex double* u,
 | 
			
		||||
  int K1,
 | 
			
		||||
  int K2,
 | 
			
		||||
  int N1,
 | 
			
		||||
  int N2,
 | 
			
		||||
  double nu,
 | 
			
		||||
  _Complex double (*g)(int,int),
 | 
			
		||||
  fft_vect fft1,
 | 
			
		||||
  fft_vect fft2,
 | 
			
		||||
  fft_vect ifft
 | 
			
		||||
){
 | 
			
		||||
  int kx,ky;
 | 
			
		||||
  int i;
 | 
			
		||||
 | 
			
		||||
  // F(px/|p|*u)*F(qy*|q|*u)
 | 
			
		||||
  // init to 0
 | 
			
		||||
  for(kx=0; kx<params.N*params.N; kx++){
 | 
			
		||||
    vects.fft1[kx]=0;
 | 
			
		||||
    vects.fft2[kx]=0;
 | 
			
		||||
    vects.invfft[kx]=0;
 | 
			
		||||
  for(i=0; i<N1*N2; i++){
 | 
			
		||||
    fft1.fft[i]=0;
 | 
			
		||||
    fft2.fft[i]=0;
 | 
			
		||||
    ifft.fft[i]=0;
 | 
			
		||||
  }
 | 
			
		||||
  // fill modes
 | 
			
		||||
  for(kx=-params.K;kx<=params.K;kx++){
 | 
			
		||||
    for(ky=-params.K;ky<=params.K;ky++){
 | 
			
		||||
  for(kx=-K1;kx<=K1;kx++){
 | 
			
		||||
    for(ky=-K2;ky<=K2;ky++){
 | 
			
		||||
      if(kx!=0 || ky!=0){
 | 
			
		||||
        vects.fft1[KLOOKUP(kx,ky,params.N)]=kx/sqrt(kx*kx+ky*ky)*u[KLOOKUP(kx,ky,params.S)];
 | 
			
		||||
        vects.fft2[KLOOKUP(kx,ky,params.N)]=ky*sqrt(kx*kx+ky*ky)*u[KLOOKUP(kx,ky,params.S)];
 | 
			
		||||
        fft1.fft[klookup(kx,ky,N1,N2)]=kx/sqrt(kx*kx+ky*ky)*u[klookup(kx,ky,2*K1+1,2*K2+1)];
 | 
			
		||||
        fft2.fft[klookup(kx,ky,N1,N2)]=ky*sqrt(kx*kx+ky*ky)*u[klookup(kx,ky,2*K1+1,2*K2+1)];
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // fft
 | 
			
		||||
  fftw_execute(vects.fft1_plan);
 | 
			
		||||
  
 | 
			
		||||
  fftw_execute(vects.fft2_plan);
 | 
			
		||||
  // write to invfft
 | 
			
		||||
  for(kx=-2*params.K;kx<=2*params.K;kx++){
 | 
			
		||||
    for(ky=-2*params.K;ky<=2*params.K;ky++){
 | 
			
		||||
      vects.invfft[KLOOKUP(kx,ky,params.N)]=vects.fft1[KLOOKUP(kx,ky,params.N)]*vects.fft2[KLOOKUP(kx,ky,params.N)];
 | 
			
		||||
    }
 | 
			
		||||
  fftw_execute(fft1.fft_plan);
 | 
			
		||||
  fftw_execute(fft2.fft_plan);
 | 
			
		||||
  // write to ifft
 | 
			
		||||
  for(i=0;i<N1*N2;i++){
 | 
			
		||||
    ifft.fft[i]=fft1.fft[i]*fft2.fft[i];
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // F(py/|p|*u)*F(qx*|q|*u)
 | 
			
		||||
  // init to 0
 | 
			
		||||
  for(kx=0; kx<params.N*params.N; kx++){
 | 
			
		||||
    vects.fft1[kx]=0;
 | 
			
		||||
    vects.fft2[kx]=0;
 | 
			
		||||
  for(i=0; i<N1*N2; i++){
 | 
			
		||||
    fft1.fft[i]=0;
 | 
			
		||||
    fft2.fft[i]=0;
 | 
			
		||||
  }
 | 
			
		||||
  // fill modes
 | 
			
		||||
  for(kx=-params.K;kx<=params.K;kx++){
 | 
			
		||||
    for(ky=-params.K;ky<=params.K;ky++){
 | 
			
		||||
  for(kx=-K1;kx<=K1;kx++){
 | 
			
		||||
    for(ky=-K2;ky<=K2;ky++){
 | 
			
		||||
      if(kx!=0 || ky!=0){
 | 
			
		||||
        vects.fft1[KLOOKUP(kx,ky,params.N)]=ky/sqrt(kx*kx+ky*ky)*u[KLOOKUP(kx,ky,params.S)];
 | 
			
		||||
        vects.fft2[KLOOKUP(kx,ky,params.N)]=kx*sqrt(kx*kx+ky*ky)*u[KLOOKUP(kx,ky,params.S)];
 | 
			
		||||
        fft1.fft[klookup(kx,ky,N1,N2)]=ky/sqrt(kx*kx+ky*ky)*u[klookup(kx,ky,2*K1+1,2*K2+1)];
 | 
			
		||||
        fft2.fft[klookup(kx,ky,N1,N2)]=kx*sqrt(kx*kx+ky*ky)*u[klookup(kx,ky,2*K1+1,2*K2+1)];
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // fft
 | 
			
		||||
  fftw_execute(vects.fft1_plan);
 | 
			
		||||
  fftw_execute(vects.fft2_plan);
 | 
			
		||||
  // write to invfft
 | 
			
		||||
  for(kx=-2*params.K;kx<=2*params.K;kx++){
 | 
			
		||||
    for(ky=-2*params.K;ky<=2*params.K;ky++){
 | 
			
		||||
      vects.invfft[KLOOKUP(kx,ky,params.N)]=vects.invfft[KLOOKUP(kx,ky,params.N)]-vects.fft1[KLOOKUP(kx,ky,params.N)]*vects.fft2[KLOOKUP(kx,ky,params.N)];
 | 
			
		||||
    }
 | 
			
		||||
  fftw_execute(fft1.fft_plan);
 | 
			
		||||
  fftw_execute(fft2.fft_plan);
 | 
			
		||||
  // write to ifft
 | 
			
		||||
  for(i=0;i<N1*N2;i++){
 | 
			
		||||
    ifft.fft[i]=ifft.fft[i]-fft1.fft[i]*fft2.fft[i];
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // inverse fft
 | 
			
		||||
  fftw_execute(vects.invfft_plan);
 | 
			
		||||
  fftw_execute(ifft.fft_plan);
 | 
			
		||||
 | 
			
		||||
  // write out
 | 
			
		||||
  for(kx=0; kx<params.S*params.S; kx++){
 | 
			
		||||
    out[kx]=0;
 | 
			
		||||
  for(i=0; i<(2*K1+1)*(2*K2+1); i++){
 | 
			
		||||
    out[i]=0;
 | 
			
		||||
  }
 | 
			
		||||
  for(kx=-params.K;kx<=params.K;kx++){
 | 
			
		||||
    for(ky=-params.K;ky<=params.K;ky++){
 | 
			
		||||
  for(kx=-K1;kx<=K1;kx++){
 | 
			
		||||
    for(ky=-K2;ky<=K2;ky++){
 | 
			
		||||
      if(kx!=0 || ky!=0){
 | 
			
		||||
        out[KLOOKUP(kx,ky,params.S)]=-4*M_PI*M_PI*params.nu*(kx*kx+ky*ky)*u[KLOOKUP(kx,ky,params.S)]+params.g[KLOOKUP(kx,ky,params.S)]+4*M_PI*M_PI/sqrt(kx*kx+ky*ky)*vects.invfft[KLOOKUP(kx,ky,params.N)]/params.N/params.N;
 | 
			
		||||
        out[klookup(kx,ky,2*K1+1,2*K2+1)]=-4*M_PI*M_PI*nu*(kx*kx+ky*ky)*u[klookup(kx,ky,2*K1+1,2*K2+1)]+(*g)(kx,ky)+4*M_PI*M_PI/sqrt(kx*kx+ky*ky)*ifft.fft[klookup(kx,ky,N1,N2)]/N1/N2;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
@@ -142,17 +398,33 @@ int ins_rhs(_Complex double* out, _Complex double* u, ns_params params, fft_vect
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// compute alpha
 | 
			
		||||
_Complex double compute_alpha(_Complex double* u, ns_params params){
 | 
			
		||||
_Complex double compute_alpha(
 | 
			
		||||
  _Complex double* u,
 | 
			
		||||
  int K1,
 | 
			
		||||
  int K2,
 | 
			
		||||
  _Complex double (*g)(int,int)
 | 
			
		||||
){
 | 
			
		||||
  _Complex double num=0;
 | 
			
		||||
  _Complex double denom=0;
 | 
			
		||||
  int kx,ky;
 | 
			
		||||
 | 
			
		||||
  for(kx=-params.K;kx<=params.K;kx++){
 | 
			
		||||
    for(ky=-params.K;ky<=params.K;ky++){
 | 
			
		||||
      denom+=(kx*kx+ky*ky)*(kx*kx+ky*ky)*u[KLOOKUP(kx,ky,params.S)]*conj(u[KLOOKUP(kx,ky,params.S)])*(1+(ky!=0?kx*kx/ky/ky:0));
 | 
			
		||||
      num+=(kx*kx+ky*ky)*u[KLOOKUP(kx,ky,params.S)]*conj(params.g[KLOOKUP(kx,ky,params.S)])*(1+(ky!=0?kx*kx/ky/ky:0));
 | 
			
		||||
  for(kx=-K1;kx<=K1;kx++){
 | 
			
		||||
    for(ky=-K2;ky<=K2;ky++){
 | 
			
		||||
      denom+=(kx*kx+ky*ky)*(kx*kx+ky*ky)*u[klookup(kx,ky,2*K1+1,2*K2+1)]*conj(u[klookup(kx,ky,2*K1+1,2*K2+1)])*(1+(ky!=0?kx*kx/ky/ky:0));
 | 
			
		||||
      num+=(kx*kx+ky*ky)*u[klookup(kx,ky,2*K1+1,2*K2+1)]*conj((*g)(kx,ky))*(1+(ky!=0?kx*kx/ky/ky:0));
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  return(num/denom);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// get index for kx,ky in array of size S
 | 
			
		||||
int klookup(
 | 
			
		||||
  int kx,
 | 
			
		||||
  int ky,
 | 
			
		||||
  int S1,
 | 
			
		||||
  int S2
 | 
			
		||||
){
 | 
			
		||||
  return (kx>=0 ? kx : S1+kx)*S2 + (ky>=0 ? ky : S2+ky);
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
@@ -4,45 +4,38 @@
 | 
			
		||||
#include <complex.h>
 | 
			
		||||
#include <fftw3.h>
 | 
			
		||||
 | 
			
		||||
// to extract elements from array of size S representing a function of momentum, use
 | 
			
		||||
//   array[KEXTRACT(kx,ky,size)]
 | 
			
		||||
#define KLOOKUP(X,Y,S) (X>=0?X:S+X)*S+(Y>=0?Y:S+Y)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// parameters for the NS equation
 | 
			
		||||
typedef struct ns_params {
 | 
			
		||||
  // number of modes
 | 
			
		||||
  int K;
 | 
			
		||||
  // 2*K+1
 | 
			
		||||
  int S;
 | 
			
		||||
  // 4*K+1
 | 
			
		||||
  int N;
 | 
			
		||||
  // forcing term
 | 
			
		||||
  _Complex double* g;
 | 
			
		||||
  // time step
 | 
			
		||||
  double h;
 | 
			
		||||
  // friction
 | 
			
		||||
  double nu;
 | 
			
		||||
} ns_params;
 | 
			
		||||
 | 
			
		||||
// arrays on which the ffts are performed
 | 
			
		||||
typedef struct fft_vects {
 | 
			
		||||
  fftw_complex* fft1;
 | 
			
		||||
  fftw_complex* fft2;
 | 
			
		||||
  fftw_complex* invfft;
 | 
			
		||||
  fftw_plan fft1_plan;
 | 
			
		||||
  fftw_plan fft2_plan;
 | 
			
		||||
  fftw_plan invfft_plan;
 | 
			
		||||
} fft_vects;
 | 
			
		||||
  fftw_complex* fft;
 | 
			
		||||
  fftw_plan fft_plan;
 | 
			
		||||
} fft_vect;
 | 
			
		||||
 | 
			
		||||
// compute u_k
 | 
			
		||||
int uk( int K1, int K2, int N1, int N2, unsigned int nsteps, double nu, double delta, _Complex double (*g)(int,int), unsigned int print_freq);
 | 
			
		||||
 | 
			
		||||
// compute enstrophy
 | 
			
		||||
int enstrophy( int K1, int K2, int N1, int N2, unsigned int nsteps, double nu, double delta, _Complex double (*g)(int,int), unsigned int print_freq);
 | 
			
		||||
 | 
			
		||||
// initialize vectors for computation
 | 
			
		||||
int  ns_init_tmps( _Complex double **u, _Complex double ** tmp1, _Complex double **tmp2, _Complex double **tmp3, fft_vect* fft1, fft_vect *fft2, fft_vect *ifft, int K1, int K2, int N1, int N2);
 | 
			
		||||
// release vectors
 | 
			
		||||
int ns_free_tmps( _Complex double* u, _Complex double* tmp1, _Complex double *tmp2,_Complex double *tmp3, fft_vect fft1, fft_vect fft2, fft_vect ifft);
 | 
			
		||||
 | 
			
		||||
// initial value
 | 
			
		||||
int ns_init_u( _Complex double* u, int K1, int K2);
 | 
			
		||||
 | 
			
		||||
// next time step for Irreversible Navier-Stokes equation
 | 
			
		||||
int ins_step(_Complex double* u, ns_params params, fft_vects vects, _Complex double* tmp1, _Complex double* tmp2, _Complex double* tmp3);
 | 
			
		||||
int ins_step( _Complex double* u, int K1, int K2, int N1, int N2, double nu, double delta, _Complex double (*g)(int,int), fft_vect fft1, fft_vect fft2,fft_vect ifft, _Complex double* tmp1, _Complex double *tmp2, _Complex double *tmp3);
 | 
			
		||||
 | 
			
		||||
// right side of Irreversible Navier-Stokes equation
 | 
			
		||||
int ins_rhs(_Complex double* out, _Complex double* u, ns_params params, fft_vects vects);
 | 
			
		||||
int ins_rhs( _Complex double* out, _Complex double* u, int K1, int K2, int N1, int N2, double nu, _Complex double (*g)(int,int), fft_vect fft1, fft_vect fft2, fft_vect ifft);
 | 
			
		||||
 | 
			
		||||
// compute alpha
 | 
			
		||||
_Complex double compute_alpha(_Complex double* u, ns_params params);
 | 
			
		||||
_Complex double compute_alpha( _Complex double* u, int K1, int K2, _Complex double (*g)(int,int));
 | 
			
		||||
 | 
			
		||||
// get index for kx,ky in array of size S
 | 
			
		||||
int klookup( int kx, int ky, int S1, int S2);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user