Add size of box in docs
This commit is contained in:
		| @@ -20,22 +20,22 @@ | ||||
|  | ||||
| \section{Description of the computation} | ||||
| \subsection{Irreversible equation} | ||||
| \indent Consider the {\it irreversible} Navier-Stokes equation in 2 dimensions | ||||
| \indent Consider the incompressible Navier-Stokes equation in 2 dimensions | ||||
| \begin{equation} | ||||
|   \partial_tu=\nu\Delta u+g-\nabla w-(u\cdot\nabla)u,\quad | ||||
|   \partial_tu=\nu\Delta u+g-(u\cdot\nabla)u,\quad | ||||
|   \nabla\cdot u=0 | ||||
|   \label{ins} | ||||
| \end{equation} | ||||
| in which $g$ is the forcing term and $w$ is the pressure. | ||||
| We take periodic boundary conditions, so, at every given time, $u(t,\cdot)$ is a function on the unit torus $\mathbb T^2:=\mathbb R^2/\mathbb Z^2$. We represent $u(t,\cdot)$ using its Fourier series | ||||
| We take periodic boundary conditions, so, at every given time, $u(t,\cdot)$ is a function on the torus $\mathbb T^2:=\mathbb R^2/(L\mathbb Z)^2$. We represent $u(t,\cdot)$ using its Fourier series | ||||
| \begin{equation} | ||||
|   \hat u_k(t):=\int_{\mathbb T^2}dx\ e^{2i\pi kx}u(t,x) | ||||
|   \hat u_k(t):=\frac1{L^2}\int_{\mathbb T^2}dx\ e^{i\frac{2\pi}L kx}u(t,x) | ||||
| \end{equation} | ||||
| for $k\in\mathbb Z^2$, and rewrite~\-(\ref{ins}) as | ||||
| \begin{equation} | ||||
|   \partial_t\hat u_k= | ||||
|   -4\pi^2\nu k^2\hat u_k+\hat g_k-2i\pi k\hat w_k | ||||
|   -2i\pi\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}} | ||||
|   -\frac{4\pi^2}{L^2}\nu k^2\hat u_k+\hat g_k | ||||
|   -i\frac{2\pi}L\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}} | ||||
|   (q\cdot\hat u_p)\hat u_q | ||||
|   ,\quad | ||||
|   k\cdot\hat u_k=0 | ||||
| @@ -43,13 +43,13 @@ for $k\in\mathbb Z^2$, and rewrite~\-(\ref{ins}) as | ||||
| \end{equation} | ||||
| We then reduce the equation to a scalar one, by writing | ||||
| \begin{equation} | ||||
|   \hat u_k=\frac{2i\pi k^\perp}{|k|}\hat\varphi_k\equiv\frac{2i\pi}{|k|}(-k_y\hat\varphi_k,k_x\hat\varphi_k) | ||||
|   \hat u_k=\frac{i2\pi k^\perp}{L|k|}\hat\varphi_k\equiv\frac{i2\pi}{L|k|}(-k_y\hat\varphi_k,k_x\hat\varphi_k) | ||||
| \end{equation} | ||||
| in terms of which, multiplying both sides of the equation by $\frac{k^\perp}{|k|}$, | ||||
| in terms of which, multiplying both sides of the equation by $\frac L{i2\pi}\frac{k^\perp}{|k|}$, | ||||
| \begin{equation} | ||||
|   \partial_t\hat \varphi_k= | ||||
|   -4\pi^2\nu k^2\hat \varphi_k+\frac{k^\perp}{2i\pi|k|}\cdot\hat g_k | ||||
|   +\frac{4\pi^2}{|k|}\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}} | ||||
|   -\frac{4\pi^2}{L^2}\nu k^2\hat \varphi_k+\frac{Lk^\perp}{2i\pi|k|}\cdot\hat g_k | ||||
|   +\frac{4\pi^2}{L^2|k|}\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}} | ||||
|   \frac{(q\cdot p^\perp)(k^\perp\cdot q^\perp)}{|q||p|}\hat\varphi_p\hat\varphi_q | ||||
|   . | ||||
|   \label{ins_k} | ||||
| @@ -63,8 +63,8 @@ Furthermore | ||||
| and $q\cdot p^\perp$ is antisymmetric under exchange of $q$ and $p$. Therefore, | ||||
| \begin{equation} | ||||
|   \partial_t\hat \varphi_k= | ||||
|   -4\pi^2\nu k^2\hat \varphi_k+\frac{k^\perp}{2i\pi|k|}\cdot\hat g_k | ||||
|   +\frac{4\pi^2}{|k|}\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}} | ||||
|   -\frac{4\pi^2}{L^2}\nu k^2\hat \varphi_k+\frac{Lk^\perp}{2i\pi|k|}\cdot\hat g_k | ||||
|   +\frac{4\pi^2}{L^2|k|}\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}} | ||||
|   \frac{(q\cdot p^\perp)|q|}{|p|}\hat\varphi_p\hat\varphi_q | ||||
|   . | ||||
|   \label{ins_k} | ||||
| @@ -130,16 +130,16 @@ Therefore, | ||||
| \point{\bf Energy}. | ||||
| We define the energy as | ||||
| \begin{equation} | ||||
|   E(t)=\frac12\int dx\ u^2(t,x)=\frac12\sum_{k\in\mathbb Z^2}|\hat u_k|^2 | ||||
|   E(t)=\frac12\int\frac{dx}{L^2}\ u^2(t,x)=\frac12\sum_{k\in\mathbb Z^2}|\hat u_k|^2 | ||||
|   . | ||||
| \end{equation} | ||||
| We have | ||||
| \begin{equation} | ||||
|   \partial_t E=\int dx\ u\partial tu | ||||
|   \partial_t E=\int\frac{dx}{L^2}\ u\partial tu | ||||
|   = | ||||
|   \nu\int dx\ u\Delta u | ||||
|   +\int dx\ ug | ||||
|   -\int dx\ u(u\cdot\nabla)u | ||||
|   \nu\int\frac{dx}{L^2}\ u\Delta u | ||||
|   +\int\frac{dx}{L^2}\ ug | ||||
|   -\int\frac{dx}{L^2}\ u(u\cdot\nabla)u | ||||
|   . | ||||
| \end{equation} | ||||
| Since we have periodic boundary conditions, | ||||
| @@ -165,9 +165,9 @@ and so $I=0$. | ||||
| Thus, | ||||
| \begin{equation} | ||||
|   \partial_t E= | ||||
|   \int dx\ \left(-\nu|\nabla u|^2+ug\right) | ||||
|   \int\frac{dx}{L^2}\ \left(-\nu|\nabla u|^2+ug\right) | ||||
|   = | ||||
|   \sum_{k\in\mathbb Z^2}\left(-4\pi^2\nu k^2|\hat u_k|^2+\hat u_{-k}\hat g_k\right) | ||||
|   \sum_{k\in\mathbb Z^2}\left(-\frac{4\pi^2}{L^2}\nu k^2|\hat u_k|^2+\hat u_{-k}\hat g_k\right) | ||||
|   . | ||||
| \end{equation} | ||||
| Furthermore, | ||||
| @@ -178,52 +178,52 @@ Furthermore, | ||||
| \end{equation} | ||||
| so | ||||
| \begin{equation} | ||||
|   \partial_t E\leqslant -8\pi^2\nu E+4\pi^2\nu\hat u_0^2+\sum_{k\in\mathbb Z^2}\hat u_{-k}\hat g_k | ||||
|   \partial_t E\leqslant -\frac{8\pi^2}{L^2}\nu E+\frac{4\pi^2}{L^2}\nu\hat u_0^2+\sum_{k\in\mathbb Z^2}\hat u_{-k}\hat g_k | ||||
|   \leqslant | ||||
|   -8\pi^2\nu E+4\pi^2\nu\hat u_0^2+ | ||||
|   -\frac{8\pi^2}{L^2}\nu E+\frac{4\pi^2}{L^2}\nu\hat u_0^2+ | ||||
|   \|\hat g\|_2\sqrt{2E} | ||||
|   . | ||||
| \end{equation} | ||||
| In particular, if $\hat u_0=0$ (which corresponds to keeping the center of mass fixed), | ||||
| \begin{equation} | ||||
|   \partial_t E\leqslant -8\pi^2\nu E+\|\hat g\|_2\sqrt{2E} | ||||
|   \partial_t E\leqslant -\frac{8\pi^2}{L^2}\nu E+\|\hat g\|_2\sqrt{2E} | ||||
|   . | ||||
| \end{equation} | ||||
| Now, if $8\pi^2\nu\sqrt E<\sqrt2\|\hat g\|_2$, then | ||||
| Now, if $\frac{8\pi^2}{L^2}\nu\sqrt E<\sqrt2\|\hat g\|_2$, then | ||||
| \begin{equation} | ||||
|   \frac{\partial_t E}{-8\pi^2\nu E+\|\hat g\|_2\sqrt{2E}}\leqslant1 | ||||
|   \frac{\partial_t E}{-\frac{8\pi^2}{L^2}\nu E+\|\hat g\|_2\sqrt{2E}}\leqslant1 | ||||
| \end{equation} | ||||
| and so | ||||
| \begin{equation} | ||||
|   \frac{\log(1-\frac{8\pi^2\nu}{\sqrt2\|\hat g\|_2}\sqrt{E(t)})}{-4\pi^2\nu}\leqslant t+ | ||||
|   \frac{\log(1-\frac{8\pi^2\nu}{\sqrt2\|\hat g\|_2}\sqrt{E(0)})}{-4\pi^2\nu} | ||||
|   \frac{\log(1-\frac{8\pi^2\nu}{L^2\sqrt2\|\hat g\|_2}\sqrt{E(t)})}{-\frac{4\pi^2}{L^2}\nu}\leqslant t+ | ||||
|   \frac{\log(1-\frac{8\pi^2\nu}{L^2\sqrt2\|\hat g\|_2}\sqrt{E(0)})}{-\frac{4\pi^2}{L^2}\nu} | ||||
| \end{equation} | ||||
| and | ||||
| \begin{equation} | ||||
|   E(t) | ||||
|   \leqslant | ||||
|   \left( | ||||
|     \frac{\sqrt2\|\hat g\|_2}{8\pi^2\nu}(1-e^{-4\pi^2\nu t}) | ||||
|     +e^{-4\pi^2\nu t}\sqrt{E(0)} | ||||
|     \frac{L^2\sqrt2\|\hat g\|_2}{8\pi^2\nu}(1-e^{-\frac{4\pi^2}{L^2}\nu t}) | ||||
|     +e^{-\frac{4\pi^2}{L^2}\nu t}\sqrt{E(0)} | ||||
|   \right)^2 | ||||
|   . | ||||
| \end{equation} | ||||
| If $8\pi^2\nu\sqrt E>\sqrt2\|\hat g\|_2$, | ||||
| If $\frac{8\pi^2}{L^2}\nu\sqrt E>\sqrt2\|\hat g\|_2$, | ||||
| \begin{equation} | ||||
|   \frac{\partial_t E}{-8\pi^2\nu E+\|\hat g\|_2\sqrt{2E}}\geqslant1 | ||||
|   \frac{\partial_t E}{-\frac{8\pi^2}{L^2}\nu E+\|\hat g\|_2\sqrt{2E}}\geqslant1 | ||||
| \end{equation} | ||||
| and so | ||||
| \begin{equation} | ||||
|   \frac{\log(\frac{8\pi^2\nu}{\sqrt2\|\hat g\|_2}\sqrt{E(t)}-1)}{-4\pi^2\nu}\geqslant t+ | ||||
|   \frac{\log(\frac{8\pi^2\nu}{\sqrt2\|\hat g\|_2}\sqrt{E(0)})-1}{-4\pi^2\nu} | ||||
|   \frac{\log(\frac{8\pi^2\nu}{L^2\sqrt2\|\hat g\|_2}\sqrt{E(t)}-1)}{-\frac{4\pi^2}{L^2}\nu}\geqslant t+ | ||||
|   \frac{\log(\frac{8\pi^2\nu}{L^2\sqrt2\|\hat g\|_2}\sqrt{E(0)})-1}{-\frac{4\pi^2}{L^2}\nu} | ||||
| \end{equation} | ||||
| and | ||||
| \begin{equation} | ||||
|   E(t) | ||||
|   \leqslant | ||||
|   \left( | ||||
|     \frac{\sqrt2\|\hat g\|_2}{8\pi^2\nu}(1-e^{-4\pi^2\nu t}) | ||||
|     +e^{-4\pi^2\nu t}\sqrt{E(0)} | ||||
|     \frac{L^2\sqrt2\|\hat g\|_2}{8\pi^2\nu}(1-e^{-\frac{4\pi^2}{L^2}\nu t}) | ||||
|     +e^{-\frac{4\pi^2}{L^2}\nu t}\sqrt{E(0)} | ||||
|   \right)^2 | ||||
|   . | ||||
| \end{equation} | ||||
| @@ -232,8 +232,8 @@ and | ||||
| \point{\bf Enstrophy}. | ||||
| The enstrophy is defined as | ||||
| \begin{equation} | ||||
|   \mathcal En(t)=\int dx\ |\nabla u|^2 | ||||
|   =4\pi^2\sum_{k\in\mathbb Z^2}k^2|\hat u_k|^2 | ||||
|   \mathcal En(t)=\int\frac{dx}{L^2}\ |\nabla u|^2 | ||||
|   =\frac{4\pi^2}{L^2}\sum_{k\in\mathbb Z^2}k^2|\hat u_k|^2 | ||||
|   . | ||||
| \end{equation} | ||||
|  | ||||
|   | ||||
		Reference in New Issue
	
	Block a user