Add size of box in docs
This commit is contained in:
parent
4b7c89fb35
commit
d37d6104e0
@ -20,22 +20,22 @@
|
|||||||
|
|
||||||
\section{Description of the computation}
|
\section{Description of the computation}
|
||||||
\subsection{Irreversible equation}
|
\subsection{Irreversible equation}
|
||||||
\indent Consider the {\it irreversible} Navier-Stokes equation in 2 dimensions
|
\indent Consider the incompressible Navier-Stokes equation in 2 dimensions
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\partial_tu=\nu\Delta u+g-\nabla w-(u\cdot\nabla)u,\quad
|
\partial_tu=\nu\Delta u+g-(u\cdot\nabla)u,\quad
|
||||||
\nabla\cdot u=0
|
\nabla\cdot u=0
|
||||||
\label{ins}
|
\label{ins}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
in which $g$ is the forcing term and $w$ is the pressure.
|
in which $g$ is the forcing term and $w$ is the pressure.
|
||||||
We take periodic boundary conditions, so, at every given time, $u(t,\cdot)$ is a function on the unit torus $\mathbb T^2:=\mathbb R^2/\mathbb Z^2$. We represent $u(t,\cdot)$ using its Fourier series
|
We take periodic boundary conditions, so, at every given time, $u(t,\cdot)$ is a function on the torus $\mathbb T^2:=\mathbb R^2/(L\mathbb Z)^2$. We represent $u(t,\cdot)$ using its Fourier series
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\hat u_k(t):=\int_{\mathbb T^2}dx\ e^{2i\pi kx}u(t,x)
|
\hat u_k(t):=\frac1{L^2}\int_{\mathbb T^2}dx\ e^{i\frac{2\pi}L kx}u(t,x)
|
||||||
\end{equation}
|
\end{equation}
|
||||||
for $k\in\mathbb Z^2$, and rewrite~\-(\ref{ins}) as
|
for $k\in\mathbb Z^2$, and rewrite~\-(\ref{ins}) as
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\partial_t\hat u_k=
|
\partial_t\hat u_k=
|
||||||
-4\pi^2\nu k^2\hat u_k+\hat g_k-2i\pi k\hat w_k
|
-\frac{4\pi^2}{L^2}\nu k^2\hat u_k+\hat g_k
|
||||||
-2i\pi\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}}
|
-i\frac{2\pi}L\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}}
|
||||||
(q\cdot\hat u_p)\hat u_q
|
(q\cdot\hat u_p)\hat u_q
|
||||||
,\quad
|
,\quad
|
||||||
k\cdot\hat u_k=0
|
k\cdot\hat u_k=0
|
||||||
@ -43,13 +43,13 @@ for $k\in\mathbb Z^2$, and rewrite~\-(\ref{ins}) as
|
|||||||
\end{equation}
|
\end{equation}
|
||||||
We then reduce the equation to a scalar one, by writing
|
We then reduce the equation to a scalar one, by writing
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\hat u_k=\frac{2i\pi k^\perp}{|k|}\hat\varphi_k\equiv\frac{2i\pi}{|k|}(-k_y\hat\varphi_k,k_x\hat\varphi_k)
|
\hat u_k=\frac{i2\pi k^\perp}{L|k|}\hat\varphi_k\equiv\frac{i2\pi}{L|k|}(-k_y\hat\varphi_k,k_x\hat\varphi_k)
|
||||||
\end{equation}
|
\end{equation}
|
||||||
in terms of which, multiplying both sides of the equation by $\frac{k^\perp}{|k|}$,
|
in terms of which, multiplying both sides of the equation by $\frac L{i2\pi}\frac{k^\perp}{|k|}$,
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\partial_t\hat \varphi_k=
|
\partial_t\hat \varphi_k=
|
||||||
-4\pi^2\nu k^2\hat \varphi_k+\frac{k^\perp}{2i\pi|k|}\cdot\hat g_k
|
-\frac{4\pi^2}{L^2}\nu k^2\hat \varphi_k+\frac{Lk^\perp}{2i\pi|k|}\cdot\hat g_k
|
||||||
+\frac{4\pi^2}{|k|}\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}}
|
+\frac{4\pi^2}{L^2|k|}\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}}
|
||||||
\frac{(q\cdot p^\perp)(k^\perp\cdot q^\perp)}{|q||p|}\hat\varphi_p\hat\varphi_q
|
\frac{(q\cdot p^\perp)(k^\perp\cdot q^\perp)}{|q||p|}\hat\varphi_p\hat\varphi_q
|
||||||
.
|
.
|
||||||
\label{ins_k}
|
\label{ins_k}
|
||||||
@ -63,8 +63,8 @@ Furthermore
|
|||||||
and $q\cdot p^\perp$ is antisymmetric under exchange of $q$ and $p$. Therefore,
|
and $q\cdot p^\perp$ is antisymmetric under exchange of $q$ and $p$. Therefore,
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\partial_t\hat \varphi_k=
|
\partial_t\hat \varphi_k=
|
||||||
-4\pi^2\nu k^2\hat \varphi_k+\frac{k^\perp}{2i\pi|k|}\cdot\hat g_k
|
-\frac{4\pi^2}{L^2}\nu k^2\hat \varphi_k+\frac{Lk^\perp}{2i\pi|k|}\cdot\hat g_k
|
||||||
+\frac{4\pi^2}{|k|}\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}}
|
+\frac{4\pi^2}{L^2|k|}\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}}
|
||||||
\frac{(q\cdot p^\perp)|q|}{|p|}\hat\varphi_p\hat\varphi_q
|
\frac{(q\cdot p^\perp)|q|}{|p|}\hat\varphi_p\hat\varphi_q
|
||||||
.
|
.
|
||||||
\label{ins_k}
|
\label{ins_k}
|
||||||
@ -130,16 +130,16 @@ Therefore,
|
|||||||
\point{\bf Energy}.
|
\point{\bf Energy}.
|
||||||
We define the energy as
|
We define the energy as
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
E(t)=\frac12\int dx\ u^2(t,x)=\frac12\sum_{k\in\mathbb Z^2}|\hat u_k|^2
|
E(t)=\frac12\int\frac{dx}{L^2}\ u^2(t,x)=\frac12\sum_{k\in\mathbb Z^2}|\hat u_k|^2
|
||||||
.
|
.
|
||||||
\end{equation}
|
\end{equation}
|
||||||
We have
|
We have
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\partial_t E=\int dx\ u\partial tu
|
\partial_t E=\int\frac{dx}{L^2}\ u\partial tu
|
||||||
=
|
=
|
||||||
\nu\int dx\ u\Delta u
|
\nu\int\frac{dx}{L^2}\ u\Delta u
|
||||||
+\int dx\ ug
|
+\int\frac{dx}{L^2}\ ug
|
||||||
-\int dx\ u(u\cdot\nabla)u
|
-\int\frac{dx}{L^2}\ u(u\cdot\nabla)u
|
||||||
.
|
.
|
||||||
\end{equation}
|
\end{equation}
|
||||||
Since we have periodic boundary conditions,
|
Since we have periodic boundary conditions,
|
||||||
@ -165,9 +165,9 @@ and so $I=0$.
|
|||||||
Thus,
|
Thus,
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\partial_t E=
|
\partial_t E=
|
||||||
\int dx\ \left(-\nu|\nabla u|^2+ug\right)
|
\int\frac{dx}{L^2}\ \left(-\nu|\nabla u|^2+ug\right)
|
||||||
=
|
=
|
||||||
\sum_{k\in\mathbb Z^2}\left(-4\pi^2\nu k^2|\hat u_k|^2+\hat u_{-k}\hat g_k\right)
|
\sum_{k\in\mathbb Z^2}\left(-\frac{4\pi^2}{L^2}\nu k^2|\hat u_k|^2+\hat u_{-k}\hat g_k\right)
|
||||||
.
|
.
|
||||||
\end{equation}
|
\end{equation}
|
||||||
Furthermore,
|
Furthermore,
|
||||||
@ -178,52 +178,52 @@ Furthermore,
|
|||||||
\end{equation}
|
\end{equation}
|
||||||
so
|
so
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\partial_t E\leqslant -8\pi^2\nu E+4\pi^2\nu\hat u_0^2+\sum_{k\in\mathbb Z^2}\hat u_{-k}\hat g_k
|
\partial_t E\leqslant -\frac{8\pi^2}{L^2}\nu E+\frac{4\pi^2}{L^2}\nu\hat u_0^2+\sum_{k\in\mathbb Z^2}\hat u_{-k}\hat g_k
|
||||||
\leqslant
|
\leqslant
|
||||||
-8\pi^2\nu E+4\pi^2\nu\hat u_0^2+
|
-\frac{8\pi^2}{L^2}\nu E+\frac{4\pi^2}{L^2}\nu\hat u_0^2+
|
||||||
\|\hat g\|_2\sqrt{2E}
|
\|\hat g\|_2\sqrt{2E}
|
||||||
.
|
.
|
||||||
\end{equation}
|
\end{equation}
|
||||||
In particular, if $\hat u_0=0$ (which corresponds to keeping the center of mass fixed),
|
In particular, if $\hat u_0=0$ (which corresponds to keeping the center of mass fixed),
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\partial_t E\leqslant -8\pi^2\nu E+\|\hat g\|_2\sqrt{2E}
|
\partial_t E\leqslant -\frac{8\pi^2}{L^2}\nu E+\|\hat g\|_2\sqrt{2E}
|
||||||
.
|
.
|
||||||
\end{equation}
|
\end{equation}
|
||||||
Now, if $8\pi^2\nu\sqrt E<\sqrt2\|\hat g\|_2$, then
|
Now, if $\frac{8\pi^2}{L^2}\nu\sqrt E<\sqrt2\|\hat g\|_2$, then
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\frac{\partial_t E}{-8\pi^2\nu E+\|\hat g\|_2\sqrt{2E}}\leqslant1
|
\frac{\partial_t E}{-\frac{8\pi^2}{L^2}\nu E+\|\hat g\|_2\sqrt{2E}}\leqslant1
|
||||||
\end{equation}
|
\end{equation}
|
||||||
and so
|
and so
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\frac{\log(1-\frac{8\pi^2\nu}{\sqrt2\|\hat g\|_2}\sqrt{E(t)})}{-4\pi^2\nu}\leqslant t+
|
\frac{\log(1-\frac{8\pi^2\nu}{L^2\sqrt2\|\hat g\|_2}\sqrt{E(t)})}{-\frac{4\pi^2}{L^2}\nu}\leqslant t+
|
||||||
\frac{\log(1-\frac{8\pi^2\nu}{\sqrt2\|\hat g\|_2}\sqrt{E(0)})}{-4\pi^2\nu}
|
\frac{\log(1-\frac{8\pi^2\nu}{L^2\sqrt2\|\hat g\|_2}\sqrt{E(0)})}{-\frac{4\pi^2}{L^2}\nu}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
and
|
and
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
E(t)
|
E(t)
|
||||||
\leqslant
|
\leqslant
|
||||||
\left(
|
\left(
|
||||||
\frac{\sqrt2\|\hat g\|_2}{8\pi^2\nu}(1-e^{-4\pi^2\nu t})
|
\frac{L^2\sqrt2\|\hat g\|_2}{8\pi^2\nu}(1-e^{-\frac{4\pi^2}{L^2}\nu t})
|
||||||
+e^{-4\pi^2\nu t}\sqrt{E(0)}
|
+e^{-\frac{4\pi^2}{L^2}\nu t}\sqrt{E(0)}
|
||||||
\right)^2
|
\right)^2
|
||||||
.
|
.
|
||||||
\end{equation}
|
\end{equation}
|
||||||
If $8\pi^2\nu\sqrt E>\sqrt2\|\hat g\|_2$,
|
If $\frac{8\pi^2}{L^2}\nu\sqrt E>\sqrt2\|\hat g\|_2$,
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\frac{\partial_t E}{-8\pi^2\nu E+\|\hat g\|_2\sqrt{2E}}\geqslant1
|
\frac{\partial_t E}{-\frac{8\pi^2}{L^2}\nu E+\|\hat g\|_2\sqrt{2E}}\geqslant1
|
||||||
\end{equation}
|
\end{equation}
|
||||||
and so
|
and so
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\frac{\log(\frac{8\pi^2\nu}{\sqrt2\|\hat g\|_2}\sqrt{E(t)}-1)}{-4\pi^2\nu}\geqslant t+
|
\frac{\log(\frac{8\pi^2\nu}{L^2\sqrt2\|\hat g\|_2}\sqrt{E(t)}-1)}{-\frac{4\pi^2}{L^2}\nu}\geqslant t+
|
||||||
\frac{\log(\frac{8\pi^2\nu}{\sqrt2\|\hat g\|_2}\sqrt{E(0)})-1}{-4\pi^2\nu}
|
\frac{\log(\frac{8\pi^2\nu}{L^2\sqrt2\|\hat g\|_2}\sqrt{E(0)})-1}{-\frac{4\pi^2}{L^2}\nu}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
and
|
and
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
E(t)
|
E(t)
|
||||||
\leqslant
|
\leqslant
|
||||||
\left(
|
\left(
|
||||||
\frac{\sqrt2\|\hat g\|_2}{8\pi^2\nu}(1-e^{-4\pi^2\nu t})
|
\frac{L^2\sqrt2\|\hat g\|_2}{8\pi^2\nu}(1-e^{-\frac{4\pi^2}{L^2}\nu t})
|
||||||
+e^{-4\pi^2\nu t}\sqrt{E(0)}
|
+e^{-\frac{4\pi^2}{L^2}\nu t}\sqrt{E(0)}
|
||||||
\right)^2
|
\right)^2
|
||||||
.
|
.
|
||||||
\end{equation}
|
\end{equation}
|
||||||
@ -232,8 +232,8 @@ and
|
|||||||
\point{\bf Enstrophy}.
|
\point{\bf Enstrophy}.
|
||||||
The enstrophy is defined as
|
The enstrophy is defined as
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\mathcal En(t)=\int dx\ |\nabla u|^2
|
\mathcal En(t)=\int\frac{dx}{L^2}\ |\nabla u|^2
|
||||||
=4\pi^2\sum_{k\in\mathbb Z^2}k^2|\hat u_k|^2
|
=\frac{4\pi^2}{L^2}\sum_{k\in\mathbb Z^2}k^2|\hat u_k|^2
|
||||||
.
|
.
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user