RKBS23
This commit is contained in:
@@ -90,6 +90,8 @@ int uk(
|
||||
ns_step_rk4(u, K1, K2, N1, N2, nu, step, L, g, fft1, fft2, ifft, tmp1, tmp2, tmp3, irreversible);
|
||||
} else if (algorithm==ALGORITHM_RKF45) {
|
||||
ns_step_rkf45(u, adaptive_tolerance, adaptive_factor, K1, K2, N1, N2, nu, &step, &next_step, L, g, fft1, fft2, ifft, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, irreversible);
|
||||
} else if (algorithm==ALGORITHM_RKBS23) {
|
||||
ns_step_rkbs23(u, adaptive_tolerance, adaptive_factor, K1, K2, N1, N2, nu, &step, &next_step, L, g, fft1, fft2, ifft, &tmp1, tmp2, tmp3, &tmp4, tmp5, irreversible, time==starting_time);
|
||||
} else {
|
||||
fprintf(stderr,"bug: unknown algorithm: %u, contact ian.jauslin@rutgers,edu\n",algorithm);
|
||||
}
|
||||
@@ -193,6 +195,8 @@ int enstrophy(
|
||||
ns_step_rk4(u, K1, K2, N1, N2, nu, step, L, g, fft1, fft2, ifft, tmp1, tmp2, tmp3, irreversible);
|
||||
} else if (algorithm==ALGORITHM_RKF45) {
|
||||
ns_step_rkf45(u, adaptive_tolerance, adaptive_factor, K1, K2, N1, N2, nu, &step, &next_step, L, g, fft1, fft2, ifft, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, irreversible);
|
||||
} else if (algorithm==ALGORITHM_RKBS23) {
|
||||
ns_step_rkbs23(u, adaptive_tolerance, adaptive_factor, K1, K2, N1, N2, nu, &step, &next_step, L, g, fft1, fft2, ifft, &tmp1, tmp2, tmp3, &tmp4, tmp5, irreversible, time==starting_time);
|
||||
} else {
|
||||
fprintf(stderr,"bug: unknown algorithm: %u, contact ian.jauslin@rutgers,edu\n",algorithm);
|
||||
}
|
||||
@@ -216,7 +220,7 @@ int enstrophy(
|
||||
avg_en_x_a*=print_freq/(time-prevtime);
|
||||
|
||||
// print to stderr so user can follow along
|
||||
if(algorithm==ALGORITHM_RKF45){
|
||||
if(algorithm>ALGORITHM_ADAPTIVE_THRESHOLD){
|
||||
fprintf(stderr,"% .8e % .8e % .8e % .8e % .8e % .8e % .8e % .8e\n",time, avg_a, avg_en, avg_en_x_a, alpha, enstrophy, alpha*enstrophy, step);
|
||||
printf("% .15e % .15e % .15e % .15e % .15e % .15e % .15e % .15e\n",time, avg_a, avg_en_x_a, avg_en, alpha, alpha*enstrophy, enstrophy, step);
|
||||
} else {
|
||||
@@ -345,6 +349,8 @@ int quiet(
|
||||
ns_step_rk4(u, K1, K2, N1, N2, nu, step, L, g, fft1, fft2, ifft, tmp1, tmp2, tmp3, irreversible);
|
||||
} else if (algorithm==ALGORITHM_RKF45) {
|
||||
ns_step_rkf45(u, adaptive_tolerance, adaptive_factor, K1, K2, N1, N2, nu, &step, &next_step, L, g, fft1, fft2, ifft, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, irreversible);
|
||||
} else if (algorithm==ALGORITHM_RKBS23) {
|
||||
ns_step_rkbs23(u, adaptive_tolerance, adaptive_factor, K1, K2, N1, N2, nu, &step, &next_step, L, g, fft1, fft2, ifft, &tmp1, tmp2, tmp3, &tmp4, tmp5, irreversible, time==starting_time);
|
||||
} else {
|
||||
fprintf(stderr,"bug: unknown algorithm: %u, contact ian.jauslin@rutgers,edu\n",algorithm);
|
||||
}
|
||||
@@ -400,6 +406,12 @@ int ns_init_tmps(
|
||||
*tmp5=calloc(sizeof(_Complex double),K1*(2*K2+1)+K2);
|
||||
*tmp6=calloc(sizeof(_Complex double),K1*(2*K2+1)+K2);
|
||||
*tmp7=calloc(sizeof(_Complex double),K1*(2*K2+1)+K2);
|
||||
} else if (algorithm==ALGORITHM_RKBS23){
|
||||
*tmp1=calloc(sizeof(_Complex double),K1*(2*K2+1)+K2);
|
||||
*tmp2=calloc(sizeof(_Complex double),K1*(2*K2+1)+K2);
|
||||
*tmp3=calloc(sizeof(_Complex double),K1*(2*K2+1)+K2);
|
||||
*tmp4=calloc(sizeof(_Complex double),K1*(2*K2+1)+K2);
|
||||
*tmp5=calloc(sizeof(_Complex double),K1*(2*K2+1)+K2);
|
||||
} else {
|
||||
fprintf(stderr,"bug: unknown algorithm: %u, contact ian.jauslin@rutgers,edu\n",algorithm);
|
||||
};
|
||||
@@ -459,6 +471,12 @@ int ns_free_tmps(
|
||||
free(tmp5);
|
||||
free(tmp6);
|
||||
free(tmp7);
|
||||
} else if (algorithm==ALGORITHM_RKBS23){
|
||||
free(tmp1);
|
||||
free(tmp2);
|
||||
free(tmp3);
|
||||
free(tmp4);
|
||||
free(tmp5);
|
||||
} else {
|
||||
fprintf(stderr,"bug: unknown algorithm: %u, contact ian.jauslin@rutgers,edu\n",algorithm);
|
||||
};
|
||||
@@ -712,6 +730,106 @@ int ns_step_rkf45(
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
// next time step
|
||||
// adaptive RK algorithm (Runge-Kutta-Bogacki-Shampine method)
|
||||
int ns_step_rkbs23(
|
||||
_Complex double* u,
|
||||
double tolerance,
|
||||
double factor,
|
||||
int K1,
|
||||
int K2,
|
||||
int N1,
|
||||
int N2,
|
||||
double nu,
|
||||
double* delta,
|
||||
double* next_delta,
|
||||
double L,
|
||||
_Complex double* g,
|
||||
fft_vect fft1,
|
||||
fft_vect fft2,
|
||||
fft_vect ifft,
|
||||
// the pointers k1 and k4 will be exchanged at the end of the routine
|
||||
_Complex double** k1,
|
||||
_Complex double* k2,
|
||||
_Complex double* k3,
|
||||
_Complex double** k4,
|
||||
_Complex double* tmp,
|
||||
bool irreversible,
|
||||
// whether to compute k1
|
||||
bool compute_k1
|
||||
){
|
||||
int kx,ky;
|
||||
double err,relative;
|
||||
|
||||
// k1: u(t)
|
||||
// only compute it if it is the first step (otherwise, it has already been computed due to the First Same As Last property)
|
||||
if(compute_k1){
|
||||
ns_rhs(*k1, u, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft, irreversible);
|
||||
}
|
||||
|
||||
// k2 : u(t+1/4*delta)
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
tmp[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+(*delta)/2*(*k1)[klookup_sym(kx,ky,K2)];
|
||||
}
|
||||
}
|
||||
ns_rhs(k2, tmp, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft, irreversible);
|
||||
|
||||
// k3 : u(t+3/4*delta)
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
tmp[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+(*delta)*(3./4*k2[klookup_sym(kx,ky,K2)]);
|
||||
}
|
||||
}
|
||||
ns_rhs(k3, tmp, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft, irreversible);
|
||||
|
||||
// k4 : u(t+delta)
|
||||
// tmp cpmputed here is the next step
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
tmp[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+(*delta)*(2./9*(*k1)[klookup_sym(kx,ky,K2)]+1./3*k2[klookup_sym(kx,ky,K2)]+4./9*k3[klookup_sym(kx,ky,K2)]);
|
||||
}
|
||||
}
|
||||
ns_rhs(*k4, tmp, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft, irreversible);
|
||||
|
||||
// compute error
|
||||
err=0;
|
||||
relative=0;
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
// difference between 5th order and 4th order
|
||||
err+=cabs((*delta)*(5./72*(*k1)[klookup_sym(kx,ky,K2)]-1./12*k2[klookup_sym(kx,ky,K2)]-1./9*k3[klookup_sym(kx,ky,K2)]+1./8*(*k4)[klookup_sym(kx,ky,K2)]));
|
||||
relative+=cabs(tmp[klookup_sym(kx,ky,K2)]-u[klookup_sym(kx,ky,K2)]);
|
||||
}
|
||||
}
|
||||
|
||||
// compare relative error with tolerance
|
||||
if(err<relative*tolerance){
|
||||
// add to output
|
||||
for(kx=0;kx<=K1;kx++){
|
||||
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
||||
u[klookup_sym(kx,ky,K2)]=tmp[klookup_sym(kx,ky,K2)];
|
||||
}
|
||||
}
|
||||
// next delta to use in future steps
|
||||
*next_delta=(*delta)*pow(relative*tolerance/err,1./3);
|
||||
|
||||
// k1 in the next step will be this k4 (first same as last)
|
||||
tmp=*k1;
|
||||
*k1=*k4;
|
||||
*k4=tmp;
|
||||
}
|
||||
// error too big: repeat with smaller step
|
||||
else{
|
||||
*delta=factor*(*delta)*pow(relative*tolerance/err,1./3);
|
||||
// this will reuse the same k1 without re-computing it
|
||||
ns_step_rkbs23(u,tolerance,factor,K1,K2,N1,N2,nu,delta,next_delta,L,g,fft1,fft2,ifft,k1,k2,k3,k4,tmp,irreversible,false);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
// right side of Irreversible/Reversible Navier-Stokes equation
|
||||
int ns_rhs(
|
||||
_Complex double* out,
|
||||
|
||||
Reference in New Issue
Block a user