Simpler expression for fft term
This commit is contained in:
@ -49,16 +49,23 @@ in terms of which, multiplying both sides of the equation by $\frac{k^\perp}{|k|
|
||||
\begin{equation}
|
||||
\partial_t\hat \varphi_k=
|
||||
-4\pi^2\nu k^2\hat \varphi_k+\frac{k^\perp}{2i\pi|k|}\cdot\hat g_k
|
||||
-\frac{2i\pi}{|k|}\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}}
|
||||
+\frac{4\pi^2}{|k|}\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}}
|
||||
(q\cdot p^\perp)(k^\perp\cdot q^\perp)\hat\varphi_p\hat\varphi_q
|
||||
.
|
||||
\label{ins_k}
|
||||
\end{equation}
|
||||
which, since $q\cdot p^\perp=q\cdot(k^\perp-q^\perp)=q\cdot k^\perp$, is
|
||||
Furthermore
|
||||
\begin{equation}
|
||||
(q\cdot p^\perp)(k^\perp\cdot q^\perp)
|
||||
=
|
||||
(q\cdot p^\perp)(q^2+p\cdot q)
|
||||
\end{equation}
|
||||
and $q\cdot p^\perp$ is antisymmetric under exchange of $q$ and $p$. Therefore,
|
||||
\begin{equation}
|
||||
\partial_t\hat \varphi_k=
|
||||
-4\pi^2\nu k^2\hat \varphi_k+\frac{k^\perp}{2i\pi|k|}\cdot\hat g_k
|
||||
+\frac{4\pi^2}{|k|}\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}}
|
||||
(q\cdot k^\perp)(k\cdot q)\frac{\hat\varphi_p\hat\varphi_q}{|p||q|}
|
||||
\frac{(q\cdot p^\perp)|q|}{|p|}\hat\varphi_p\hat\varphi_q
|
||||
.
|
||||
\label{ins_k}
|
||||
\end{equation}
|
||||
@ -73,8 +80,7 @@ We truncate the Fourier modes and assume that $\hat\varphi_k=0$ if $|k_1|>K_1$ o
|
||||
\begin{equation}
|
||||
T(\hat\varphi,k):=
|
||||
\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}}
|
||||
\frac{\hat\varphi_p}{|p|}
|
||||
(q\cdot k^\perp)(k\cdot q)\frac{\hat\varphi_q}{|q|}
|
||||
\frac{(q\cdot p^\perp)|q|}{|p|}\hat\varphi_q\hat\varphi_p
|
||||
\end{equation}
|
||||
using a fast Fourier transform, defined as
|
||||
\begin{equation}
|
||||
@ -98,8 +104,7 @@ in which $\mathcal F^*$ is defined like $\mathcal F$ but with the opposite phase
|
||||
\sum_{p,q\in\mathcal K}
|
||||
\frac1{N_1N_2}
|
||||
\sum_{n\in\mathcal N}e^{-\frac{2i\pi}{N_1}n_1(p_1+q_1-k_1)-\frac{2i\pi}{N_2}n_2(p_2+q_2-k_2)}
|
||||
\frac{\hat\varphi_p}{|p|}
|
||||
(q\cdot k^\perp)(k\cdot q)\frac{\hat\varphi_q}{|q|}
|
||||
(q\cdot p^\perp)\frac{|q|}{|p|}\hat\varphi_q\hat\varphi_p
|
||||
\end{equation}
|
||||
provided
|
||||
\begin{equation}
|
||||
@ -109,29 +114,17 @@ Indeed, $\sum_{n_i=0}^{N_i}e^{-\frac{2i\pi}{N_i}n_im_i}$ vanishes unless $m_i=0\
|
||||
\begin{equation}
|
||||
T(\hat\varphi,k)
|
||||
=
|
||||
\textstyle
|
||||
\frac1{N_1N_2}
|
||||
\mathcal F^*\left(
|
||||
\mathcal F(|p|^{-1}\hat\varphi_p)(n)
|
||||
\mathcal F((|q|^{-1}(q\cdot k^\perp)(k\cdot q)\hat\varphi_q)_q)(n)
|
||||
\right)(k)
|
||||
\end{equation}
|
||||
which we expand
|
||||
\begin{equation}
|
||||
T(\hat\varphi,k)
|
||||
=
|
||||
\textstyle
|
||||
\frac{k_x^2-k_y^2}{N_1N_2}
|
||||
\mathcal F^*\left(
|
||||
\mathcal F\left(\frac{\hat\varphi_p}{|p|}\right)(n)
|
||||
\mathcal F\left(\frac{q_xq_y}{|q|}\hat\varphi_q\right)(n)
|
||||
\right)(k)
|
||||
-
|
||||
\frac{k_xk_y}{N_1N_2}
|
||||
\mathcal F^*\left(
|
||||
\mathcal F\left(\frac{\hat\varphi_p}{|p|}\right)(n)
|
||||
\mathcal F\left(\frac{q_x^2-q_y^2}{|q|}\hat\varphi_q\right)(n)
|
||||
\mathcal F\left(\frac{p_x\hat\varphi_p}{|p|}\right)(n)
|
||||
\mathcal F\left(q_y|q|\hat\varphi_q\right)(n)
|
||||
-
|
||||
\mathcal F\left(\frac{p_y\hat\varphi_p}{|p|}\right)(n)
|
||||
\mathcal F\left(q_x|q|\hat\varphi_q\right)(n)
|
||||
\right)(k)
|
||||
\end{equation}
|
||||
\bigskip
|
||||
|
||||
|
||||
\vfill
|
||||
|
Reference in New Issue
Block a user