diff --git a/docs/nstrophy_doc.tex b/docs/nstrophy_doc.tex index 7f4fb27..71825dc 100644 --- a/docs/nstrophy_doc.tex +++ b/docs/nstrophy_doc.tex @@ -182,6 +182,18 @@ Note that, by\-~(\ref{realu})-(\ref{realT}), \subsection{Runge-Kutta methods}. To solve these equations numerically, we will use Runge-Kutta methods, which compute an approximate value $\hat u_k^{(n)}$ for $\hat u_k(t_n)$. +These algorithms approximate the solution to an equation of the form $\dot u=f(t;u)$ with +\begin{equation} + \hat u_k^{(n+1)}=\hat u_k^{(n)} + +\delta_n\sum_{i=1}^sb_ik_i(t_n;\hat u^{(n)}) + ,\quad + k_i(t_n;\hat u^{(n)}):=f\left(t_n+c_i\delta_n;\ \hat u+\delta_n\sum_{j=1}^{i-1}a_{i,j}k_j(t_n,\hat u^{(n)})\right) + . +\end{equation} +The $c_i$ and $a_{i,j}$ are chosen in one of various ways, depending on the desired accuracy. +\bigskip + +\indent {\tt nstrophy} supports the 4th order Runge-Kutta ({\tt RK4}) and 2nd order Runge-Kutta ({\tt RK2}) algorithms. In addition, several variable step methods are implemented: \begin{itemize} @@ -428,6 +440,11 @@ The enstrophy is defined as \subsection{Lyapunov exponents} \indent +We will consider several methods of computing the Lyapunov exponents. +\bigskip + +\subsubsection{Method 1: compute the Jacobian at every step} +\indent To compute the Lyapunov exponents, we must first compute the Jacobian of $\hat u^{(n)}\mapsto\hat u^{(n+1)}$. This map is always of Runge-Kutta type, that is, \begin{equation}