Reorganize doc
This commit is contained in:
parent
9ec233fed5
commit
9d48b044ac
@ -103,9 +103,85 @@ We truncate the Fourier modes and assume that $\hat u_k=0$ if $|k_1|>K_1$ or $|k
|
|||||||
\mathcal K:=\{(k_1,k_2),\ |k_1|\leqslant K_1,\ |k_2|\leqslant K_2\}
|
\mathcal K:=\{(k_1,k_2),\ |k_1|\leqslant K_1,\ |k_2|\leqslant K_2\}
|
||||||
.
|
.
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
\bigskip
|
||||||
|
|
||||||
\subsubsection{Runge-Kutta methods}.
|
{\bf Remark}:
|
||||||
To solve the equation numerically, we will use Runge-Kutta methods, which compute an approximate value $\hat u_k^{(n)}$ for $\hat u_k(t_n)$.
|
Since $U$ is real, $\hat U_{-k}=\hat U_k^*$, and so
|
||||||
|
\begin{equation}
|
||||||
|
\hat u_{-k}=\hat u_k^*
|
||||||
|
.
|
||||||
|
\label{realu}
|
||||||
|
\end{equation}
|
||||||
|
Similarly,
|
||||||
|
\begin{equation}
|
||||||
|
\hat g_{-k}=\hat g_k^*
|
||||||
|
.
|
||||||
|
\label{realg}
|
||||||
|
\end{equation}
|
||||||
|
Thus,
|
||||||
|
\begin{equation}
|
||||||
|
T(\hat u,-k)
|
||||||
|
=
|
||||||
|
T(\hat u,k)^*
|
||||||
|
.
|
||||||
|
\label{realT}
|
||||||
|
\end{equation}
|
||||||
|
In order to keep the computation as quick as possible, we only compute and store the values for $k_1\geqslant 0$.
|
||||||
|
(In fact, if we do not enforce the reality conditions, the computation has been found to be unstable.)
|
||||||
|
|
||||||
|
\subsection{Reversible equation}
|
||||||
|
\indent The reversible equation is similar to\-~(\ref{ins}) but instead of fixing the viscosity, we fix the enstrophy\-~\cite{Ga22}.
|
||||||
|
It is defined directly in Fourier space:
|
||||||
|
\begin{equation}
|
||||||
|
\partial_t\hat U_k=
|
||||||
|
-\frac{4\pi^2}{L^2}\alpha(\hat U) k^2\hat U_k+\hat G_k
|
||||||
|
-i\frac{2\pi}L\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}}
|
||||||
|
(q\cdot\hat U_p)\hat U_q
|
||||||
|
,\quad
|
||||||
|
k\cdot\hat U_k=0
|
||||||
|
\end{equation}
|
||||||
|
where $\alpha$ is chosen such that the enstrophy is constant.
|
||||||
|
In terms of $\hat u$\-~(\ref{udef}), (\ref{gdef}), (\ref{T}):
|
||||||
|
\begin{equation}
|
||||||
|
\partial_t\hat u_k=
|
||||||
|
-\frac{4\pi^2}{L^2}\alpha(\hat u) k^2\hat u_k
|
||||||
|
+\hat g_k
|
||||||
|
+\frac{4\pi^2}{L^2|k|}T(\hat u,k)
|
||||||
|
.
|
||||||
|
\label{rns_k}
|
||||||
|
\end{equation}
|
||||||
|
To compute $\alpha$, we use the constancy of the enstrophy:
|
||||||
|
\begin{equation}
|
||||||
|
\sum_{k\in\mathbb Z^2}k^2\hat U_k\cdot\partial_t\hat U_k
|
||||||
|
=0
|
||||||
|
\end{equation}
|
||||||
|
which, in terms of $\hat u$ is
|
||||||
|
\begin{equation}
|
||||||
|
\sum_{k\in\mathbb Z^2}k^2\hat u_k^*\partial_t\hat u_k
|
||||||
|
=0
|
||||||
|
\end{equation}
|
||||||
|
that is
|
||||||
|
\begin{equation}
|
||||||
|
\frac{4\pi^2}{L^2}\alpha(\hat u)\sum_{k\in\mathbb Z^2}k^4|\hat u_k|^2
|
||||||
|
=
|
||||||
|
\sum_{k\in\mathbb Z^2}k^2\hat u_k^*\hat g_k
|
||||||
|
+\frac{4\pi^2}{L^2}\sum_{k\in\mathbb Z^2}|k|\hat u_k^*T(\hat u,k)
|
||||||
|
\end{equation}
|
||||||
|
and so
|
||||||
|
\begin{equation}
|
||||||
|
\alpha(\hat u)
|
||||||
|
=\frac{\frac{L^2}{4\pi^2}\sum_k k^2\hat u_k^*\hat g_k+\sum_k|k|\hat u_k^*T(\hat u,k)}{\sum_kk^4|\hat u_k|^2}
|
||||||
|
.
|
||||||
|
\label{alpha}
|
||||||
|
\end{equation}
|
||||||
|
Note that, by\-~(\ref{realu})-(\ref{realT}),
|
||||||
|
\begin{equation}
|
||||||
|
\alpha(\hat u)\in\mathbb R
|
||||||
|
.
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\subsection{Runge-Kutta methods}.
|
||||||
|
To solve these equations numerically, we will use Runge-Kutta methods, which compute an approximate value $\hat u_k^{(n)}$ for $\hat u_k(t_n)$.
|
||||||
{\tt nstrophy} supports the 4th order Runge-Kutta ({\tt RK4}) and 2nd order Runge-Kutta ({\tt RK2}) algorithms.
|
{\tt nstrophy} supports the 4th order Runge-Kutta ({\tt RK4}) and 2nd order Runge-Kutta ({\tt RK2}) algorithms.
|
||||||
In addition, several variable step methods are implemented:
|
In addition, several variable step methods are implemented:
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
@ -190,30 +266,8 @@ It can be made by specifying the parameter {\tt adaptive\_cost}.
|
|||||||
These cost functions are selected by choosing {\tt adaptive\_cost=k3} and {\tt adaptive\_cost=k32} respectively.
|
These cost functions are selected by choosing {\tt adaptive\_cost=k3} and {\tt adaptive\_cost=k32} respectively.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
\subsubsection{Reality}.
|
|
||||||
Since $U$ is real, $\hat U_{-k}=\hat U_k^*$, and so
|
|
||||||
\begin{equation}
|
|
||||||
\hat u_{-k}=\hat u_k^*
|
|
||||||
.
|
|
||||||
\label{realu}
|
|
||||||
\end{equation}
|
|
||||||
Similarly,
|
|
||||||
\begin{equation}
|
|
||||||
\hat g_{-k}=\hat g_k^*
|
|
||||||
.
|
|
||||||
\label{realg}
|
|
||||||
\end{equation}
|
|
||||||
Thus,
|
|
||||||
\begin{equation}
|
|
||||||
T(\hat u,-k)
|
|
||||||
=
|
|
||||||
T(\hat u,k)^*
|
|
||||||
.
|
|
||||||
\label{realT}
|
|
||||||
\end{equation}
|
|
||||||
In order to keep the computation as quick as possible, we only compute and store the values for $k_1\geqslant 0$.
|
|
||||||
|
|
||||||
\subsubsection{FFT}. We compute T using a fast Fourier transform, defined as
|
\subsection{Computation of $T$: FFT}. We compute T using a fast Fourier transform, defined as
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\mathcal F(f)(n):=\sum_{m\in\mathcal N}e^{-\frac{2i\pi}{N_1}m_1n_1-\frac{2i\pi}{N_2}m_2n_2}f(m_1,m_2)
|
\mathcal F(f)(n):=\sum_{m\in\mathcal N}e^{-\frac{2i\pi}{N_1}m_1n_1-\frac{2i\pi}{N_2}m_2n_2}f(m_1,m_2)
|
||||||
\end{equation}
|
\end{equation}
|
||||||
@ -257,6 +311,11 @@ Therefore,
|
|||||||
\right)(k)
|
\right)(k)
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
|
\subsection{Observables}
|
||||||
|
\indent
|
||||||
|
We define the following observables.
|
||||||
|
\bigskip
|
||||||
|
|
||||||
\subsubsection{Energy}.
|
\subsubsection{Energy}.
|
||||||
We define the energy as
|
We define the energy as
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
@ -367,7 +426,7 @@ The enstrophy is defined as
|
|||||||
.
|
.
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
\subsubsection{Lyapunov exponents}
|
\subsection{Lyapunov exponents}
|
||||||
\indent
|
\indent
|
||||||
To compute the Lyapunov exponents, we must first compute the Jacobian of $\hat u^{(n)}\mapsto\hat u^{(n+1)}$.
|
To compute the Lyapunov exponents, we must first compute the Jacobian of $\hat u^{(n)}\mapsto\hat u^{(n+1)}$.
|
||||||
This map is always of Runge-Kutta type, that is,
|
This map is always of Runge-Kutta type, that is,
|
||||||
@ -453,62 +512,6 @@ The Lyapunov exponents at time $\alpha\mathfrak L_r$ are then
|
|||||||
.
|
.
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
\subsubsection{Numerical instability}.
|
|
||||||
In order to prevent the algorithm from blowing up, it is necessary to impose the reality of $u(x)$ by hand, otherwise, truncation errors build up, and lead to divergences.
|
|
||||||
It is sufficient to ensure that the convolution term $T(\hat u,k)$ satisfies $T(\hat u,-k)=T(\hat u,k)^*$.
|
|
||||||
After imposing this condition, the algorithm no longer blows up, but it is still unstable (for instance, increasing $K_1$ or $K_2$ leads to very different results).
|
|
||||||
|
|
||||||
\subsection{Reversible equation}
|
|
||||||
\indent The reversible equation is similar to\-~(\ref{ins}) but instead of fixing the viscosity, we fix the enstrophy\-~\cite{Ga22}.
|
|
||||||
It is defined directly in Fourier space:
|
|
||||||
\begin{equation}
|
|
||||||
\partial_t\hat U_k=
|
|
||||||
-\frac{4\pi^2}{L^2}\alpha(\hat U) k^2\hat U_k+\hat G_k
|
|
||||||
-i\frac{2\pi}L\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}}
|
|
||||||
(q\cdot\hat U_p)\hat U_q
|
|
||||||
,\quad
|
|
||||||
k\cdot\hat U_k=0
|
|
||||||
\end{equation}
|
|
||||||
where $\alpha$ is chosen such that the enstrophy is constant.
|
|
||||||
In terms of $\hat u$\-~(\ref{udef}), (\ref{gdef}), (\ref{T}):
|
|
||||||
\begin{equation}
|
|
||||||
\partial_t\hat u_k=
|
|
||||||
-\frac{4\pi^2}{L^2}\alpha(\hat u) k^2\hat u_k
|
|
||||||
+\hat g_k
|
|
||||||
+\frac{4\pi^2}{L^2|k|}T(\hat u,k)
|
|
||||||
.
|
|
||||||
\label{rns_k}
|
|
||||||
\end{equation}
|
|
||||||
To compute $\alpha$, we use the constancy of the enstrophy:
|
|
||||||
\begin{equation}
|
|
||||||
\sum_{k\in\mathbb Z^2}k^2\hat U_k\cdot\partial_t\hat U_k
|
|
||||||
=0
|
|
||||||
\end{equation}
|
|
||||||
which, in terms of $\hat u$ is
|
|
||||||
\begin{equation}
|
|
||||||
\sum_{k\in\mathbb Z^2}k^2\hat u_k^*\partial_t\hat u_k
|
|
||||||
=0
|
|
||||||
\end{equation}
|
|
||||||
that is
|
|
||||||
\begin{equation}
|
|
||||||
\frac{4\pi^2}{L^2}\alpha(\hat u)\sum_{k\in\mathbb Z^2}k^4|\hat u_k|^2
|
|
||||||
=
|
|
||||||
\sum_{k\in\mathbb Z^2}k^2\hat u_k^*\hat g_k
|
|
||||||
+\frac{4\pi^2}{L^2}\sum_{k\in\mathbb Z^2}|k|\hat u_k^*T(\hat u,k)
|
|
||||||
\end{equation}
|
|
||||||
and so
|
|
||||||
\begin{equation}
|
|
||||||
\alpha(\hat u)
|
|
||||||
=\frac{\frac{L^2}{4\pi^2}\sum_k k^2\hat u_k^*\hat g_k+\sum_k|k|\hat u_k^*T(\hat u,k)}{\sum_kk^4|\hat u_k|^2}
|
|
||||||
.
|
|
||||||
\label{alpha}
|
|
||||||
\end{equation}
|
|
||||||
Note that, by\-~(\ref{realu})-(\ref{realT}),
|
|
||||||
\begin{equation}
|
|
||||||
\alpha(\hat u)\in\mathbb R
|
|
||||||
.
|
|
||||||
\end{equation}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
|
Loading…
x
Reference in New Issue
Block a user