Make N be the smallest power of 2 larger than 3*K+1
This commit is contained in:
@ -108,9 +108,9 @@ in which $\mathcal F^*$ is defined like $\mathcal F$ but with the opposite phase
|
||||
\end{equation}
|
||||
provided
|
||||
\begin{equation}
|
||||
N_i>4K_i.
|
||||
N_i>3K_i.
|
||||
\end{equation}
|
||||
Indeed, $\sum_{n_i=0}^{N_i}e^{-\frac{2i\pi}{N_i}n_im_i}$ vanishes unless $m_i=0\%N_i$ (in which $\%N_i$ means `modulo $N_i$'), and, if $p,q\in\mathcal K$, then $|p_i+q_i|\leqslant2K_i$.
|
||||
Indeed, $\sum_{n_i=0}^{N_i}e^{-\frac{2i\pi}{N_i}n_im_i}$ vanishes unless $m_i=0\%N_i$ (in which $\%N_i$ means `modulo $N_i$'), and, if $p,q,k\in\mathcal K$, then $|p_i+q_i-k_i|\leqslant3K_i$, so, as long as $N_i>3K_i$, then $(p_i+q_i-k_i)=0\%N_i$ implies $p_i+q_i=k_i$.
|
||||
Therefore,
|
||||
\begin{equation}
|
||||
T(\hat\varphi,k)
|
||||
|
Reference in New Issue
Block a user