Reality in doc
This commit is contained in:
		@@ -71,10 +71,16 @@ and $q\cdot p^\perp$ is antisymmetric under exchange of $q$ and $p$. Therefore,
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \partial_t\hat u_k=
 | 
			
		||||
  -\frac{4\pi^2}{L^2}\nu k^2\hat u_k+\hat g_k
 | 
			
		||||
  +\frac{4\pi^2}{L^2|k|}\sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}}
 | 
			
		||||
  +\frac{4\pi^2}{L^2|k|}T(\hat u,k)
 | 
			
		||||
  \label{ins_k}
 | 
			
		||||
\end{equation}
 | 
			
		||||
with
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  T(\hat u,k):=
 | 
			
		||||
  \sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}}
 | 
			
		||||
  \frac{(q\cdot p^\perp)|q|}{|p|}\hat u_p\hat u_q
 | 
			
		||||
  .
 | 
			
		||||
  \label{ins_k}
 | 
			
		||||
  \label{T}
 | 
			
		||||
\end{equation}
 | 
			
		||||
We truncate the Fourier modes and assume that $\hat u_k=0$ if $|k_1|>K_1$ or $|k_2|>K_2$. Let
 | 
			
		||||
\begin{equation}
 | 
			
		||||
@@ -83,14 +89,30 @@ We truncate the Fourier modes and assume that $\hat u_k=0$ if $|k_1|>K_1$ or $|k
 | 
			
		||||
\end{equation}
 | 
			
		||||
\bigskip
 | 
			
		||||
 | 
			
		||||
\point{\bf FFT}. We compute the last term in~\-(\ref{ins_k})
 | 
			
		||||
\point{\bf Reality}.
 | 
			
		||||
Since $U$ is real, $\hat U_{-k}=\hat U_k^*$, and so
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  T(\hat u,k):=
 | 
			
		||||
  \sum_{\displaystyle\mathop{\scriptstyle p,q\in\mathbb Z^2}_{p+q=k}}
 | 
			
		||||
  \frac{(q\cdot p^\perp)|q|}{|p|}\hat u_q\hat u_p
 | 
			
		||||
  \label{T}
 | 
			
		||||
  \hat u_{-k}=\hat u_k^*
 | 
			
		||||
  .
 | 
			
		||||
  \label{realu}
 | 
			
		||||
\end{equation}
 | 
			
		||||
using a fast Fourier transform, defined as
 | 
			
		||||
Similarly,
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \hat g_{-k}=\hat g_k^*
 | 
			
		||||
  .
 | 
			
		||||
  \label{realg}
 | 
			
		||||
\end{equation}
 | 
			
		||||
Thus,
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  T(\hat u,-k)
 | 
			
		||||
  =
 | 
			
		||||
  T(\hat u,k)^*
 | 
			
		||||
  .
 | 
			
		||||
  \label{realT}
 | 
			
		||||
\end{equation}
 | 
			
		||||
\bigskip
 | 
			
		||||
 | 
			
		||||
\point{\bf FFT}. We compute T using a fast Fourier transform, defined as
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \mathcal F(f)(n):=\sum_{m\in\mathcal N}e^{-\frac{2i\pi}{N_1}m_1n_1-\frac{2i\pi}{N_2}m_2n_2}f(m_1,m_2)
 | 
			
		||||
\end{equation}
 | 
			
		||||
@@ -279,20 +301,25 @@ To compute $\alpha$, we use the constancy of the enstrophy:
 | 
			
		||||
\end{equation}
 | 
			
		||||
which, in terms of $\hat u$ is
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \sum_{k\in\mathbb Z^2}k^2\hat u_k\partial_t\hat u_k
 | 
			
		||||
  \sum_{k\in\mathbb Z^2}k^2\hat u_k^*\partial_t\hat u_k
 | 
			
		||||
  =0
 | 
			
		||||
\end{equation}
 | 
			
		||||
that is
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \frac{4\pi^2}{L^2}\alpha(\hat u)\sum_{k\in\mathbb Z^2}k^4\hat u_k^2
 | 
			
		||||
  \frac{4\pi^2}{L^2}\alpha(\hat u)\sum_{k\in\mathbb Z^2}k^4|\hat u_k|^2
 | 
			
		||||
  =
 | 
			
		||||
  \sum_{k\in\mathbb Z^2}k^2\hat u_k\hat g_k
 | 
			
		||||
  +\frac{4\pi^2}{L^2}\sum_{k\in\mathbb Z^2}|k|\hat u_kT(\hat u,k)
 | 
			
		||||
  \sum_{k\in\mathbb Z^2}k^2\hat u_k^*\hat g_k
 | 
			
		||||
  +\frac{4\pi^2}{L^2}\sum_{k\in\mathbb Z^2}|k|\hat u_k^*T(\hat u,k)
 | 
			
		||||
\end{equation}
 | 
			
		||||
and so
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \alpha(\hat u)
 | 
			
		||||
  =\frac{\frac{L^2}{4\pi^2}\sum_k k^2\hat u_k\hat g_k+\sum_k|k|\hat u_kT(\hat u,k)}{\sum_kk^4\hat u_k^2}
 | 
			
		||||
  =\frac{\frac{L^2}{4\pi^2}\sum_k k^2\hat u_k^*\hat g_k+\sum_k|k|\hat u_k^*T(\hat u,k)}{\sum_kk^4|\hat u_k|^2}
 | 
			
		||||
  .
 | 
			
		||||
\end{equation}
 | 
			
		||||
Note that, by\-~(\ref{realu})-(\ref{realT}),
 | 
			
		||||
\begin{equation}
 | 
			
		||||
  \alpha(\hat u)\in\mathbb R
 | 
			
		||||
  .
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user