|
|
|
@ -90,6 +90,9 @@ int uk(
|
|
|
|
|
ns_step_rk4(u, K1, K2, N1, N2, nu, step, L, g, fft1, fft2, ifft, tmp1, tmp2, tmp3, irreversible);
|
|
|
|
|
} else if (algorithm==ALGORITHM_RKF45) {
|
|
|
|
|
ns_step_rkf45(u, adaptive_tolerance, adaptive_factor, K1, K2, N1, N2, nu, &step, &next_step, L, g, fft1, fft2, ifft, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, irreversible, true);
|
|
|
|
|
} else if (algorithm==ALGORITHM_RKDP54) {
|
|
|
|
|
// only compute k1 on the first step
|
|
|
|
|
ns_step_rkdp54(u, adaptive_tolerance, adaptive_factor, K1, K2, N1, N2, nu, &step, &next_step, L, g, fft1, fft2, ifft, &tmp1, &tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, irreversible, time==starting_time);
|
|
|
|
|
} else if (algorithm==ALGORITHM_RKBS32) {
|
|
|
|
|
// only compute k1 on the first step
|
|
|
|
|
ns_step_rkbs32(u, adaptive_tolerance, adaptive_factor, K1, K2, N1, N2, nu, &step, &next_step, L, g, fft1, fft2, ifft, &tmp1, tmp2, tmp3, &tmp4, tmp5, irreversible, time==starting_time);
|
|
|
|
@ -196,6 +199,9 @@ int enstrophy(
|
|
|
|
|
ns_step_rk4(u, K1, K2, N1, N2, nu, step, L, g, fft1, fft2, ifft, tmp1, tmp2, tmp3, irreversible);
|
|
|
|
|
} else if (algorithm==ALGORITHM_RKF45) {
|
|
|
|
|
ns_step_rkf45(u, adaptive_tolerance, adaptive_factor, K1, K2, N1, N2, nu, &step, &next_step, L, g, fft1, fft2, ifft, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, irreversible, true);
|
|
|
|
|
} else if (algorithm==ALGORITHM_RKDP54) {
|
|
|
|
|
// only compute k1 on the first step
|
|
|
|
|
ns_step_rkdp54(u, adaptive_tolerance, adaptive_factor, K1, K2, N1, N2, nu, &step, &next_step, L, g, fft1, fft2, ifft, &tmp1, &tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, irreversible, time==starting_time);
|
|
|
|
|
} else if (algorithm==ALGORITHM_RKBS32) {
|
|
|
|
|
// only compute k1 on the first step
|
|
|
|
|
ns_step_rkbs32(u, adaptive_tolerance, adaptive_factor, K1, K2, N1, N2, nu, &step, &next_step, L, g, fft1, fft2, ifft, &tmp1, tmp2, tmp3, &tmp4, tmp5, irreversible, time==starting_time);
|
|
|
|
@ -351,6 +357,9 @@ int quiet(
|
|
|
|
|
ns_step_rk4(u, K1, K2, N1, N2, nu, step, L, g, fft1, fft2, ifft, tmp1, tmp2, tmp3, irreversible);
|
|
|
|
|
} else if (algorithm==ALGORITHM_RKF45) {
|
|
|
|
|
ns_step_rkf45(u, adaptive_tolerance, adaptive_factor, K1, K2, N1, N2, nu, &step, &next_step, L, g, fft1, fft2, ifft, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, irreversible, true);
|
|
|
|
|
} else if (algorithm==ALGORITHM_RKDP54) {
|
|
|
|
|
// only compute k1 on the first step
|
|
|
|
|
ns_step_rkdp54(u, adaptive_tolerance, adaptive_factor, K1, K2, N1, N2, nu, &step, &next_step, L, g, fft1, fft2, ifft, &tmp1, &tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, irreversible, time==starting_time);
|
|
|
|
|
} else if (algorithm==ALGORITHM_RKBS32) {
|
|
|
|
|
// only compute k1 on the first step
|
|
|
|
|
ns_step_rkbs32(u, adaptive_tolerance, adaptive_factor, K1, K2, N1, N2, nu, &step, &next_step, L, g, fft1, fft2, ifft, &tmp1, tmp2, tmp3, &tmp4, tmp5, irreversible, time==starting_time);
|
|
|
|
@ -401,7 +410,7 @@ int ns_init_tmps(
|
|
|
|
|
*tmp1=calloc(sizeof(_Complex double),K1*(2*K2+1)+K2);
|
|
|
|
|
*tmp2=calloc(sizeof(_Complex double),K1*(2*K2+1)+K2);
|
|
|
|
|
*tmp3=calloc(sizeof(_Complex double),K1*(2*K2+1)+K2);
|
|
|
|
|
} else if (algorithm==ALGORITHM_RKF45){
|
|
|
|
|
} else if (algorithm==ALGORITHM_RKF45 || algorithm==ALGORITHM_RKDP54){
|
|
|
|
|
*tmp1=calloc(sizeof(_Complex double),K1*(2*K2+1)+K2);
|
|
|
|
|
*tmp2=calloc(sizeof(_Complex double),K1*(2*K2+1)+K2);
|
|
|
|
|
*tmp3=calloc(sizeof(_Complex double),K1*(2*K2+1)+K2);
|
|
|
|
@ -466,7 +475,7 @@ int ns_free_tmps(
|
|
|
|
|
free(tmp1);
|
|
|
|
|
free(tmp2);
|
|
|
|
|
free(tmp3);
|
|
|
|
|
} else if (algorithm==ALGORITHM_RKF45){
|
|
|
|
|
} else if (algorithm==ALGORITHM_RKF45 || algorithm==ALGORITHM_RKDP54){
|
|
|
|
|
free(tmp1);
|
|
|
|
|
free(tmp2);
|
|
|
|
|
free(tmp3);
|
|
|
|
@ -838,6 +847,132 @@ int ns_step_rkbs32(
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// next time step
|
|
|
|
|
// adaptive RK algorithm (Runge-Kutta-Dormand-Prince method)
|
|
|
|
|
int ns_step_rkdp54(
|
|
|
|
|
_Complex double* u,
|
|
|
|
|
double tolerance,
|
|
|
|
|
double factor,
|
|
|
|
|
int K1,
|
|
|
|
|
int K2,
|
|
|
|
|
int N1,
|
|
|
|
|
int N2,
|
|
|
|
|
double nu,
|
|
|
|
|
double* delta,
|
|
|
|
|
double* next_delta,
|
|
|
|
|
double L,
|
|
|
|
|
_Complex double* g,
|
|
|
|
|
fft_vect fft1,
|
|
|
|
|
fft_vect fft2,
|
|
|
|
|
fft_vect ifft,
|
|
|
|
|
// the pointers k1 and k2 will be exchanged at the end of the routine
|
|
|
|
|
_Complex double** k1,
|
|
|
|
|
_Complex double** k2,
|
|
|
|
|
_Complex double* k3,
|
|
|
|
|
_Complex double* k4,
|
|
|
|
|
_Complex double* k5,
|
|
|
|
|
_Complex double* k6,
|
|
|
|
|
_Complex double* tmp,
|
|
|
|
|
bool irreversible,
|
|
|
|
|
// whether to compute k1
|
|
|
|
|
bool compute_k1
|
|
|
|
|
){
|
|
|
|
|
int kx,ky;
|
|
|
|
|
double err,relative;
|
|
|
|
|
|
|
|
|
|
// k1: u(t)
|
|
|
|
|
// only compute it if it is the first step (otherwise, it has already been computed due to the First Same As Last property)
|
|
|
|
|
if(compute_k1){
|
|
|
|
|
ns_rhs(*k1, u, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft, irreversible);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// k2 : u(t+1/5*delta)
|
|
|
|
|
for(kx=0;kx<=K1;kx++){
|
|
|
|
|
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
|
|
|
|
tmp[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+(*delta)/5*(*k1)[klookup_sym(kx,ky,K2)];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
ns_rhs(*k2, tmp, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft, irreversible);
|
|
|
|
|
|
|
|
|
|
// k3 : u(t+3/10*delta)
|
|
|
|
|
for(kx=0;kx<=K1;kx++){
|
|
|
|
|
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
|
|
|
|
tmp[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+(*delta)*(3./40*(*k1)[klookup_sym(kx,ky,K2)]+9./40*(*k2)[klookup_sym(kx,ky,K2)]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
ns_rhs(k3, tmp, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft, irreversible);
|
|
|
|
|
|
|
|
|
|
// k4 : u(t+4/5*delta)
|
|
|
|
|
for(kx=0;kx<=K1;kx++){
|
|
|
|
|
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
|
|
|
|
tmp[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+(*delta)*(44./45*(*k1)[klookup_sym(kx,ky,K2)]-56./15*(*k2)[klookup_sym(kx,ky,K2)]+32./9*k3[klookup_sym(kx,ky,K2)]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
ns_rhs(k4, tmp, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft, irreversible);
|
|
|
|
|
|
|
|
|
|
// k5 : u(t+8/9*delta)
|
|
|
|
|
for(kx=0;kx<=K1;kx++){
|
|
|
|
|
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
|
|
|
|
tmp[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+(*delta)*(19372./6561*(*k1)[klookup_sym(kx,ky,K2)]-25360./2187*(*k2)[klookup_sym(kx,ky,K2)]+64448./6561*k3[klookup_sym(kx,ky,K2)]-212./729*k4[klookup_sym(kx,ky,K2)]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
ns_rhs(k5, tmp, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft, irreversible);
|
|
|
|
|
|
|
|
|
|
// k6 : u(t+delta)
|
|
|
|
|
for(kx=0;kx<=K1;kx++){
|
|
|
|
|
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
|
|
|
|
tmp[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+(*delta)*(9017./3168*(*k1)[klookup_sym(kx,ky,K2)]-355./33*(*k2)[klookup_sym(kx,ky,K2)]+46732./5247*k3[klookup_sym(kx,ky,K2)]+49./176*k4[klookup_sym(kx,ky,K2)]-5103./18656*k5[klookup_sym(kx,ky,K2)]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
ns_rhs(k6, tmp, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft, irreversible);
|
|
|
|
|
|
|
|
|
|
// k7 : u(t+delta)
|
|
|
|
|
for(kx=0;kx<=K1;kx++){
|
|
|
|
|
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
|
|
|
|
// tmp computed here is the step
|
|
|
|
|
tmp[klookup_sym(kx,ky,K2)]=u[klookup_sym(kx,ky,K2)]+(*delta)*(35./384*(*k1)[klookup_sym(kx,ky,K2)]+500./1113*k3[klookup_sym(kx,ky,K2)]+125./192*k4[klookup_sym(kx,ky,K2)]-2187./6784*k5[klookup_sym(kx,ky,K2)]+11./84*k6[klookup_sym(kx,ky,K2)]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// store in k2, which is not needed anymore
|
|
|
|
|
ns_rhs(*k2, tmp, K1, K2, N1, N2, nu, L, g, fft1, fft2, ifft, irreversible);
|
|
|
|
|
|
|
|
|
|
// compute error
|
|
|
|
|
err=0;
|
|
|
|
|
relative=0;
|
|
|
|
|
for(kx=0;kx<=K1;kx++){
|
|
|
|
|
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
|
|
|
|
// difference between 5th order and 4th order
|
|
|
|
|
err+=cabs((*delta)*(-71./57600*(*k1)[klookup_sym(kx,ky,K2)]+71./16695*k3[klookup_sym(kx,ky,K2)]-71./1920*k4[klookup_sym(kx,ky,K2)]+17253./339200*k5[klookup_sym(kx,ky,K2)]-22./525*k6[klookup_sym(kx,ky,K2)]+1./40*(*k2)[klookup_sym(kx,ky,K2)]));
|
|
|
|
|
relative+=cabs(tmp[klookup_sym(kx,ky,K2)]-u[klookup_sym(kx,ky,K2)]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// compare relative error with tolerance
|
|
|
|
|
if(err<relative*tolerance){
|
|
|
|
|
// add to output
|
|
|
|
|
for(kx=0;kx<=K1;kx++){
|
|
|
|
|
for(ky=(kx>0 ? -K2 : 1);ky<=K2;ky++){
|
|
|
|
|
u[klookup_sym(kx,ky,K2)]=tmp[klookup_sym(kx,ky,K2)];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// next delta to use in future steps
|
|
|
|
|
*next_delta=(*delta)*pow(relative*tolerance/err,1./5);
|
|
|
|
|
|
|
|
|
|
// k1 in the next step will be this k4 (first same as last)
|
|
|
|
|
tmp=*k1;
|
|
|
|
|
*k1=*k2;
|
|
|
|
|
*k2=tmp;
|
|
|
|
|
}
|
|
|
|
|
// error too big: repeat with smaller step
|
|
|
|
|
else{
|
|
|
|
|
*delta=factor*(*delta)*pow(relative*tolerance/err,1./5);
|
|
|
|
|
// this will reuse the same k1 without re-computing it
|
|
|
|
|
ns_step_rkdp54(u,tolerance,factor,K1,K2,N1,N2,nu,delta,next_delta,L,g,fft1,fft2,ifft,k1,k2,k3,k4,k5,k6,tmp,irreversible,false);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// right side of Irreversible/Reversible Navier-Stokes equation
|
|
|
|
|
int ns_rhs(
|
|
|
|
|
_Complex double* out,
|
|
|
|
|