Initial commit

This commit is contained in:
Ian Jauslin
2018-01-11 22:48:14 +00:00
commit 01f47ace67
11 changed files with 1850 additions and 0 deletions

282
src/main.c Normal file
View File

@ -0,0 +1,282 @@
#define VERSION "0.0"
#include <math.h>
#include <complex.h>
#include <fftw3.h>
#include <string.h>
#include <stdlib.h>
#include "navier-stokes.h"
// usage message
int print_usage();
// read command line arguments
int read_args(int argc, const char* argv[], ns_params* params, unsigned int* nsteps, unsigned int* computation_nr);
// compute enstrophy as a function of time in the I-NS equation
int enstrophy(ns_params params, unsigned int Nsteps);
#define COMPUTATION_ENSTROPHY 1
int main (int argc, const char* argv[]){
ns_params params;
unsigned int nsteps;
int ret;
unsigned int computation_nr;
// default computation: phase diagram
computation_nr=COMPUTATION_ENSTROPHY;
// read command line arguments
ret=read_args(argc, argv, &params, &nsteps, &computation_nr);
if(ret<0){
return(-1);
}
if(ret>0){
return(0);
}
// enstrophy
if(computation_nr==COMPUTATION_ENSTROPHY){
enstrophy(params, nsteps);
}
return(0);
}
// usage message
int print_usage(){
fprintf(stderr, "usage:\n nstrophy enstrophy [-h timestep] [-K modes] [-v] [-N nsteps]\n\n nstrophy -V [-v]\n\n");
return(0);
}
// read command line arguments
#define CP_FLAG_TIMESTEP 1
#define CP_FLAG_NSTEPS 2
#define CP_FLAG_MODES 2
#define CP_FLAG_NU 3
int read_args(int argc, const char* argv[], ns_params* params, unsigned int* nsteps, unsigned int* computation_nr){
int i;
int ret;
// temporary int
int tmp_int;
// temporary unsigned int
unsigned int tmp_uint;
// temporary double
double tmp_double;
// pointers
char* ptr;
// flag that indicates what argument is being read
int flag=0;
// print version and exit
char Vflag=0;
// defaults
/*
params->h=6.103515625e-05;
params->K=16;
*nsteps=16777216;
params->nu=4.9632717887631524e-05;
*/
params->h=1e-5;
params->K=16;
*nsteps=10000000;
params->nu=1e-4;
// loop over arguments
for(i=1;i<argc;i++){
// flag
if(argv[i][0]=='-'){
for(ptr=((char*)argv[i])+1;*ptr!='\0';ptr++){
switch(*ptr){
// timestep
case 'h':
flag=CP_FLAG_TIMESTEP;
break;
// nsteps
case 'N':
flag=CP_FLAG_NSTEPS;
break;
// modes
case 'K':
flag=CP_FLAG_MODES;
break;
// friction
case 'n':
flag=CP_FLAG_NU;
break;
// print version
case 'V':
Vflag=1;
break;
default:
fprintf(stderr, "unrecognized option '-%c'\n", *ptr);
print_usage();
return(-1);
break;
}
}
}
// timestep
else if(flag==CP_FLAG_TIMESTEP){
ret=sscanf(argv[i],"%lf",&tmp_double);
if(ret!=1){
fprintf(stderr, "error: '-h' should be followed by a double\n got '%s'\n",argv[i]);
return(-1);
}
params->h=tmp_double;
flag=0;
}
// nsteps
else if(flag==CP_FLAG_NSTEPS){
ret=sscanf(argv[i],"%u",&tmp_uint);
if(ret!=1){
fprintf(stderr, "error: '-N' should be followed by an unsigned int\n got '%s'\n",argv[i]);
return(-1);
}
*nsteps=tmp_uint;
flag=0;
}
// nsteps
else if(flag==CP_FLAG_MODES){
ret=sscanf(argv[i],"%d",&tmp_int);
if(ret!=1){
fprintf(stderr, "error: '-K' should be followed by an int\n got '%s'\n",argv[i]);
return(-1);
}
params->K=tmp_uint;
flag=0;
}
// friction
else if(flag==CP_FLAG_TIMESTEP){
ret=sscanf(argv[i],"%lf",&tmp_double);
if(ret!=1){
fprintf(stderr, "error: '-n' should be followed by a double\n got '%s'\n",argv[i]);
return(-1);
}
params->nu=tmp_double;
flag=0;
}
// computation to run
else{
if(strcmp(argv[i], "enstrophy")==0){
*computation_nr=COMPUTATION_ENSTROPHY;
}
else{
fprintf(stderr, "error: unrecognized computation: '%s'\n",argv[i]);
print_usage();
return(-1);
}
flag=0;
}
}
// print version and exit
if(Vflag==1){
printf("nstrophy " VERSION "\n");
return(1);
}
return(0);
}
// compute enstrophy as a function of time in the I-NS equation
int enstrophy(ns_params params, unsigned int Nsteps){
_Complex double* u;
_Complex double* tmp1;
_Complex double* tmp2;
_Complex double* tmp3;
_Complex double alpha;
_Complex double avg;
unsigned int t;
int kx,ky;
fft_vects fft_vects;
// sizes
params.S=2*params.K+1;
params.N=4*params.K+1;
// velocity field
u=calloc(sizeof(_Complex double),params.S*params.S);
params.g=calloc(sizeof(_Complex double),params.S*params.S);
// allocate tmp vectors for computation
tmp1=calloc(sizeof(_Complex double),params.S*params.S);
tmp2=calloc(sizeof(_Complex double),params.S*params.S);
tmp3=calloc(sizeof(_Complex double),params.S*params.S);
// initial value
for(kx=-params.K;kx<=params.K;kx++){
for(ky=-params.K;ky<=params.K;ky++){
//u[KLOOKUP(kx,ky,params.S)]=kx*kx*ky*ky*exp(-(kx*kx+ky*ky));
if((kx==1 && ky==0) || (kx==-1 && ky==0)){
u[KLOOKUP(kx,ky,params.S)]=1;
}
else{
u[KLOOKUP(kx,ky,params.S)]=0;
}
}
}
// driving force
for(kx=-params.K;kx<=params.K;kx++){
for(ky=-params.K;ky<=params.K;ky++){
//params.g[KLOOKUP(kx,ky,params.S)]=sqrt(kx*kx*ky*ky)*exp(-(kx*kx+ky*ky));
if((kx==2 && ky==-1) || (kx==-2 && ky==1)){
params.g[KLOOKUP(kx,ky,params.S)]=1;
}
else{
params.g[KLOOKUP(kx,ky,params.S)]=0;
}
}
}
// prepare vectors for fft
fft_vects.fft1=fftw_malloc(sizeof(fftw_complex)*params.N*params.N);
fft_vects.fft1_plan=fftw_plan_dft_2d((int)params.N,(int)params.N, fft_vects.fft1, fft_vects.fft1, FFTW_FORWARD, FFTW_MEASURE);
fft_vects.fft2=fftw_malloc(sizeof(fftw_complex)*params.N*params.N);
fft_vects.fft2_plan=fftw_plan_dft_2d((int)params.N,(int)params.N, fft_vects.fft2, fft_vects.fft2, FFTW_FORWARD, FFTW_MEASURE);
fft_vects.invfft=fftw_malloc(sizeof(fftw_complex)*params.N*params.N);
fft_vects.invfft_plan=fftw_plan_dft_2d((int)params.N,(int)params.N, fft_vects.invfft, fft_vects.invfft, FFTW_BACKWARD, FFTW_MEASURE);
// init running average
avg=0;
// iterate
for(t=0;t<Nsteps;t++){
ins_step(u, params, fft_vects, tmp1, tmp2, tmp3);
alpha=compute_alpha(u, params);
// to avoid errors building up in imaginary part
for(kx=-params.K;kx<=params.K;kx++){
for(ky=-params.K;ky<=params.K;ky++){
u[KLOOKUP(kx,ky,params.S)]=__real__ u[KLOOKUP(kx,ky,params.S)];
}
}
// running average
if(t>0){
avg=avg-(avg-alpha)/t;
}
if(t>0 && t%1000==0){
fprintf(stderr,"%8d % .8e % .8e % .8e % .8e\n",t, __real__ avg, __imag__ avg, __real__ alpha, __imag__ alpha);
printf("%8d % .8e % .8e % .8e % .8e\n",t, __real__ avg, __imag__ avg, __real__ alpha, __imag__ alpha);
}
}
// free memory
fftw_destroy_plan(fft_vects.fft1_plan);
fftw_destroy_plan(fft_vects.fft2_plan);
fftw_destroy_plan(fft_vects.invfft_plan);
fftw_free(fft_vects.fft1);
fftw_free(fft_vects.fft2);
fftw_free(fft_vects.invfft);
free(tmp3);
free(tmp2);
free(tmp1);
free(params.g);
free(u);
return(0);
}

299
src/navier-stokes.c Normal file
View File

@ -0,0 +1,299 @@
#include "navier-stokes.h"
#include <math.h>
#define M_PI 3.14159265358979323846
#define CHK 1
// next time step for Irreversible Navier-Stokes equation
int ins_step(_Complex double* u, ns_params params, fft_vects vects, _Complex double* tmp1, _Complex double* tmp2, _Complex double* tmp3){
int kx,ky;
// k1
ins_rhs(tmp1, u, params, vects);
// add to output
for(kx=-params.K;kx<=params.K;kx++){
for(ky=-params.K;ky<=params.K;ky++){
tmp3[KLOOKUP(kx,ky,params.S)]=u[KLOOKUP(kx,ky,params.S)]+params.h/6*tmp1[KLOOKUP(kx,ky,params.S)];
}
}
// u+h*k1/2
for(kx=-params.K;kx<=params.K;kx++){
for(ky=-params.K;ky<=params.K;ky++){
tmp2[KLOOKUP(kx,ky,params.S)]=u[KLOOKUP(kx,ky,params.S)]+params.h/2*tmp1[KLOOKUP(kx,ky,params.S)];
}
}
// k2
ins_rhs(tmp1, tmp2, params, vects);
// add to output
for(kx=-params.K;kx<=params.K;kx++){
for(ky=-params.K;ky<=params.K;ky++){
tmp3[KLOOKUP(kx,ky,params.S)]+=params.h/3*tmp1[KLOOKUP(kx,ky,params.S)];
}
}
// u+h*k2/2
for(kx=-params.K;kx<=params.K;kx++){
for(ky=-params.K;ky<=params.K;ky++){
tmp2[KLOOKUP(kx,ky,params.S)]=u[KLOOKUP(kx,ky,params.S)]+params.h/2*tmp1[KLOOKUP(kx,ky,params.S)];
}
}
// k3
ins_rhs(tmp1, tmp2, params, vects);
// add to output
for(kx=-params.K;kx<=params.K;kx++){
for(ky=-params.K;ky<=params.K;ky++){
tmp3[KLOOKUP(kx,ky,params.S)]+=params.h/3*tmp1[KLOOKUP(kx,ky,params.S)];
}
}
// u+h*k3
for(kx=-params.K;kx<=params.K;kx++){
for(ky=-params.K;ky<=params.K;ky++){
tmp2[KLOOKUP(kx,ky,params.S)]=u[KLOOKUP(kx,ky,params.S)]+params.h*tmp1[KLOOKUP(kx,ky,params.S)];
}
}
// k4
ins_rhs(tmp1, tmp2, params, vects);
// add to output
for(kx=-params.K;kx<=params.K;kx++){
for(ky=-params.K;ky<=params.K;ky++){
u[KLOOKUP(kx,ky,params.S)]=tmp3[KLOOKUP(kx,ky,params.S)]+params.h/6*tmp1[KLOOKUP(kx,ky,params.S)];
}
}
return(0);
}
// right side of Irreversible Navier-Stokes equation
int ins_rhs(_Complex double* out, _Complex double* u, ns_params params, fft_vects vects){
int kx,ky;
#if CHK==0
// F(u/|p|)*F(q1*q2*u/|q|)
// init to 0
for(kx=0; kx<params.N*params.N; kx++){
vects.fft1[kx]=0;
vects.fft2[kx]=0;
vects.invfft[kx]=0;
}
// fill modes
for(kx=-params.K;kx<=params.K;kx++){
for(ky=-params.K;ky<=params.K;ky++){
if(kx!=0 || ky!=0){
vects.fft1[KLOOKUP(kx,ky,params.N)]=u[KLOOKUP(kx,ky,params.S)]/sqrt(kx*kx+ky*ky);
vects.fft2[KLOOKUP(kx,ky,params.N)]=kx*ky*u[KLOOKUP(kx,ky,params.S)]/sqrt(kx*kx+ky*ky);
}
}
}
// fft
fftw_execute(vects.fft1_plan);
fftw_execute(vects.fft2_plan);
// write to invfft
for(kx=-2*params.K;kx<=2*params.K;kx++){
for(ky=-2*params.K;ky<=2*params.K;ky++){
vects.invfft[KLOOKUP(kx,ky,params.N)]=vects.fft1[KLOOKUP(kx,ky,params.N)]*vects.fft2[KLOOKUP(kx,ky,params.N)];
}
}
// inverse fft
fftw_execute(vects.invfft_plan);
// write out
for(kx=0; kx<params.S*params.S; kx++){
out[kx]=0;
}
for(kx=-params.K;kx<=params.K;kx++){
for(ky=-params.K;ky<=params.K;ky++){
if(kx!=0 || ky!=0){
out[KLOOKUP(kx,ky,params.S)]=-4*M_PI*M_PI*params.nu*(kx*kx+ky*ky)*u[KLOOKUP(kx,ky,params.S)]+params.g[KLOOKUP(kx,ky,params.S)]+4*M_PI*M_PI/sqrt(kx*kx+ky*ky)*vects.invfft[KLOOKUP(kx,ky,params.N)]*(kx*kx-ky*ky)/params.N/params.N;
}
}
}
// F(u/|p|)*F((q1*q1-q2*q2)*u/|q|)
// init to 0
for(kx=0; kx<params.N*params.N; kx++){
vects.fft2[kx]=0;
vects.invfft[kx]=0;
}
// fill modes
for(kx=-params.K;kx<=params.K;kx++){
for(ky=-params.K;ky<=params.K;ky++){
if(kx!=0 || ky!=0){
vects.fft2[KLOOKUP(kx,ky,params.N)]=(kx*kx-ky*ky)*u[KLOOKUP(kx,ky,params.S)]/sqrt(kx*kx+ky*ky);
}
}
}
// fft
fftw_execute(vects.fft2_plan);
// write to invfft
for(kx=-2*params.K;kx<=2*params.K;kx++){
for(ky=-2*params.K;ky<=2*params.K;ky++){
vects.invfft[KLOOKUP(kx,ky,params.N)]=vects.fft1[KLOOKUP(kx,ky,params.N)]*vects.fft2[KLOOKUP(kx,ky,params.N)];
}
}
// inverse fft
fftw_execute(vects.invfft_plan);
// write out
for(kx=-params.K;kx<=params.K;kx++){
for(ky=-params.K;ky<=params.K;ky++){
if(kx!=0 || ky!=0){
out[KLOOKUP(kx,ky,params.S)]=out[KLOOKUP(kx,ky,params.S)]-4*M_PI*M_PI/sqrt(kx*kx+ky*ky)*vects.invfft[KLOOKUP(kx,ky,params.N)]*(kx*ky)/params.N/params.N;
}
}
}
#elif CHK == 1
// F(-p2/|p|*u)*F(q1*|q|*u)
// init to 0
for(kx=0; kx<params.N*params.N; kx++){
vects.fft1[kx]=0;
vects.fft2[kx]=0;
vects.invfft[kx]=0;
}
// fill modes
for(kx=-params.K;kx<=params.K;kx++){
for(ky=-params.K;ky<=params.K;ky++){
if(kx!=0 || ky!=0){
vects.fft1[KLOOKUP(kx,ky,params.N)]=-kx/sqrt(kx*kx+ky*ky)*u[KLOOKUP(kx,ky,params.S)];
vects.fft2[KLOOKUP(kx,ky,params.N)]=kx*sqrt(kx*kx+ky*ky)*u[KLOOKUP(kx,ky,params.S)];
}
}
}
// fft
fftw_execute(vects.fft1_plan);
fftw_execute(vects.fft2_plan);
// write to invfft
for(kx=-2*params.K;kx<=2*params.K;kx++){
for(ky=-2*params.K;ky<=2*params.K;ky++){
vects.invfft[KLOOKUP(kx,ky,params.N)]=vects.fft1[KLOOKUP(kx,ky,params.N)]*vects.fft2[KLOOKUP(kx,ky,params.N)] - vects.fft1[KLOOKUP(ky,kx,params.N)]*vects.fft2[KLOOKUP(ky,kx,params.N)];
}
}
// inverse fft
fftw_execute(vects.invfft_plan);
// write out
for(kx=0; kx<params.S*params.S; kx++){
out[kx]=0;
}
for(kx=-params.K;kx<=params.K;kx++){
for(ky=-params.K;ky<=params.K;ky++){
if(kx!=0 || ky!=0){
out[KLOOKUP(kx,ky,params.S)]=-4*M_PI*M_PI*params.nu/params.S*(kx*kx+ky*ky)*u[KLOOKUP(kx,ky,params.S)]+params.g[KLOOKUP(kx,ky,params.S)]+2*M_PI/sqrt(kx*kx+ky*ky)/params.S*vects.invfft[KLOOKUP(kx,ky,params.N)]/params.N/params.N;
}
}
}
#elif CHK==2
// F(u)*F(q1*u)
// init to 0
for(kx=0; kx<params.N*params.N; kx++){
vects.fft1[kx]=0;
vects.fft2[kx]=0;
vects.invfft[kx]=0;
}
// fill modes
for(kx=-params.K;kx<=params.K;kx++){
for(ky=-params.K;ky<=params.K;ky++){
// u_k
vects.fft1[KLOOKUP(kx,ky,params.N)]=u[KLOOKUP(kx,ky,params.S)];
// 2i\pi k_x u_k
vects.fft2[KLOOKUP(kx,ky,params.N)]=2*M_PI*I*kx*u[KLOOKUP(kx,ky,params.S)];
}
}
// fft
fftw_execute(vects.fft1_plan);
fftw_execute(vects.fft2_plan);
// write to invfft
for(kx=-2*params.K;kx<=2*params.K;kx++){
for(ky=-2*params.K;ky<=2*params.K;ky++){
vects.invfft[KLOOKUP(kx,ky,params.N)]=vects.fft1[KLOOKUP(kx,ky,params.N)]*vects.fft2[KLOOKUP(kx,ky,params.N)];
}
}
// F(p1/p2*u)*F(q2*u)
// init to 0
for(kx=0; kx<params.N*params.N; kx++){
vects.fft1[kx]=0;
vects.fft2[kx]=0;
}
// fill modes
for(kx=-params.K;kx<=params.K;kx++){
for(ky=-params.K;ky<=params.K;ky++){
// k_x/k_y u_k
if(ky!=0){
vects.fft1[KLOOKUP(kx,ky,params.N)]=kx/ky*u[KLOOKUP(kx,ky,params.S)];
}
// 2i\pi k_y u_k
vects.fft2[KLOOKUP(kx,ky,params.N)]=2*M_PI*I*ky*u[KLOOKUP(kx,ky,params.S)];
}
}
// fft
fftw_execute(vects.fft1_plan);
fftw_execute(vects.fft2_plan);
// write to invfft
for(kx=-2*params.K;kx<=2*params.K;kx++){
for(ky=-2*params.K;ky<=2*params.K;ky++){
vects.invfft[KLOOKUP(kx,ky,params.N)]+=-vects.fft1[KLOOKUP(kx,ky,params.N)]*vects.fft2[KLOOKUP(kx,ky,params.N)];
}
}
// inverse fft
fftw_execute(vects.invfft_plan);
/*
// check: convolution instead of fft
for(kx=0; kx<params.S*params.S; kx++){
out[kx]=0;
}
for(kx=-params.K;kx<=params.K;kx++){
for(ky=-params.K;ky<=params.K;ky++){
for(px=-params.K;px<=params.K;px++){
for(py=-params.K;py<=params.K;py++){
if(kx-px<=params.K && kx-px>=-params.K && ky-py<=params.K && ky-py>=-params.K){
out[KLOOKUP(kx,ky,params.S)]+=2*M_PI*I*(u[KLOOKUP(px,py,params.S)]*(kx-px)*u[KLOOKUP(kx-px,ky-py,params.S)]-(py==0?0:px/py*u[KLOOKUP(px,py,params.S)]*(ky-py)*u[KLOOKUP(kx-px,ky-py,params.S)]));
}
}
}
dd=(__real__ vects.invfft[KLOOKUP(kx,ky,params.N)]/params.N/params.N-__real__ out[KLOOKUP(kx,ky,params.S)])*(__real__ vects.invfft[KLOOKUP(kx,ky,params.N)]/params.N/params.N-__real__ out[KLOOKUP(kx,ky,params.S)])+(__imag__ vects.invfft[KLOOKUP(kx,ky,params.N)]/params.N/params.N-__imag__ out[KLOOKUP(kx,ky,params.S)])*(__imag__ vects.invfft[KLOOKUP(kx,ky,params.N)]/params.N/params.N-__imag__ out[KLOOKUP(kx,ky,params.S)]);
if(dd>1e-25){
printf("%d %d % .8e\n",kx,ky, dd);
}
}
}
*/
// write out
for(kx=0; kx<params.S*params.S; kx++){
out[kx]=0;
}
for(kx=-params.K;kx<=params.K;kx++){
for(ky=-params.K;ky<=params.K;ky++){
out[KLOOKUP(kx,ky,params.S)]=-4*M_PI*M_PI*params.nu*(kx*kx+ky*ky)*u[KLOOKUP(kx,ky,params.S)]+params.g[KLOOKUP(kx,ky,params.S)]+vects.invfft[KLOOKUP(kx,ky,params.N)]/params.N/params.N;
}
}
#endif
return(0);
}
// compute alpha
_Complex double compute_alpha(_Complex double* u, ns_params params){
_Complex double num=0;
_Complex double denom=0;
int kx,ky;
for(kx=-params.K;kx<=params.K;kx++){
for(ky=-params.K;ky<=params.K;ky++){
denom+=(kx*kx+ky*ky)*(kx*kx+ky*ky)*u[KLOOKUP(kx,ky,params.S)]*conj(u[KLOOKUP(kx,ky,params.S)])*(1+(ky!=0?kx*kx/ky/ky:0));
num+=(kx*kx+ky*ky)*u[KLOOKUP(kx,ky,params.S)]*conj(params.g[KLOOKUP(kx,ky,params.S)])*(1+(ky!=0?kx*kx/ky/ky:0));
}
}
return(num/denom);
}

48
src/navier-stokes.h Normal file
View File

@ -0,0 +1,48 @@
#ifndef NAVIERSTOKES_H
#define NAVIERSTOKES_H
#include <complex.h>
#include <fftw3.h>
// to extract elements from array of size S representing a function of momentum, use
// array[KEXTRACT(kx,ky,size)]
#define KLOOKUP(X,Y,S) (X>=0?X:S+X)*S+(Y>=0?Y:S+Y)
// parameters for the NS equation
typedef struct ns_params {
// number of modes
int K;
// 2*K+1
int S;
// 4*K+1
int N;
// forcing term
_Complex double* g;
// time step
double h;
// friction
double nu;
} ns_params;
// arrays on which the ffts are performed
typedef struct fft_vects {
fftw_complex* fft1;
fftw_complex* fft2;
fftw_complex* invfft;
fftw_plan fft1_plan;
fftw_plan fft2_plan;
fftw_plan invfft_plan;
} fft_vects;
// next time step for Irreversible Navier-Stokes equation
int ins_step(_Complex double* u, ns_params params, fft_vects vects, _Complex double* tmp1, _Complex double* tmp2, _Complex double* tmp3);
// right side of Irreversible Navier-Stokes equation
int ins_rhs(_Complex double* out, _Complex double* u, ns_params params, fft_vects vects);
// compute alpha
_Complex double compute_alpha(_Complex double* u, ns_params params);
#endif