Nstrophy/src/navier-stokes.c

541 lines
12 KiB
C
Raw Normal View History

2018-01-11 22:48:14 +00:00
#include "navier-stokes.h"
#include <math.h>
2022-05-18 09:57:06 +02:00
#include <stdlib.h>
2018-01-11 22:48:14 +00:00
#define M_PI 3.14159265358979323846
2022-05-18 09:57:06 +02:00
// compute solution as a function of time
int uk(
int K1,
int K2,
int N1,
int N2,
unsigned int nsteps,
double nu,
double delta,
_Complex double (*g)(int,int),
2022-05-18 23:52:01 +02:00
unsigned int print_freq,
unsigned int nthreads
2022-05-18 09:57:06 +02:00
){
_Complex double* u;
_Complex double* tmp1;
_Complex double* tmp2;
_Complex double* tmp3;
unsigned int t;
fft_vect fft1;
fft_vect fft2;
fft_vect ifft;
int kx,ky;
2022-05-18 23:52:01 +02:00
ns_init_tmps(&u, &tmp1, &tmp2, &tmp3, &fft1, &fft2, &ifft, K1, K2, N1, N2, nthreads);
2022-05-18 09:57:06 +02:00
ns_init_u(u, K1, K2);
// iterate
for(t=0;t<nsteps;t++){
ins_step(u, K1, K2, N1, N2, nu, delta, g, fft1, fft2, ifft, tmp1, tmp2, tmp3);
if(t%print_freq==0){
2022-05-18 10:42:30 +02:00
fprintf(stderr,"%d % .8e ",t,t*delta);
printf("%8d % .15e ",t,t*delta);
2022-05-18 09:57:06 +02:00
for(kx=-K1;kx<=K1;kx++){
for (ky=-K2;ky<=K2;ky++){
if (kx*kx+ky*ky<=1){
fprintf(stderr,"% .8e % .8e ",__real__ u[klookup(kx,ky,2*K1+1,2*K2+1)], __imag__ u[klookup(kx,ky,2*K1+1,2*K2+1)]);
}
2022-05-18 10:42:30 +02:00
printf("% .15e % .15e ",__real__ u[klookup(kx,ky,2*K1+1,2*K2+1)], __imag__ u[klookup(kx,ky,2*K1+1,2*K2+1)]);
2022-05-18 09:57:06 +02:00
}
}
fprintf(stderr,"\n");
printf("\n");
}
}
ns_free_tmps(u, tmp1, tmp2, tmp3, fft1, fft2, ifft);
return(0);
}
// compute enstrophy as a function of time in the I-NS equation
int enstrophy(
int K1,
int K2,
int N1,
int N2,
unsigned int nsteps,
double nu,
double delta,
_Complex double (*g)(int,int),
2022-05-18 23:52:01 +02:00
unsigned int print_freq,
unsigned int nthreads
2022-05-18 09:57:06 +02:00
){
_Complex double* u;
_Complex double* tmp1;
_Complex double* tmp2;
_Complex double* tmp3;
_Complex double alpha;
_Complex double avg;
unsigned int t;
fft_vect fft1;
fft_vect fft2;
fft_vect ifft;
2022-05-18 23:52:01 +02:00
ns_init_tmps(&u, &tmp1, &tmp2, &tmp3, &fft1, &fft2, &ifft, K1, K2, N1, N2, nthreads);
2022-05-18 09:57:06 +02:00
ns_init_u(u, K1, K2);
// init running average
avg=0;
// iterate
for(t=0;t<nsteps;t++){
ins_step(u, K1, K2, N1, N2, nu, delta, g, fft1, fft2, ifft, tmp1, tmp2, tmp3);
alpha=compute_alpha(u, K1, K2, g);
// running average
if(t>0){
avg=avg-(avg-alpha)/t;
}
if(t>0 && t%print_freq==0){
fprintf(stderr,"% .15e % .15e % .15e % .15e % .15e\n",t*delta, __real__ avg, __imag__ avg, __real__ alpha, __imag__ alpha);
printf("% .15e % .15e % .15e % .15e % .15e\n",t*delta, __real__ avg, __imag__ avg, __real__ alpha, __imag__ alpha);
}
}
ns_free_tmps(u, tmp1, tmp2, tmp3, fft1, fft2, ifft);
return(0);
}
2022-05-18 22:22:42 +02:00
// compute solution as a function of time, but do not print anything (useful for debugging)
int quiet(
int K1,
int K2,
int N1,
int N2,
unsigned int nsteps,
double nu,
double delta,
2022-05-18 23:52:01 +02:00
_Complex double (*g)(int,int),
unsigned int nthreads
2022-05-18 22:22:42 +02:00
){
_Complex double* u;
_Complex double* tmp1;
_Complex double* tmp2;
_Complex double* tmp3;
unsigned int t;
fft_vect fft1;
fft_vect fft2;
fft_vect ifft;
2022-05-18 23:52:01 +02:00
ns_init_tmps(&u, &tmp1, &tmp2, &tmp3, &fft1, &fft2, &ifft, K1, K2, N1, N2, nthreads);
2022-05-18 22:22:42 +02:00
ns_init_u(u, K1, K2);
// iterate
for(t=0;t<nsteps;t++){
ins_step(u, K1, K2, N1, N2, nu, delta, g, fft1, fft2, ifft, tmp1, tmp2, tmp3);
}
ns_free_tmps(u, tmp1, tmp2, tmp3, fft1, fft2, ifft);
return(0);
}
2022-05-18 09:57:06 +02:00
// initialize vectors for computation
int ns_init_tmps(
_Complex double ** u,
_Complex double ** tmp1,
_Complex double ** tmp2,
_Complex double ** tmp3,
fft_vect* fft1,
fft_vect* fft2,
fft_vect* ifft,
int K1,
int K2,
int N1,
2022-05-18 23:52:01 +02:00
int N2,
unsigned int nthreads
2022-05-18 09:57:06 +02:00
){
// velocity field
*u=calloc(sizeof(_Complex double),(2*K1+1)*(2*K2+1));
// allocate tmp vectors for computation
*tmp1=calloc(sizeof(_Complex double),(2*K1+1)*(2*K2+1));
*tmp2=calloc(sizeof(_Complex double),(2*K1+1)*(2*K2+1));
*tmp3=calloc(sizeof(_Complex double),(2*K1+1)*(2*K2+1));
2022-05-18 23:52:01 +02:00
// init threads
fftw_init_threads();
fftw_plan_with_nthreads(nthreads);
2022-05-18 09:57:06 +02:00
// prepare vectors for fft
fft1->fft=fftw_malloc(sizeof(fftw_complex)*N1*N2);
fft1->fft_plan=fftw_plan_dft_2d(N1,N2, fft1->fft, fft1->fft, FFTW_FORWARD, FFTW_MEASURE);
fft2->fft=fftw_malloc(sizeof(fftw_complex)*N1*N2);
fft2->fft_plan=fftw_plan_dft_2d(N1,N2, fft2->fft, fft2->fft, FFTW_FORWARD, FFTW_MEASURE);
ifft->fft=fftw_malloc(sizeof(fftw_complex)*N1*N2);
ifft->fft_plan=fftw_plan_dft_2d(N1,N2, ifft->fft, ifft->fft, FFTW_BACKWARD, FFTW_MEASURE);
return 0;
}
// release vectors
int ns_free_tmps(
_Complex double* u,
_Complex double* tmp1,
_Complex double* tmp2,
_Complex double* tmp3,
fft_vect fft1,
fft_vect fft2,
fft_vect ifft
){
// free memory
fftw_destroy_plan(fft1.fft_plan);
fftw_destroy_plan(fft2.fft_plan);
fftw_destroy_plan(ifft.fft_plan);
fftw_free(fft1.fft);
fftw_free(fft2.fft);
fftw_free(ifft.fft);
2022-05-18 23:52:01 +02:00
fftw_cleanup_threads();
2022-05-18 09:57:06 +02:00
free(tmp3);
free(tmp2);
free(tmp1);
free(u);
return 0;
}
// initial value
int ns_init_u(
_Complex double* u,
int K1,
int K2
){
int kx,ky;
/*
double rescale;
srand(17);
// random init (set half, then the other half are the conjugates)
for(ky=0;ky<=K2;ky++){
u[klookup(0,ky,2*K1+1,2*K2+1)]=(-RAND_MAX*0.5+rand())*1.0/RAND_MAX+(-RAND_MAX*0.5+rand())*1.0/RAND_MAX*I;
}
for(kx=1;kx<=K1;kx++){
for(ky=-K2;ky<=K2;ky++){
u[klookup(kx,ky,2*K1+1,2*K2+1)]=(-RAND_MAX*0.5+rand())*1.0/RAND_MAX+(-RAND_MAX*0.5+rand())*1.0/RAND_MAX*I;
}
}
// conjugates
for(ky=-K2;ky<=-1;ky++){
u[klookup(0,ky,2*K1+1,2*K2+1)]=conj(u[klookup(0,-ky,2*K1+1,2*K2+1)]);
}
for(kx=-K1;kx<=-1;kx++){
for(ky=-K2;ky<=K2;ky++){
u[klookup(kx,ky,2*K1+1,2*K2+1)]=conj(u[klookup(-kx,-ky,2*K1+1,2*K2+1)]);
}
}
// rescale: 1/k decay
rescale=0;
for(kx=-K1;kx<=K1;kx++){
for(ky=-K2;ky<=K2;ky++){
rescale=rescale+((__real__ u[klookup(kx,ky,2*K1+1,2*K2+1)])*(__real__ u[klookup(kx,ky,2*K1+1,2*K2+1)])+(__imag__ u[klookup(kx,ky,2*K1+1,2*K2+1)])*(__imag__ u[klookup(kx,ky,2*K1+1,2*K2+1)]))*(kx*kx+ky*ky);
}
}
for(kx=-K1;kx<=K1;kx++){
for(ky=-K2;ky<=K2;ky++){
u[klookup(kx,ky,2*K1+1,2*K2+1)]=u[klookup(kx,ky,2*K1+1,2*K2+1)]*sqrt(155.1/rescale);
}
}
*/
/*
// constant init
for(kx=-K1;kx<=K1;kx++){
for(ky=-K2;ky<=K2;ky++){
u[klookup(kx,ky,2*K1+1,2*K2+1)]=1.;
}
}
*/
// exponentially decaying init
for(kx=-K1;kx<=K1;kx++){
for(ky=-K2;ky<=K2;ky++){
u[klookup(kx,ky,2*K1+1,2*K2+1)]=exp(-sqrt(kx*kx+ky*ky));
}
}
return 0;
}
2018-01-11 22:48:14 +00:00
// next time step for Irreversible Navier-Stokes equation
2022-05-18 09:57:06 +02:00
int ins_step(
_Complex double* u,
int K1,
int K2,
int N1,
int N2,
double nu,
double delta,
_Complex double (*g)(int,int),
fft_vect fft1,
fft_vect fft2,
fft_vect ifft,
_Complex double* tmp1,
_Complex double* tmp2,
_Complex double* tmp3
){
2018-01-11 22:48:14 +00:00
int kx,ky;
// k1
2022-05-18 09:57:06 +02:00
ins_rhs(tmp1, u, K1, K2, N1, N2, nu, g, fft1, fft2, ifft);
2018-01-11 22:48:14 +00:00
// add to output
2022-05-18 09:57:06 +02:00
for(kx=-K1;kx<=K1;kx++){
for(ky=-K2;ky<=K2;ky++){
tmp3[klookup(kx,ky,2*K1+1,2*K2+1)]=u[klookup(kx,ky,2*K1+1,2*K2+1)]+delta/6*tmp1[klookup(kx,ky,2*K1+1,2*K2+1)];
2018-01-11 22:48:14 +00:00
}
}
// u+h*k1/2
2022-05-18 09:57:06 +02:00
for(kx=-K1;kx<=K1;kx++){
for(ky=-K2;ky<=K2;ky++){
tmp2[klookup(kx,ky,2*K1+1,2*K2+1)]=u[klookup(kx,ky,2*K1+1,2*K2+1)]+delta/2*tmp1[klookup(kx,ky,2*K1+1,2*K2+1)];
2018-01-11 22:48:14 +00:00
}
}
// k2
2022-05-18 09:57:06 +02:00
ins_rhs(tmp1, tmp2, K1, K2, N1, N2, nu, g, fft1, fft2, ifft);
2018-01-11 22:48:14 +00:00
// add to output
2022-05-18 09:57:06 +02:00
for(kx=-K1;kx<=K1;kx++){
for(ky=-K2;ky<=K2;ky++){
tmp3[klookup(kx,ky,2*K1+1,2*K2+1)]+=delta/3*tmp1[klookup(kx,ky,2*K1+1,2*K2+1)];
2018-01-11 22:48:14 +00:00
}
}
// u+h*k2/2
2022-05-18 09:57:06 +02:00
for(kx=-K1;kx<=K1;kx++){
for(ky=-K2;ky<=K2;ky++){
tmp2[klookup(kx,ky,2*K1+1,2*K2+1)]=u[klookup(kx,ky,2*K1+1,2*K2+1)]+delta/2*tmp1[klookup(kx,ky,2*K1+1,2*K2+1)];
2018-01-11 22:48:14 +00:00
}
}
// k3
2022-05-18 09:57:06 +02:00
ins_rhs(tmp1, tmp2, K1, K2, N1, N2, nu, g, fft1, fft2, ifft);
2018-01-11 22:48:14 +00:00
// add to output
2022-05-18 09:57:06 +02:00
for(kx=-K1;kx<=K1;kx++){
for(ky=-K2;ky<=K2;ky++){
tmp3[klookup(kx,ky,2*K1+1,2*K2+1)]+=delta/3*tmp1[klookup(kx,ky,2*K1+1,2*K2+1)];
2018-01-11 22:48:14 +00:00
}
}
// u+h*k3
2022-05-18 09:57:06 +02:00
for(kx=-K1;kx<=K1;kx++){
for(ky=-K2;ky<=K2;ky++){
tmp2[klookup(kx,ky,2*K1+1,2*K2+1)]=u[klookup(kx,ky,2*K1+1,2*K2+1)]+delta*tmp1[klookup(kx,ky,2*K1+1,2*K2+1)];
2018-01-11 22:48:14 +00:00
}
}
// k4
2022-05-18 09:57:06 +02:00
ins_rhs(tmp1, tmp2, K1, K2, N1, N2, nu, g, fft1, fft2, ifft);
2018-01-11 22:48:14 +00:00
// add to output
2022-05-18 09:57:06 +02:00
for(kx=-K1;kx<=K1;kx++){
for(ky=-K2;ky<=K2;ky++){
u[klookup(kx,ky,2*K1+1,2*K2+1)]=tmp3[klookup(kx,ky,2*K1+1,2*K2+1)]+delta/6*tmp1[klookup(kx,ky,2*K1+1,2*K2+1)];
2018-01-11 22:48:14 +00:00
}
}
return(0);
}
// right side of Irreversible Navier-Stokes equation
2022-05-18 09:57:06 +02:00
int ins_rhs(
_Complex double* out,
_Complex double* u,
int K1,
int K2,
int N1,
int N2,
double nu,
_Complex double (*g)(int,int),
fft_vect fft1,
fft_vect fft2,
fft_vect ifft
){
2018-01-11 22:48:14 +00:00
int kx,ky;
2022-05-18 09:57:06 +02:00
int i;
2018-01-11 22:48:14 +00:00
// compute convolution term
ns_T(u,K1,K2,N1,N2,fft1,fft2,ifft);
2022-05-18 22:22:42 +02:00
/*
// compare convolution term (store result in fft1.fft)
ns_T_nofft(fft1.fft, u, K1, K2, N1, N2);
double cmp=0.;
for(i=0;i<N1*N2;i++){
cmp+=(ifft.fft[i]-fft1.fft[i])*(ifft.fft[i]-fft1.fft[i]);
}
printf("% .15e\n",sqrt(cmp));
*/
for(i=0; i<(2*K1+1)*(2*K2+1); i++){
out[i]=0;
}
for(kx=-K1;kx<=K1;kx++){
for(ky=-K2;ky<=K2;ky++){
if(kx!=0 || ky!=0){
out[klookup(kx,ky,2*K1+1,2*K2+1)]=-4*M_PI*M_PI*nu*(kx*kx+ky*ky)*u[klookup(kx,ky,2*K1+1,2*K2+1)]+(*g)(kx,ky)+4*M_PI*M_PI/sqrt(kx*kx+ky*ky)*ifft.fft[klookup(kx,ky,N1,N2)];
}
}
}
return(0);
}
// convolution term in right side of convolution equation
int ns_T(
_Complex double* u,
int K1,
int K2,
int N1,
int N2,
fft_vect fft1,
fft_vect fft2,
fft_vect ifft
){
int kx,ky;
int i;
2018-01-12 19:20:59 +00:00
// F(px/|p|*u)*F(qy*|q|*u)
2018-01-11 22:48:14 +00:00
// init to 0
2022-05-18 09:57:06 +02:00
for(i=0; i<N1*N2; i++){
fft1.fft[i]=0;
fft2.fft[i]=0;
ifft.fft[i]=0;
2018-01-11 22:48:14 +00:00
}
// fill modes
2022-05-18 09:57:06 +02:00
for(kx=-K1;kx<=K1;kx++){
for(ky=-K2;ky<=K2;ky++){
2018-01-11 22:48:14 +00:00
if(kx!=0 || ky!=0){
fft1.fft[klookup(kx,ky,N1,N2)]=kx/sqrt(kx*kx+ky*ky)*u[klookup(kx,ky,2*K1+1,2*K2+1)]/N1;
fft2.fft[klookup(kx,ky,N1,N2)]=ky*sqrt(kx*kx+ky*ky)*u[klookup(kx,ky,2*K1+1,2*K2+1)]/N2;
2018-01-11 22:48:14 +00:00
}
}
}
2018-01-12 19:20:59 +00:00
2018-01-11 22:48:14 +00:00
// fft
2022-05-18 09:57:06 +02:00
fftw_execute(fft1.fft_plan);
fftw_execute(fft2.fft_plan);
// write to ifft
for(i=0;i<N1*N2;i++){
ifft.fft[i]=fft1.fft[i]*fft2.fft[i];
2018-01-11 22:48:14 +00:00
}
2018-01-12 19:20:59 +00:00
// F(py/|p|*u)*F(qx*|q|*u)
2018-01-11 22:48:14 +00:00
// init to 0
2022-05-18 09:57:06 +02:00
for(i=0; i<N1*N2; i++){
fft1.fft[i]=0;
fft2.fft[i]=0;
2018-01-11 22:48:14 +00:00
}
// fill modes
2022-05-18 09:57:06 +02:00
for(kx=-K1;kx<=K1;kx++){
for(ky=-K2;ky<=K2;ky++){
2018-01-11 22:48:14 +00:00
if(kx!=0 || ky!=0){
fft1.fft[klookup(kx,ky,N1,N2)]=ky/sqrt(kx*kx+ky*ky)*u[klookup(kx,ky,2*K1+1,2*K2+1)]/N1;
fft2.fft[klookup(kx,ky,N1,N2)]=kx*sqrt(kx*kx+ky*ky)*u[klookup(kx,ky,2*K1+1,2*K2+1)]/N2;
2018-01-11 22:48:14 +00:00
}
}
}
2018-01-12 19:20:59 +00:00
2018-01-11 22:48:14 +00:00
// fft
2022-05-18 09:57:06 +02:00
fftw_execute(fft1.fft_plan);
fftw_execute(fft2.fft_plan);
// write to ifft
for(i=0;i<N1*N2;i++){
ifft.fft[i]=ifft.fft[i]-fft1.fft[i]*fft2.fft[i];
2018-01-11 22:48:14 +00:00
}
2018-01-12 19:20:59 +00:00
2018-01-11 22:48:14 +00:00
// inverse fft
2022-05-18 09:57:06 +02:00
fftw_execute(ifft.fft_plan);
2022-05-17 14:31:22 +02:00
2018-01-11 22:48:14 +00:00
return(0);
}
2022-05-18 22:22:42 +02:00
// convolution term in right side of convolution equation, computed without fourier transform
int ns_T_nofft(
_Complex double* out,
_Complex double* u,
int K1,
int K2,
int N1,
int N2
){
int kx,ky;
int px,py;
int qx,qy;
// loop over K's (needs N1>=4*K1+1 and N2>=4*K2+1)
if (N1<4*K1+1 || N2<4*K2+1){
fprintf(stderr,"error: N1 and N2 need t be >= 4*K1+1 and 4*K2+1 respectively\n");
return(-1);
}
for(kx=-2*K1;kx<=2*K1;kx++){
for(ky=-2*K2;ky<=2*K2;ky++){
// init
out[klookup(kx,ky,N1,N2)]=0.;
for(px=-K1;px<=K1;px++){
for(py=-K2;py<=K2;py++){
qx=kx-px;
qy=ky-py;
// cutoff in q
if(qx>=-K1 && qx<=K1 && qy>=-K2 && qy<=K2 && qx*qx+qy*qy>0 && px*px+py*py>0){
out[klookup(kx,ky,N1,N2)]+=(-qx*py+qy*px)*sqrt(qx*qx+qy*qy)/sqrt(px*px+py*py)*u[klookup(px,py,2*K1+1,2*K2+1)]*u[klookup(qx,qy,2*K1+1,2*K2+1)];
}
}
}
}
}
return 0;
}
2018-01-11 22:48:14 +00:00
// compute alpha
2022-05-18 09:57:06 +02:00
_Complex double compute_alpha(
_Complex double* u,
int K1,
int K2,
_Complex double (*g)(int,int)
){
2018-01-11 22:48:14 +00:00
_Complex double num=0;
_Complex double denom=0;
int kx,ky;
2022-05-18 09:57:06 +02:00
for(kx=-K1;kx<=K1;kx++){
for(ky=-K2;ky<=K2;ky++){
denom+=(kx*kx+ky*ky)*(kx*kx+ky*ky)*u[klookup(kx,ky,2*K1+1,2*K2+1)]*conj(u[klookup(kx,ky,2*K1+1,2*K2+1)])*(1+(ky!=0?kx*kx/ky/ky:0));
num+=(kx*kx+ky*ky)*u[klookup(kx,ky,2*K1+1,2*K2+1)]*conj((*g)(kx,ky))*(1+(ky!=0?kx*kx/ky/ky:0));
2018-01-11 22:48:14 +00:00
}
}
return(num/denom);
}
2022-05-18 09:57:06 +02:00
// get index for kx,ky in array of size S
int klookup(
int kx,
int ky,
int S1,
int S2
){
return (kx>=0 ? kx : S1+kx)*S2 + (ky>=0 ? ky : S2+ky);
}