import sys import math from kivy.uix.widget import Widget from kivy.core.window import Window from kivy.graphics import Color,Line from point import Point from polyomino import Cross from polyomino import Square_element from tools import remove_fromlist # painter class class Painter(Widget): def __init__(self,app,**kwargs): # list of particles self.particles=[] # particle under mouse self.undermouse=None # list of selected particles self.selected=[] # complement self.unselected=[] # relative position of mouse when moving self.offset=Point(0,0) # app is used to share information between widgets self.app=app # modifiers self.modifiers=[] # init Widget super(Painter,self).__init__(**kwargs) # init keyboard self.keyboard = Window.request_keyboard(None,self,"text") self.keyboard.bind(on_key_down=self.on_key_down,on_key_up=self.on_key_up,on_textinput=self.on_textinput) def reset(self): self.particles=[] self.undermouse=None self.draw() # draw all particles def draw(self): self.canvas.clear() with self.canvas: # draw order: particles, then grids, then transparent particles for particle in self.particles: particle.draw() # draw grids for particle in self.particles: if particle.grid>0: self.draw_grid(particle.squares[0].pos,particle.grid) for particle in self.particles: particle.draw(alpha=0.5) def draw_grid(self,pos,mesh): # height offset due to status bar and command prompt height_offset=self.app.status_bar.height+self.app.command_prompt.height # vertical lines # offest wrt 0 offset=(pos.x-0.5)%mesh for i in range(math.floor((self.width/Square_element.size-offset)/mesh)+1): Color(1,1,1) Line(points=((i*mesh+offset)*Square_element.size,height_offset,(i*mesh+offset)*Square_element.size,self.height+height_offset)) # horizontal lines # offset wrt 0 offset=(pos.y-0.5)%1-height_offset/Square_element.size for i in range(math.floor((self.height/Square_element.size-offset)/mesh)+1): Color(1,1,1) Line(points=(0,(i*mesh+offset)*Square_element.size+height_offset,self.width,(i*mesh+offset)*Square_element.size+height_offset)) # respond to keyboard def on_key_down(self, keyboard, keycode, text, modifiers): # check the command_prompt is not focused if not self.app.command_prompt.insert: if keycode[1]=="shift": if not 's' in self.modifiers: self.modifiers.append('s') self.modifiers.sort() # remove particles elif keycode[1]=="backspace": for particle in self.selected: self.particles=remove_fromlist(self.particles,particle) self.selected=[] self.draw() # respond to keyboard (text input is modifier-sensitive, i.e. one can use shift) def on_textinput(self, window, text): # check the command_prompt is not focused if not self.app.command_prompt.insert: # select all if text=="a": for particle in self.particles: particle.selected=True self.selected=self.particles.copy() self.unselected=[] self.draw() # toggle grid elif text=="g": for particle in self.selected: if particle.grid==0: particle.grid=1 else: particle.grid=-particle.grid self.draw() # zoom elif text=="+": # increment by 10% self.set_zoom(Square_element.size/50*1.1) elif text=="-": # decrease by 10% self.set_zoom(Square_element.size/50*0.9) elif text=="=": # reset self.set_zoom(1) def on_key_up(self, keyboard, keycode): if keycode[1]=="shift": if 's' in self.modifiers: # remove self.modifiers[self.modifiers.index('s')]=self.modifiers[len(self.modifiers)-1] self.modifiers=self.modifiers[:len(self.modifiers)-1] self.modifiers.sort() # respond to mouse down def on_touch_down(self,touch): # only respond to touch in drawing area if self.collide_point(*touch.pos): # create new cross if touch.button=="right": new=Cross(touch.x/Square_element.size,touch.y/Square_element.size) if not self.check_interaction_any(new,Point(0,0)): # add to list self.particles.append(new) # unselect all particles for sel in self.selected: sel.selected=False self.selected=[] self.unselected=self.particles self.draw() # select particle if touch.button=="left": # find particle under touch self.undermouse=self.find_particle(Point(touch.x/Square_element.size,touch.y/Square_element.size)) # record relative position of click with respect to reference if self.undermouse!=None: self.offset=Point(touch.x/Square_element.size,touch.y/Square_element.size)-self.undermouse.squares[0].pos # no modifiers if self.modifiers==[]: if self.undermouse==None: # unselect all particles for sel in self.selected: sel.selected=False self.selected=[] self.unselected=self.particles # select undermouse elif not self.undermouse in self.selected: for sel in self.selected: sel.selected=False self.selected=[self.undermouse] self.unselected=self.particles.copy() self.unselected=remove_fromlist(self.unselected,self.undermouse) self.undermouse.selected=True # shift-click elif self.modifiers==['s']: if self.undermouse!=None: if self.undermouse not in self.selected: self.selected.append(self.undermouse) self.undermouse.selected=True # remove from unselected self.unselected=remove_fromlist(self.unselected,self.undermouse) else: # remove self.selected=remove_fromlist(self.selected,self.undermouse) self.undermouse.selected=False # add to unselected self.unselected.append(self.undermouse) self.draw() # draw status bar self.app.status_bar.draw() # respond to drag def on_touch_move(self,touch): # only respond to touch in drawing area if self.collide_point(*touch.pos): # only move on left click if touch.button=="left" and self.modifiers==[] and self.undermouse!=None: # attempted move determined by the relative position to the relative position of click within self.undermouse delta=self.adjust_move(Point(touch.x/Square_element.size,touch.y/Square_element.size)-(self.offset+self.undermouse.squares[0].pos),0) for particle in self.selected: particle.move(delta) # redraw self.draw() # draw status bar self.app.status_bar.draw() # find the particle at position pos def find_particle(self,pos): for particle in self.particles: if particle.in_support(pos): return particle # none found return None # check whether a candidate particle intersects with any of the particles def check_interaction_any(self,candidate,offset): for particle in self.particles: # do not check interaction if candidate=particle if candidate!=particle and particle.check_interaction(candidate,offset): return True return False # check whether shifting a list of particles by offset makes them interact with all particles def check_interaction_list(self,array,offset): for candidate in array: if self.check_interaction_any(candidate,offset): return True return False # check whether shifting a list of particles by offset makes them interact with the unselected particles def check_interaction_unselected_list(self,array,offset): for candidate in array: for particle in self.unselected: if particle.check_interaction(candidate,offset): return True return False # check whether a candidate particle element with any of the unselected particles def check_interaction_unselected_element(self,element,offset): for particle in self.unselected: for square in particle.squares: if square.check_interaction(element.pos+offset): return True return False # try to move all selected particles by delta, adjust if needed to avoid overlap with unselected particles # we only track whether these elements collide with unselected particles, not with each other def adjust_move(self,delta,recursion_depth): # actual_delta is the smallest (componentwise) of all the computed delta's actual_delta=Point(math.inf,math.inf) for particle in self.selected: for element in particle.squares: # compute adjustment move due to unselected obstacles adjusted_delta=self.adjust_move_element(delta,element,0) # only keep the smallest delta's (in absolute value) if abs(adjusted_delta.x)100: print("warning: recursion depth exceeded when adjusting move by delta=(",delta.x,",",delta.y,")",file=sys.stderr) return Point(0,0) else: return self.adjust_move(actual_delta,recursion_depth+1) # trying to move a single element by delta, adjust if needed to avoid overlap with unselected particles def adjust_move_element(self,delta,element,recursion_depth): # whether newpos is acceptable accept_newpos=True for other in self.unselected: for obstacle in other.squares: # move would make element overlap with obstacle if obstacle.check_interaction(element.pos+delta): accept_newpos=False # check if particle already touches obstacle if obstacle.check_touch(element.pos): # move along obstacle while remaining stuck newdelta=obstacle.move_along(delta,element.pos) else: newdelta=obstacle.move_on_line_to_stick(element.pos,delta) if not self.check_interaction_unselected_element(element,newdelta): return newdelta if accept_newpos: return delta else: # cannot move particle at all, try again # give up if tried too many times if recursion_depth>100: print("warning: recursion depth exceeded when adjusting move of element at (",element.pos.x,",",element.pos.y,") by delta=(",delta.x,",",delta.y,")",file=sys.stderr) return Point(0,0) else: return self.adjust_move_element(newdelta,element,recursion_depth+1) # set color of selected particles def set_color(self,color): for particle in self.selected: particle.color=color # redraw self.draw() # set grid for selected particles # set mesh to -1 to toggle on/off def set_grid(self,mesh): for particle in self.selected: if mesh==-1: if particle.grid==0: particle.grid=1 else: particle.grid=-particle.grid else: particle.grid=mesh # redraw self.draw() # write configuration to file def write(self,file): ff=open(file,"w") for particle in self.particles: if type(particle)==Cross: ff.write("{:d};".format(CROSS_INDEX)) ff.write("{:05.2f},{:05.2f};{:3.1f},{:3.1f},{:3.1f}\n".format(particle.squares[0].pos.x,particle.squares[0].pos.y,particle.color[0],particle.color[1],particle.color[2])) ff.close() # read configuration from file def read(self,file): self.reset() try: ff=open(file,"r") except: self.app.command_prompt.message="error: could not read file '"+file+"' (this should not happen and is probably a bug)" return # counter i=0 try: lines=ff.readlines() except: self.app.command_prompt.message="error: could not read the contents of file '"+file+"'" return for line in lines: i+=1 # remove newline line=line[:len(line)-1] # ignore comments if '#' in line: line=line[:line.find('#')] # ignore empty lines if len(line)==0: continue entries=line.split(";") # skip line if improperly formatted if len(entries)>3: print("warning: ignoring line "+str(i)+" in file '"+file+"': more than three ';' spearated entries in '"+line+"'",file=sys.stderr) if len(entries)<2: print("warning: ignoring line "+str(i)+" in file '"+file+"': fewer than two ';' spearated entries in '"+line+"'",file=sys.stderr) continue # position pos_str=entries[1].split(",") # skip line if improperly formatted if len(pos_str)!=2: print("warning: ignoring line "+str(i)+" in file '"+file+"': position '"+entries[1]+"' does not have two components",file=sys.stderr) continue try: pos=Point(float(pos_str[0]),float(pos_str[1])) except: print("warning: ignoring line "+str(i)+" in file '"+file+"': position '"+entries[1]+"' cannot be read",file=sys.stderr) continue # color color=(0,0,1) if len(entries)==3: color_str=entries[2].split(",") # skip line if improperly formatted if len(color_str)!=3: print("warning: ignoring line "+str(i)+" in file '"+file+"': color '"+entries[2]+"' does not have three components",file=sys.stderr) continue try: color=(float(color_str[0]),float(color_str[1]),float(color_str[2])) except: print("warning: ignoring line "+str(i)+" in file '"+file+"': color '"+entries[2]+"' cannot be read",file=sys.stderr) continue # candidate particle try: particle_type=int(entries[0]) except: print("warning: ignoring line "+str(i)+" in file '"+file+"': particle type '"+entries[0]+"' is not an integer",file=sys.stderr) continue if particle_type==CROSS_INDEX: candidate=Cross(pos.x,pos.y,color=color) else: print("warning: ignoring line "+str(i)+" in file '"+file+"': unrecognized particle type: '"+entries[0]+"'",file=sys.stderr) continue if not self.check_interaction_any(candidate,Point(0,0)): # add to list self.particles.append(candidate) self.unselected.append(candidate) else: print("warning: ignoring line "+str(i)+" in file '"+file+"': particle overlaps with existing particles",file=sys.stderr) ff.close() self.draw() # set zoom level def set_zoom(self,level): Square_element.size=level*50 self.draw() # global variables (used like precompiler variables) CROSS_INDEX=1