import math from kivy.app import App from kivy.uix.widget import Widget from kivy.graphics import Color,Line,Rectangle from kivy.config import Config # App class class Jam_app(App): # name of .kv file for main interface #kv_file="jam.kv" def build(self): parent=Widget() self.cross_painter=Cross_painter() parent.add_widget(self.cross_painter) return parent # cross painter class Cross_painter(Widget): def __init__(self,**kwargs): # list of crosses self.crosses=[] # selected cross self.selected=None # init Widget super(Cross_painter,self).__init__(**kwargs) # draw all crosses def draw(self): with self.canvas: for cross in self.crosses: cross.draw() # respond to mouse down def on_touch_down(self,touch): # create new cross if touch.button=="right": if self.check_add((touch.x,touch.y)): new=Cross((touch.x,touch.y)) with self.canvas: new.draw() # add to list self.crosses.append(new) # select cross if touch.button=="left": # unselect if self.selected!=None: self.selected.selected=False # find cross under touch self.selected=self.find_cross((touch.x,touch.y)) # select if self.selected!=None: self.selected.selected=True # respond to drag def on_touch_move(self,touch): # only move on left click if touch.button=="left" and self.selected!=None: #self.selected.pos=self.check_move((touch.x,touch.y),self.selected) self.selected.pos=(touch.x,touch.y) # redraw self.canvas.clear() self.draw() ## check move #if self.check_move((touch.x,touch.y),self.selected): # # move cross # self.selected.pos=(touch.x,touch.y) # # redraw # self.canvas.clear() # self.draw() ## try to move just x #elif self.check_move((touch.x,self.selected.pos[1]),self.selected): # # move cross # self.selected.pos=(touch.x,self.selected.pos[1]) # # redraw # self.canvas.clear() # self.draw() ## try to move just y #elif self.check_move((self.selected.pos[0],touch.y),self.selected): # # move cross # self.selected.pos=(self.selected.pos[0],touch.y) # # redraw # self.canvas.clear() # self.draw() # find the cross at position pos def find_cross(self,pos): for cross in self.crosses: if cross_distx(pos,cross.pos)<=cross.size/2 or cross_disty(pos,cross.pos)<=cross.size/2: return cross # none found return None # check that a cross can move to new position def check_move(self,newpos,cross): for other in self.crosses: # do not compare a cross to itself if other!=cross: ## find nearest points #nearest1=( #newpos[0]-other.size*1.5*sgn(newpos[0]-other.pos[0]), #newpos[1]-other.size*0.5*sgn(newpos[1]-other.pos[1]) #) #nearest2=( #newpos[0]-other.size*0.5*sgn(newpos[0]-other.pos[0]), #newpos[1]-other.size*1.5*sgn(newpos[1]-other.pos[1]) #) #dist1_x=abs(nearest1[0]-other.pos[0])/cross.size #dist1_y=abs(nearest1[1]-other.pos[1])/cross.size #dist2_x=abs(nearest2[0]-other.pos[0])/cross.size #dist2_y=abs(nearest2[1]-other.pos[1])/cross.size #if dist1_x>dist1_y and dist1_x<1.5: # if dist1_y<0.5: # print(1) # return self.check_move((other.pos[0]+3*sgn(newpos[0]-other.pos[0])*cross.size,newpos[1]),cross) # elif dist1_y<1.5: # print(2) # return self.check_move((other.pos[0]+2*sgn(newpos[0]-other.pos[0])*cross.size,other.pos[1]+sgn(newpos[1]-other.pos[1])*cross.size),cross) #elif dist2_x>dist2_y and dist2_x<1.5: # if dist2_y<0.5: # print(3) # return self.check_move((newpos[0],other.pos[1]+2*sgn(newpos[1]-other.pos[1])*cross.size),cross) #elif dist1_y>dist1_x and dist1_y<1.5: # if dist1_x<0.5: # print(4) # return self.check_move((newpos[0],other.pos[1]+2*sgn(newpos[1]-other.pos[1])*cross.size),cross) #elif dist2_y>dist2_x and dist2_y<1.5: # if dist2_x<0.5: # print(5) # return self.check_move((newpos[0],other.pos[1]+3*sgn(newpos[1]-other.pos[1])*cross.size),cross) # elif dist2_x<1.5: # print(6) # return self.check_move((other.pos[0]+sgn(newpos[0]-other.pos[0])*cross.size,other.pos[1]+2*sgn(newpos[1]-other.pos[1])*cross.size),cross) if self.check_interaction(newpos,other)==False: if math.sqrt((newpos[1]-cross.pos[1])**2+(newpos[0]-cross.pos[0])**2) > cross.size: # angle between newpos and cross theta=math.atan2(newpos[1]-cross.pos[1],newpos[0]-cross.pos[0]) # distance between new position and other R=cross_polar(theta) print(R,theta,R*math.cos(theta),R*math.sin(theta)) return (other.pos[0]-cross.size*R*math.cos(theta),other.pos[1]-cross.size*R*math.sin(theta)) return self.check_move((other.pos[0]-cross.size*R*(newpos[0]-cross.pos[0]),other.pos[1]-cross.size*R*(newpos[1]-cross.pos[1])),cross) else: return cross.pos return newpos # check that a cross can be added at position def check_add(self,pos): for cross in self.crosses: if self.check_interaction(pos,cross)==False: return False return True # check whether a cross at pos interacts with cross def check_interaction(self,pos,cross): return int((pos[0]-cross.pos[0])/cross.size)**2+int((pos[1]-cross.pos[1])/cross.size)**2>=5 # cross class Cross(): # size of central square size=50 def __init__(self,pos,**kwargs): self.pos=pos self.color=kwargs.get("color",(0,0,1)) self.selected=False def draw(self): # fill #if not self.selected: # Color(*(self.color)) #else: # Color(1,0,0) Color(*(self.color)) Rectangle(pos=(self.pos[0]-self.size*1.5,self.pos[1]-self.size*0.5),size=(3*self.size,self.size)) Rectangle(pos=(self.pos[0]-self.size*0.5,self.pos[1]-self.size*1.5),size=(self.size,3*self.size)) # stroke Color(1,1,1) Line(points=( *(self.pos[0]-self.size*0.5,self.pos[1]-self.size*0.5), *(self.pos[0]-self.size*0.5,self.pos[1]-self.size*1.5), *(self.pos[0]+self.size*0.5,self.pos[1]-self.size*1.5), *(self.pos[0]+self.size*0.5,self.pos[1]-self.size*0.5), *(self.pos[0]+self.size*1.5,self.pos[1]-self.size*0.5), *(self.pos[0]+self.size*1.5,self.pos[1]+self.size*0.5), *(self.pos[0]+self.size*0.5,self.pos[1]+self.size*0.5), *(self.pos[0]+self.size*0.5,self.pos[1]+self.size*1.5), *(self.pos[0]-self.size*0.5,self.pos[1]+self.size*1.5), *(self.pos[0]-self.size*0.5,self.pos[1]+self.size*0.5), *(self.pos[0]-self.size*1.5,self.pos[1]+self.size*0.5), *(self.pos[0]-self.size*1.5,self.pos[1]-self.size*0.5), *(self.pos[0]-self.size*0.5,self.pos[1]-self.size*0.5), )) # L_infinity distance rescalled by 3 in the x direction def cross_distx(x,y): return max(abs(x[0]-y[0])/3,abs(x[1]-y[1])) # L_infinity distance rescalled by 3 in the y direction def cross_disty(x,y): return max(abs(x[0]-y[0]),abs(x[1]-y[1])/3) # polar description of touching cross def cross_polar(t): # by symmetry, put angle in interval (-pi/4,pi/4), and take absolute value tt=abs((t+math.pi/4)%(math.pi/2)-math.pi/4) if tt=0: return 1 return -1 # disable red circles on right click Config.set('input', 'mouse', 'mouse,disable_multitouch') # run if __name__ == '__main__': Jam_app().run()