import math from kivy.graphics import Color,Line,Rectangle from kivy.uix.widget import Widget from point import Point class Cross(): # size of central square size=50 def __init__(self,x,y,**kwargs): self.pos=Point(x,y) self.color=kwargs.get("color",(0,0,1)) self.selected=False # set position def setpos(self,x,y): self.pos.x=x self.pos.y=y def draw(self): # fill #if not self.selected: # Color(*(self.color)) #else: # Color(1,0,0) Color(*(self.color)) Rectangle(pos=(self.pos.x-self.size*1.5,self.pos.y-self.size*0.5),size=(3*self.size,self.size)) Rectangle(pos=(self.pos.x-self.size*0.5,self.pos.y-self.size*1.5),size=(self.size,3*self.size)) # stroke Color(1,1,1) Line(points=( *(self.pos.x-self.size*0.5,self.pos.y-self.size*0.5), *(self.pos.x-self.size*0.5,self.pos.y-self.size*1.5), *(self.pos.x+self.size*0.5,self.pos.y-self.size*1.5), *(self.pos.x+self.size*0.5,self.pos.y-self.size*0.5), *(self.pos.x+self.size*1.5,self.pos.y-self.size*0.5), *(self.pos.x+self.size*1.5,self.pos.y+self.size*0.5), *(self.pos.x+self.size*0.5,self.pos.y+self.size*0.5), *(self.pos.x+self.size*0.5,self.pos.y+self.size*1.5), *(self.pos.x-self.size*0.5,self.pos.y+self.size*1.5), *(self.pos.x-self.size*0.5,self.pos.y+self.size*0.5), *(self.pos.x-self.size*1.5,self.pos.y+self.size*0.5), *(self.pos.x-self.size*1.5,self.pos.y-self.size*0.5), *(self.pos.x-self.size*0.5,self.pos.y-self.size*0.5), )) # check whether a cross at pos interacts with cross def check_interaction(self,pos): return ((pos-self.pos)/self.size).int()**2>=5 # find position along a line that comes in contact with the line going through pos in direction v def move_on_line_to_stick(self,pos,v): # relative to cross return self.move_on_line_to_stick_relative((pos-self.pos)/self.size,v/self.size)*self.size+self.pos def move_on_line_to_stick_relative(self,x,v): # if x is in the right quadrant if abs(x.y)<=x.x: # find all stuck positions on lines stuck=[] # check intersections with vertical lines if v.x!=0: for i in range(1,4): # candidate y=Point(i,x.y+(i-x.x)*v.y/v.x) # check that it is in the right range if abs(y.y)<=4-i and abs(y.y)>=3-i: stuck.append(y) # check intersections with horizontal lines if v.y!=0: for i in [-3,-2,-1,1,2,3]: # candidate y=Point(x.x+(i-x.y)*v.x/v.y,i) # check that it is in the right range if y.x<=4-abs(i) and y.x>=3-abs(i): stuck.append(y) return x.closest(stuck) # reflect other quadrants to the right one # top quadrant elif abs(x.x)<=x.y: closest=self.move_on_line_to_stick_relative(Point(x.y,x.x),Point(v.y,v.x)) return Point(closest.y,closest.x) # bottom quadrant elif abs(x.x)<=-x.y: closest=self.move_on_line_to_stick_relative(Point(-x.y,x.x),Point(-v.y,v.x)) return Point(closest.y,-closest.x) # left quadrant else: closest=self.move_on_line_to_stick_relative(Point(-x.x,x.y),Point(-v.x,v.y)) return Point(-closest.x,closest.y) # L_infinity distance rescalled by 3 in the x direction def cross_distx(x,y): return max(abs(x.x-y.x)/3,abs(x.y-y.y)) # L_infinity distance rescalled by 3 in the y direction def cross_disty(x,y): return max(abs(x.x-y.x),abs(x.y-y.y)/3) # polar description of touching cross def cross_polar(t): # by symmetry, put angle in interval (-pi/4,pi/4), and take absolute value tt=abs((t+math.pi/4)%(math.pi/2)-math.pi/4) if tt