Compare commits

..

4 Commits

Author SHA1 Message Date
3b3053fc3a Dependencies in README 2023-05-10 15:20:48 -04:00
5e425be098 markdown in README 2023-05-10 15:11:27 -04:00
dc4aef2119 Add License 2023-05-10 15:08:58 -04:00
2c2b88a6c6 Add README 2023-05-10 15:03:28 -04:00
15 changed files with 627 additions and 558 deletions

202
LICENSE Normal file
View File

@@ -0,0 +1,202 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

73
README.md Normal file
View File

@@ -0,0 +1,73 @@
Jam is visualization software for hard-core lattice particle systems. It is
designed to explore configurations of particles while enforcing that no two
particles overlap.
**Jam is a work in progress and is nowhere near ready for production.**
# Basic usage
Run with
```bash
./src/jam [configuration_file]
```
where `[configuration_file]` is an optional argument that specifies a file with
a list of particle positions that will be loaded on initial execution.
# Dependencies
Jam is written in Python 3, and uses Kivy to run the GUI.
# User interface
* `<right-click>`: create a new particle under the mouse pointer (if the
particle fits)
* `<shift><left-click>`: select/unselect multiple particles
* `<left-click>` and drag: move selected particle(s).
* `backspace`: delete selected particle(s)
# Commands
Commands can be executed by typing `:` (similarly to vim).
* `:q`: exit
* `:w [path_to_file]`: Write particle configuration to file. This will not
overwrite existing files; use `:w!` to overwrite.
* `:e <path_to_file>`: edit file.
* `:export <path_to_file>`: Export configuration to LaTeX (using TikZ)
* `:set color <color_spec>`: Set color of selected particles to
`<color_spec>`. The supported format for `<color_spec>` is either `r,g,b`
with `r`, `g`, and `b` in [0,1], or one of
`red|green|blue|brown|lime|orange|pink|purple|teal|violet|cyan|magenta|yellow|olive|black|darkgray|gray|lightgray|white`.
* `:set zoom <zoom_level>`: Scale all particles by `<zoom_level>`.
* `:set grid [on|off]`: Add a visual grid centered on one of the selected
particles. The size of the mesh can be specified by passing
`:set grid <size_of_mesh>`.
# Current developments
So far, Jam only supports cross-shaped particles, but work is in progress to
support arbitrary shapes consisting of rectangles, circle arcs and triangles
(check out the `dev` branch to follow the progress).
Support for lattice configurations is also ongoing.
# License
Jam is distributed under the Apache 2.0 License.
Copyright 2021-2023 Ian Jauslin

View File

@@ -1,3 +1,17 @@
% Copyright 2021-2023 Ian Jauslin
%
% Licensed under the Apache License, Version 2.0 (the "License");
% you may not use this file except in compliance with the License.
% You may obtain a copy of the License at
%
% http://www.apache.org/licenses/LICENSE-2.0
%
% Unless required by applicable law or agreed to in writing, software
% distributed under the License is distributed on an "AS IS" BASIS,
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
% See the License for the specific language governing permissions and
% limitations under the License.
% square lattice (width #1, height #2, origin #3, spacing #4) % square lattice (width #1, height #2, origin #3, spacing #4)
\def\grid#1#2#3{ \def\grid#1#2#3{
\foreach\i in {0,...,#2}{ \foreach\i in {0,...,#2}{

View File

@@ -1,3 +1,17 @@
# Copyright 2021-2023 Ian Jauslin
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# find named color that is closest to rgb values # find named color that is closest to rgb values
def closest_color(rgb,names): def closest_color(rgb,names):
name="" name=""

View File

@@ -1,3 +1,17 @@
# Copyright 2021-2023 Ian Jauslin
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from kivy.uix.label import Label from kivy.uix.label import Label
from kivy.core.window import Window from kivy.core.window import Window
from kivy.graphics import Color,Rectangle from kivy.graphics import Color,Rectangle

View File

@@ -1,258 +0,0 @@
## elements that polyominoes are made of
import math
import sys
from point import Point,l_infinity,l_2
from tools import isint_nonzero,sgn,in_interval,ceil_grid,floor_grid
from kivy.graphics import Rectangle,Ellipse,Line
# parent class of all elements
class Element():
def __init__(self,x,y,size,**kwargs):
self.pos=Point(x,y)
self.size=size
# set position
def setpos(self,x,y):
self.pos.x=x
self.pos.y=y
# override in each subclass
# draw element
def draw(self,painter):
return
# override in each subclass
# draw boundary
def stroke(self,painter):
return
# override in each subclass
# check whether an element interacts with square
def check_interaction(self,element):
return False
# override in each subclass
# whether x is in the support of the element
def in_support(self,x):
return False
# override in each subclass
# check whether an element is touching self
def check_touch(self,element):
return False
# override in each subclass
# find position along a line that comes in contact with the line going through element.pos in direction v
def move_on_line_to_stick(self,element,v):
return Point(0,0)
# override in each subclass
# move along edge of element
# delta is the impossible move that was asked for
def move_along(self,delta,element):
return element
# rectangular element
# the size of the y component is specified by an aspect ratio: size_x=size, size_y=size*aspect
class Element_square(Element):
def __init__(self,x,y,size,**kwargs):
self.pos=Point(x,y)
self.size=size
self.aspect=kwargs.get("aspect",1.0)
# draw element
def draw(self,painter):
Rectangle(pos=(painter.pos_tocoord_x(self.pos.x-0.5*self.size),painter.pos_tocoord_y(self.pos.y-0.5*self.size*self.aspect)),size=(self.size*painter.base_size,self.size*self.aspect*painter.base_size))
# draw boundary
def stroke(self,painter):
# convert to graphical coordinates
coordx=painter.pos_tocoord_x(square.pos.x)
coordy=painter.pos_tocoord_y(square.pos.y)
Line(points=(
*(coordx-0.5*self.size*painter.base_size,coordy-0.5*self.size*self.aspect*painter.base_size),
*(coordx-0.5*self.size*painter.base_size,coordy+0.5*self.size*self.aspect*painter.base_size),
*(coordx+0.5*self.size*painter.base_size,coordy+0.5*self.size*self.aspect*painter.base_size),
*(coordx+0.5*self.size*painter.base_size,coordy-0.5*self.size*self.aspect*painter.base_size),
*(coordx-0.5*self.size*painter.base_size,coordy-0.5*self.size*self.aspect*painter.base_size)
))
# check whether an element interacts with square
# TODO: this only works if element is a square!
def check_interaction(self,element):
# allow for error
return max(abs(element.pos.x-self.pos.x)/(self.size+element.size),abs(element.pos.y-self.pos.y)/(self.size*self.aspect+element.size*element.aspect))<1/2-1e-11
# whether x is in the support of the element
def in_support(self,x):
return max(abs(self.pos.x-x.x),abs(self.pos.y-x.y)/self.aspect)<=1/2
# check whether an element is touching self
# TODO: this only works if element is a square!
def check_touch(self,element):
# allow for error
if in_interval(max(abs(element.pos.x-self.pos.x)/(self.size+element.size),abs(element.pos.y-self.pos.y)/(self.size*self.aspect+element.size*element.aspect)),1/2-1e-11,1/2+1e-11):
return True
return False
# find position along a line that comes in contact with the line going through element.pos in direction v
# TODO: this only works if element is a square!
def move_on_line_to_stick(self,element,v):
size_x=(self.size+element.size)/2
size_y=(self.size*self.aspect+element.size*element.aspect)/2
# compute intersections with four lines making up square
if v.x!=0:
if v.y!=0:
intersections=[\
Point(self.pos.x+size_x,element.pos.y+v.y/v.x*(self.pos.x+size_x-element.pos.x)),\
Point(self.pos.x-size_x,element.pos.y+v.y/v.x*(self.pos.x-size_x-element.pos.x)),\
Point(element.pos.x+v.x/v.y*(self.pos.y+size_y-element.pos.y),self.pos.y+size_y),\
Point(element.pos.x+v.x/v.y*(self.pos.y-size_y-element.pos.y),self.pos.y-size_y)\
]
else:
intersections=[\
Point(self.pos.x+size_x,element.pos.y),\
Point(self.pos.x-size_x,element.pos.y)
]
else:
if v.y!=0:
intersections=[\
Point(element.pos.x,self.pos.y+size_y),\
Point(element.pos.x,self.pos.y-size_y)\
]
else:
print("error: move_on_line_to_stick called with v=0, please file a bug report with the developer",file=sys.stderr)
exit(-1)
# compute closest one, on square
closest=None
dist=math.inf
for i in range(0,len(intersections)):
# check that it is on square
if abs(intersections[i].x-self.pos.x)<=size_x+1e-11 and abs(intersections[i].y-self.pos.y)<=size_y+1e-11:
if (intersections[i]-element.pos)**2<dist:
closest=intersections[i]
dist=(intersections[i]-element.pos)**2
if closest==None:
print("error: cannot move particle at (",element.pos.x,",",element.pos.y,") to the boundary of (",self.pos.x,",",self.pos.y,") in direction (",v.x,",",v.y,")",file=sys.stderr)
exit(-1)
# return difference to pos
return closest-element.pos
# move along edge of square
# TODO: this only works if element is a square!
def move_along(self,delta,element):
size_x=(self.size+element.size)/2
size_y=(self.size*self.aspect+element.size*element.aspect)/2
rel=element.pos-self.pos
# check if the particle is stuck in the x direction
if isint_nonzero(rel.x/size_x):
# check y direction
if isint_nonzero(rel.y/size_y):
# in corner
if sgn(delta.y)==-sgn(rel.y):
# stuck in x direction
return self.move_stuck_x(delta,element)
elif sgn(delta.x)==-sgn(rel.x):
# stuck in y direction
return self.move_stuck_y(delta,element)
# stuck in both directions
return element.pos
else:
# stuck in x direction
return self.move_stuck_x(delta,element)
elif isint_nonzero(rel.y/size_y):
# stuck in y direction
return self.move_stuck_y(delta,element)
# this should never happen
else:
print("error: stuck particle has non-integer relative position: (",rel.x,",",rel.y,")",file=sys.stderr)
exit(-1)
# move when stuck in the x direction
def move_stuck_x(self,delta,element):
size_y=(self.size*self.aspect+element.size*element.aspect)/2
# only move in y direction
candidate=Point(0,delta.y)
# do not move past corners
rel=element.pos.y-self.pos.y
if delta.y>0:
if rel<ceil_grid(rel,size_y)-1e-11 and delta.y+rel>ceil_grid(rel,size_y)+1e-11 and ceil_grid(rel,size_y)!=0:
# stick to corner
candidate.y=ceil_grid(rel,size_y)+self.pos.y-element.pos.y
else:
if rel>floor_grid(rel,size_y)+1e-11 and delta.y+rel<floor_grid(rel,size_y)-1e-11 and floor_grid(rel,size_y)!=0:
# stick to corner
candidate.y=floor_grid(rel,size_y)+self.pos.y-element.pos.y
return candidate
# move when stuck in the y direction
def move_stuck_y(self,delta,element):
size_x=(self.size+element.size)/2
# onlx move in x direction
candidate=Point(delta.x,0)
# do not move past corners
rel=element.pos.x-self.pos.x
if delta.x>0:
if rel<ceil_grid(rel,size_x)-1e-11 and delta.x+rel>ceil_grid(rel,size_x)+1e-11 and ceil_grid(rel,size_x)!=0:
# stick to corner
candidate.x=ceil_grid(rel,size_x)+self.pos.x-element.pos.x
else:
if rel>floor_grid(rel,size_x)+1e-11 and delta.x+rel<floor_grid(rel,size_x)-1e-11 and floor_grid(rel,size_x)!=0:
# stick to corner
candidate.x=floor_grid(rel,size_x)+self.pos.x-element.pos.x
return candidate
# circular elements
# (size is the diameter)
class Element_circle(Element):
# draw element
def draw(self,painter):
Ellipse(pos=(painter.pos_tocoord_x(self.pos.x-0.5*self.size),painter.pos_tocoord_y(self.pos.y-0.5*self.size)),size=(self.size*painter.base_size,self.size*painter.base_size))
# draw boundary
def stroke(self,painter):
Line(circle=(painter.pos_tocoord_x(self.pos.x),painter.pos_tocoord_y(self.pos.y),self.size*0.5*painter.base_size))
# check whether an element interacts with square
# TODO: this only works if element is a circle!
def check_interaction(self,element):
# allow for error
return l_2(element.pos-self.pos)<(self.size+element.size)/2-1e-11
# whether x is in the support of the element
def in_support(self,x):
return l_2(self.pos-x)<=1/2
# check whether an element is touching self
# TODO: this only works if element is a circle!
def check_touch(self,element):
# allow for error
if in_interval(l_2(element.pos-self.pos),(self.size+element.size)/2-1e-11,(self.size+element.size)/2+1e-11):
return True
return False
# find position along a line that comes in contact with the line going through element.pos in direction v
# TODO: this only works if element is a circle!
def move_on_line_to_stick(self,element,v):
# relative position
x=element.pos-self.pos
# radius of collision circle
R=(element.size+self.size)/2
# smallest root of t^2 v^2+2x.v t+x^2-R^2
t=(-v.dot(x)-math.sqrt(v.dot(x)*v.dot(x)-v.dot(v)*(x.dot(x)-R*R)))/v.dot(v)
# return difference to pos
return v*t
# move along edge of circle
# TODO: this only works if element is a circle!
def move_along(self,delta,element):
x=element.pos-self.pos+delta
return x/l_2(x)*(element.size+self.size)/2+self.pos-element.pos

View File

@@ -1,4 +1,16 @@
# check that a file is creatable/writable/editable # Copyright 2021-2023 Ian Jauslin
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os.path import os.path

91
src/jam
View File

@@ -1,69 +1,31 @@
#!/usr/bin/env python3 #!/usr/bin/env python3
import sys # Copyright 2021-2023 Ian Jauslin
import os.path,os #
import filecheck # Licensed under the Apache License, Version 2.0 (the "License");
from lattice import Lattice # you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
## read cli before loading kivy, in case there are errors
# read cli
openfile=""
lattice=""
def read_cli():
global openfile
global lattice
# init flag
flag=""
# loop over arguments
for arg in sys.argv[1:]:
# option flag
if arg[0]=='-':
# loop over options
for c in arg[1:]:
# lattice
if c=='L':
flag="lattice"
else:
# read lattice argument
if flag=="lattice":
# test the specification
(obj,message)=Lattice.new(arg)
if obj==None:
print(message,file=sys.stderr)
exit(-1)
lattice=arg
# reset flag
flag=""
# no flags
else:
openfile=arg
(ret,message)=filecheck.check_edit(openfile)
if ret<0:
print(message,file=sys.stderr)
exit(-1)
# read cli
read_cli()
## import kivy
# disable kivy argument parser
os.environ["KIVY_NO_ARGS"] = "1"
from kivy.app import App from kivy.app import App
from kivy.uix.widget import Widget from kivy.uix.widget import Widget
from kivy.uix.boxlayout import BoxLayout from kivy.uix.boxlayout import BoxLayout
from kivy.config import Config from kivy.config import Config
import sys
import os.path
from painter import Painter from painter import Painter
from status_bar import Status_bar from status_bar import Status_bar
from command_prompt import Command_prompt from command_prompt import Command_prompt
import filecheck
# App class # App class
class Jam_app(App): class Jam_app(App):
@@ -74,9 +36,6 @@ class Jam_app(App):
# the file open for editing # the file open for editing
self.openfile=kwargs.get("openfile","") self.openfile=kwargs.get("openfile","")
# the lattice open for editing
self.lattice=kwargs.get("lattice","")
# readonly mode # readonly mode
self.readonly=False self.readonly=False
@@ -104,20 +63,24 @@ class Jam_app(App):
# set readonly mode # set readonly mode
self.readonly=not os.access(self.openfile,os.W_OK) self.readonly=not os.access(self.openfile,os.W_OK)
# load lattice
if self.lattice!="":
(obj,message)=Lattice.new(self.lattice)
self.painter.set_lattice(obj)
return layout return layout
# disable red circles on right click # disable red circles on right click
Config.set('input', 'mouse', 'mouse,disable_multitouch') Config.set('input', 'mouse', 'mouse,disable_multitouch')
# do not exit on escape # do not exit on escape
Config.set('kivy', 'exit_on_escape', 0) Config.set('kivy', 'exit_on_escape', 0)
# read cli
openfile=""
if len(sys.argv)==2:
openfile=sys.argv[1]
# check file
(ret,message)=filecheck.check_edit(openfile)
if ret<0:
print(message,file=sys.stderr)
exit(-1)
# run # run
if __name__ == '__main__': if __name__ == '__main__':
Jam_app(openfile=openfile,lattice=lattice).run() Jam_app(openfile=openfile).run()

View File

@@ -1,5 +1,19 @@
#: kivy 2.0.0 #: kivy 2.0.0
# Copyright 2021-2023 Ian Jauslin
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
<Status_bar>: <Status_bar>:
canvas.before: canvas.before:
Color: Color:

View File

@@ -1,62 +0,0 @@
# define background lattices
from point import Point
# parent class of all lattices
class Lattice():
def __init__(self,**kwargs):
self.type=kwargs.get("type","")
# lattice point nearest to point
# overwrite in subclasses
def nearest(self,point):
return point
# delta to nearest point
def nearest_delta(self,point):
return self.nearest(point)-point
# draw lattice
# overwrite in subclasses
def draw(self,painter):
return
# return the lattice according to a specification
def new(spec):
specs=spec.split(":")
# check type of lattice
if specs[0]=="square":
return Lattice_square.new_square(specs[1:],spec)
else:
return(None,"error: unrecognized lattice type: '"+specs[0]+"'")
# square lattice
class Lattice_square(Lattice):
def __init__(self,**kwargs):
self.spacing=kwargs.get("spacing",1.)
super(Lattice_square,self).__init__(**kwargs,type="square")
# lattice point nearest to point
def nearest(self,point):
return Point(round(point.x/self.spacing)*self.spacing,round(point.y/self.spacing)*self.spacing)
# draw
def draw(self,painter):
painter.draw_grid(Point(self.spacing/2,self.spacing/2),self.spacing)
# return the lattice according to a specification
def new_square(specs,spec):
# no optional args
if len(specs)==0:
return (Lattice_square(),"")
if len(specs)>1:
return (None,"error: '"+spec+"' is not a valid specification for the square lattice: should be 'square[:spacing]'")
try:
spacing=float(specs[0])
return (Lattice_square(spacing=spacing),"")
except:
return (None,"error: '"+spec+"' is not a valid specification for the square lattice: should be 'square[:spacing]'")

View File

@@ -1,4 +1,16 @@
# main drawing class # Copyright 2021-2023 Ian Jauslin
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys import sys
import math import math
@@ -7,7 +19,8 @@ from kivy.core.window import Window
from kivy.graphics import Color,Line from kivy.graphics import Color,Line
from point import Point from point import Point
from polyomino import Cross,Disk from polyomino import Cross
from polyomino import Square_element
from tools import remove_fromlist from tools import remove_fromlist
@@ -21,9 +34,6 @@ class Painter(Widget):
# list of particles # list of particles
self.particles=[] self.particles=[]
# underlying lattice
self.lattice=None
# particle under mouse # particle under mouse
self.undermouse=None self.undermouse=None
@@ -44,9 +54,6 @@ class Painter(Widget):
# modifiers # modifiers
self.modifiers=[] self.modifiers=[]
# base size for all particles
self.base_size=50
# init Widget # init Widget
super(Painter,self).__init__(**kwargs) super(Painter,self).__init__(**kwargs)
@@ -54,38 +61,21 @@ class Painter(Widget):
self.keyboard = Window.request_keyboard(None,self,"text") self.keyboard = Window.request_keyboard(None,self,"text")
self.keyboard.bind(on_key_down=self.on_key_down,on_key_up=self.on_key_up,on_textinput=self.on_textinput) self.keyboard.bind(on_key_down=self.on_key_down,on_key_up=self.on_key_up,on_textinput=self.on_textinput)
# redraw on resize
self.bind(size=lambda obj,value: self.draw())
def reset(self): def reset(self):
self.particles=[] self.particles=[]
self.undermouse=None self.undermouse=None
self.draw() self.draw()
# set lattice
def set_lattice(self,lattice):
self.lattice=lattice
# draw
self.draw()
# snap all existing particles to grid
for particle in self.particles:
delta=self.lattice.nearest_delta(particle.elements[0].pos)
if not self.check_interaction_any(particle,delta):
particle.move(delta)
# convert logical coordinates (normalized and centered) to the ones that are plotted # convert logical coordinates (normalized and centered) to the ones that are plotted
def pos_tocoord_x(self,x): def pos_tocoord_x(self,x):
return self.width/2+x*self.base_size return self.width/2+x*Square_element.size
def pos_tocoord_y(self,y): def pos_tocoord_y(self,y):
return self.height/2+y*self.base_size return self.height/2+y*Square_element.size
def coord_topos_x(self,x): def coord_topos_x(self,x):
return (x-self.width/2)/self.base_size return (x-self.width/2)/Square_element.size
def coord_topos_y(self,y): def coord_topos_y(self,y):
return (y-self.height/2)/self.base_size return (y-self.height/2)/Square_element.size
@@ -98,14 +88,10 @@ class Painter(Widget):
for particle in self.particles: for particle in self.particles:
particle.draw(self) particle.draw(self)
# draw lattice
if self.lattice!=None:
self.lattice.draw(self)
# draw grids # draw grids
for particle in self.particles: for particle in self.particles:
if particle.grid>0: if particle.grid>0:
self.draw_grid(particle.elements[0].pos,particle.grid) self.draw_grid(particle.squares[0].pos,particle.grid)
for particle in self.particles: for particle in self.particles:
particle.draw(self,alpha=0.5) particle.draw(self,alpha=0.5)
@@ -115,30 +101,17 @@ class Painter(Widget):
# height offset due to status bar and command prompt # height offset due to status bar and command prompt
height_offset=self.app.status_bar.height+self.app.command_prompt.height height_offset=self.app.status_bar.height+self.app.command_prompt.height
# vertical lines # vertical lines
# lines right of pos # offest wrt 0
xx=pos.x+mesh/2 offset=(pos.x-0.5)%mesh
while self.pos_tocoord_x(xx)<self.width: for i in range(math.floor((self.width/Square_element.size-offset)/mesh)+1):
Color(1,1,1) Color(1,1,1)
Line(points=(self.pos_tocoord_x(xx),height_offset,self.pos_tocoord_x(xx),self.height+height_offset)) Line(points=((i*mesh+offset)*Square_element.size,height_offset,(i*mesh+offset)*Square_element.size,self.height+height_offset))
xx+=mesh # horizontal lines
# lines left of pos # offset wrt 0
xx=pos.x-mesh/2 offset=(pos.y-0.5)%1-height_offset/Square_element.size
while self.pos_tocoord_x(xx)>0: for i in range(math.floor((self.height/Square_element.size-offset)/mesh)+1):
Color(1,1,1) Color(1,1,1)
Line(points=(self.pos_tocoord_x(xx),height_offset,self.pos_tocoord_x(xx),self.height+height_offset)) Line(points=(0,(i*mesh+offset)*Square_element.size+height_offset,self.width,(i*mesh+offset)*Square_element.size+height_offset))
xx-=mesh
# lines above pos
yy=pos.y+mesh/2
while self.pos_tocoord_y(yy)<self.height:
Color(1,1,1)
Line(points=(0,self.pos_tocoord_y(yy),self.width,self.pos_tocoord_y(yy)))
yy+=mesh
# lines below pos
yy=pos.y-mesh/2
while self.pos_tocoord_y(yy)>0:
Color(1,1,1)
Line(points=(0,self.pos_tocoord_y(yy),self.width,self.pos_tocoord_y(yy)))
yy-=mesh
# respond to keyboard # respond to keyboard
@@ -180,10 +153,10 @@ class Painter(Widget):
# zoom # zoom
elif text=="+": elif text=="+":
# increment by 10% # increment by 10%
self.set_zoom(self.base_size/50*1.1) self.set_zoom(Square_element.size/50*1.1)
elif text=="-": elif text=="-":
# decrease by 10% # decrease by 10%
self.set_zoom(self.base_size/50*0.9) self.set_zoom(Square_element.size/50*0.9)
elif text=="=": elif text=="=":
# reset # reset
self.set_zoom(1) self.set_zoom(1)
@@ -213,14 +186,9 @@ class Painter(Widget):
touchx=self.coord_topos_x(touch.x) touchx=self.coord_topos_x(touch.x)
touchy=self.coord_topos_y(touch.y) touchy=self.coord_topos_y(touch.y)
# create new particle # create new cross
if touch.button=="right": if touch.button=="right":
new=Cross(touchx,touchy) new=Cross(touchx,touchy)
#new=Disk(touchx,touchy)
# snap to lattice
if self.lattice!=None:
new.move(self.lattice.nearest_delta(new.elements[0].pos))
if not self.check_interaction_any(new,Point(0,0)): if not self.check_interaction_any(new,Point(0,0)):
# add to list # add to list
self.particles.append(new) self.particles.append(new)
@@ -240,7 +208,7 @@ class Painter(Widget):
# record relative position of click with respect to reference # record relative position of click with respect to reference
if self.undermouse!=None: if self.undermouse!=None:
self.offset=Point(touchx,touchy)-self.undermouse.elements[0].pos self.offset=Point(touchx,touchy)-self.undermouse.squares[0].pos
# no modifiers # no modifiers
if self.modifiers==[]: if self.modifiers==[]:
@@ -283,30 +251,18 @@ class Painter(Widget):
# respond to drag # respond to drag
def on_touch_move(self,touch): def on_touch_move(self,touch):
# convert to logical
touchx=self.coord_topos_x(touch.x)
touchy=self.coord_topos_y(touch.y)
# only respond to touch in drawing area # only respond to touch in drawing area
if self.collide_point(*touch.pos): if self.collide_point(*touch.pos):
# convert to logical
touchx=self.coord_topos_x(touch.x)
touchy=self.coord_topos_y(touch.y)
# only move on left click # only move on left click
if touch.button=="left" and self.modifiers==[] and self.undermouse!=None: if touch.button=="left" and self.modifiers==[] and self.undermouse!=None:
# attempted move determined by the relative position to the relative position of click within self.undermouse # attempted move determined by the relative position to the relative position of click within self.undermouse
delta=self.adjust_move(Point(touchx,touchy)-(self.offset+self.undermouse.elements[0].pos),0) delta=self.adjust_move(Point(touchx,touchy)-(self.offset+self.undermouse.squares[0].pos),0)
for particle in self.selected:
# snap to lattice particle.move(delta)
if self.lattice!=None:
delta=self.lattice.nearest(delta)
# check that the move is possible (which is not guaranteed after snapping to lattice)
if not self.check_interaction_unselected_list(self.selected,delta):
for particle in self.selected:
particle.move(delta)
# no lattice, move is guaranteed to be acceptable
else:
for particle in self.selected:
particle.move(delta)
# redraw # redraw
self.draw() self.draw()
@@ -349,15 +305,9 @@ class Painter(Widget):
# check whether a candidate particle element with any of the unselected particles # check whether a candidate particle element with any of the unselected particles
def check_interaction_unselected_element(self,element,offset): def check_interaction_unselected_element(self,element,offset):
for particle in self.unselected: for particle in self.unselected:
for elt in particle.elements: for square in particle.squares:
# add offset if square.check_interaction(element.pos+offset):
element.pos+=offset
if elt.check_interaction(element):
# reset offset
element.pos-=offset
return True return True
# reset offset
element.pos-=offset
return False return False
@@ -367,7 +317,7 @@ class Painter(Widget):
# actual_delta is the smallest (componentwise) of all the computed delta's # actual_delta is the smallest (componentwise) of all the computed delta's
actual_delta=Point(math.inf,math.inf) actual_delta=Point(math.inf,math.inf)
for particle in self.selected: for particle in self.selected:
for element in particle.elements: for element in particle.squares:
# compute adjustment move due to unselected obstacles # compute adjustment move due to unselected obstacles
adjusted_delta=self.adjust_move_element(delta,element,0) adjusted_delta=self.adjust_move_element(delta,element,0)
# only keep the smallest delta's (in absolute value) # only keep the smallest delta's (in absolute value)
@@ -393,23 +343,18 @@ class Painter(Widget):
# whether newpos is acceptable # whether newpos is acceptable
accept_newpos=True accept_newpos=True
for other in self.unselected: for other in self.unselected:
for obstacle in other.elements: for obstacle in other.squares:
# move would make element overlap with obstacle # move would make element overlap with obstacle
element.pos+=delta if obstacle.check_interaction(element.pos+delta):
if obstacle.check_interaction(element):
element.pos-=delta
accept_newpos=False accept_newpos=False
# check if particle already touches obstacle # check if particle already touches obstacle
if obstacle.check_touch(element): if obstacle.check_touch(element.pos):
# move along obstacle while remaining stuck # move along obstacle while remaining stuck
newdelta=obstacle.move_along(delta,element) newdelta=obstacle.move_along(delta,element.pos)
else: else:
newdelta=obstacle.move_on_line_to_stick(element,delta) newdelta=obstacle.move_on_line_to_stick(element.pos,delta)
if not self.check_interaction_unselected_element(element,newdelta): if not self.check_interaction_unselected_element(element,newdelta):
return newdelta return newdelta
else:
# reset offset
element.pos-=delta
if accept_newpos: if accept_newpos:
return delta return delta
else: else:
@@ -450,9 +395,7 @@ class Painter(Widget):
for particle in self.particles: for particle in self.particles:
if type(particle)==Cross: if type(particle)==Cross:
ff.write("{:d};".format(CROSS_INDEX)) ff.write("{:d};".format(CROSS_INDEX))
elif type(particle)==Disk: ff.write("{:05.2f},{:05.2f};{:3.1f},{:3.1f},{:3.1f}\n".format(particle.squares[0].pos.x,particle.squares[0].pos.y,particle.color[0],particle.color[1],particle.color[2]))
ff.write("{:d};".format(DISK_INDEX))
ff.write("{:05.2f},{:05.2f};{:3.1f},{:3.1f},{:3.1f}\n".format(particle.elements[0].pos.x,particle.elements[0].pos.y,particle.color[0],particle.color[1],particle.color[2]))
ff.close() ff.close()
# read configuration from file # read configuration from file
@@ -529,8 +472,6 @@ class Painter(Widget):
continue continue
if particle_type==CROSS_INDEX: if particle_type==CROSS_INDEX:
candidate=Cross(pos.x,pos.y,color=color) candidate=Cross(pos.x,pos.y,color=color)
elif particle_type==DISK_INDEX:
candidate=Disk(pos.x,pos.y,color=color)
else: else:
print("warning: ignoring line "+str(i)+" in file '"+file+"': unrecognized particle type: '"+entries[0]+"'",file=sys.stderr) print("warning: ignoring line "+str(i)+" in file '"+file+"': unrecognized particle type: '"+entries[0]+"'",file=sys.stderr)
continue continue
@@ -567,7 +508,7 @@ class Painter(Widget):
for particle in self.particles: for particle in self.particles:
if type(particle)==Cross: if type(particle)==Cross:
ff.write("\cross{"+colors.closest_color(particle.color,colors.xcolor_names)+"}") ff.write("\cross{"+colors.closest_color(particle.color,colors.xcolor_names)+"}")
ff.write("{{({:05.2f},{:05.2f})}};\n".format(particle.elements[0].pos.x-self.particles[0].elements[0].pos.x,particle.elements[0].pos.y-self.particles[0].elements[0].pos.y)) ff.write("{{({:05.2f},{:05.2f})}};\n".format(particle.squares[0].pos.x-self.particles[0].squares[0].pos.x,particle.squares[0].pos.y-self.particles[0].squares[0].pos.y))
ff.write("\\end{tikzpicture}\n") ff.write("\\end{tikzpicture}\n")
ff.write("\\end{document}\n") ff.write("\\end{document}\n")
@@ -577,12 +518,11 @@ class Painter(Widget):
# set zoom level # set zoom level
def set_zoom(self,level): def set_zoom(self,level):
self.base_size=level*50 Square_element.size=level*50
self.draw() self.draw()
# global variables (used like precompiler variables) # global variables (used like precompiler variables)
CROSS_INDEX=1 CROSS_INDEX=1
DISK_INDEX=2

View File

@@ -1,4 +1,16 @@
# two-dimensional point structure # Copyright 2021-2023 Ian Jauslin
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math import math
@@ -49,7 +61,3 @@ class Point:
# L infinity norm # L infinity norm
def l_infinity(x): def l_infinity(x):
return max(abs(x.x),abs(x.y)) return max(abs(x.x),abs(x.y))
# L 2 norm
def l_2(x):
return math.sqrt(x.x*x.x+x.y*x.y)

View File

@@ -1,14 +1,29 @@
# a polyomino is a collection of elements, defined in elements.py # Copyright 2021-2023 Ian Jauslin
from kivy.graphics import Color,Line #
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from point import l_infinity import math
from element import Element_square,Element_circle import sys
from kivy.graphics import Color,Line,Rectangle
from point import Point,l_infinity
from tools import isint_nonzero,sgn,in_interval
# parent class of all polyominos # parent class of all polyominos
class Polyomino(): class Polyomino():
def __init__(self,**kwargs): def __init__(self,**kwargs):
# elements that make up the polyomino # square elements that maje up the polyomino
self.elements=kwargs.get("elements",[]) self.squares=kwargs.get("squares",[])
self.color=kwargs.get("color",(0,0,1)) self.color=kwargs.get("color",(0,0,1))
self.selected=False self.selected=False
@@ -27,83 +42,212 @@ class Polyomino():
# darken selected # darken selected
Color(r/2,g/2,b/2,alpha) Color(r/2,g/2,b/2,alpha)
for element in self.elements: for square in self.squares:
element.draw(painter) Rectangle(pos=(painter.pos_tocoord_x(square.pos.x-0.5),painter.pos_tocoord_y(square.pos.y-0.5)),size=(square.size,square.size))
# draw boundary # draw boundary
self.stroke(painter) self.stroke(painter)
# draw boundary (override for connected polyominos) # draw boundary (override for connected polyominos)
def stroke(self,painter): def stroke(self,painter):
# convert to graphical coordinates
coordx=painter.pos_tocoord_x(square.pos.x)
coordy=painter.pos_tocoord_y(square.pos.y)
# white # white
Color(1,1,1) Color(1,1,1)
for element in self.elements: for square in self.squares:
element.stroke(painter) Line(points=(
*(coordx-0.5*square.size,coordy-0.5*square.size),
*(coordx-0.5*square.size,coordy+0.5*square.size),
*(coordx+0.5*square.size,coordy+0.5*square.size),
*(coordx+0.5*square.size,coordy-0.5*square.size),
*(coordx-0.5*square.size,coordy-0.5*square.size)
))
# move by delta # move by delta
def move(self,delta): def move(self,delta):
for element in self.elements: for square in self.squares:
element.pos+=delta square.pos+=delta
# whether x is in the support of the polyomino # whether x is in the support of the polyomino
def in_support(self,x): def in_support(self,x):
for element in self.elements: for square in self.squares:
if element.in_support(x): if l_infinity(square.pos-x)<=1/2:
return True return True
return False return False
# check whether self interacts with candidate if candidate were moved by offset # check whether self interacts with candidate if candidate were moved by offset
def check_interaction(self,candidate,offset): def check_interaction(self,candidate,offset):
for element1 in self.elements: for square1 in self.squares:
for element2 in candidate.elements: for square2 in candidate.squares:
# add offset if square1.check_interaction(square2.pos+offset):
element2.pos+=offset
if element1.check_interaction(element2):
# reset offset
element2.pos-=offset
return True return True
# reset offset
element2.pos-=offset
return False return False
# square # square
class Square(Polyomino): class Square(Polyomino):
def __init__(self,x,y,**kwargs): def __init__(self,x,y,**kwargs):
super(Square,self).__init__(**kwargs,elements=[Element_square(x,y,size=kwargs.get("size",1.0))]) super(Square,self).__init__(**kwargs,squares=[Square_element(x,y)])
# cross # cross
class Cross(Polyomino): class Cross(Polyomino):
def __init__(self,x,y,**kwargs): def __init__(self,x,y,**kwargs):
super(Cross,self).__init__(**kwargs,elements=[\ super(Cross,self).__init__(**kwargs,squares=[\
Element_square(x,y,1,aspect=3),\ Square_element(x,y),\
Element_square(x+1,y,1),\ Square_element(x+1,y),\
Element_square(x-1,y,1)\ Square_element(x-1,y),\
Square_element(x,y+1),\
Square_element(x,y-1)\
]) ])
# redefine stroke to avoid lines between touching elements # redefine stroke to avoid lines between touching squares
def stroke(self,painter): def stroke(self,painter):
# convert to graphical coordinates # convert to graphical coordinates
coordx=painter.pos_tocoord_x(self.elements[0].pos.x) coordx=painter.pos_tocoord_x(self.squares[0].pos.x)
coordy=painter.pos_tocoord_y(self.elements[0].pos.y) coordy=painter.pos_tocoord_y(self.squares[0].pos.y)
Color(1,1,1) Color(1,1,1)
Line(points=( Line(points=(
*(coordx-0.5*painter.base_size,coordy-0.5*painter.base_size), *(coordx-0.5*Square_element.size,coordy-0.5*Square_element.size),
*(coordx-0.5*painter.base_size,coordy-1.5*painter.base_size), *(coordx-0.5*Square_element.size,coordy-1.5*Square_element.size),
*(coordx+0.5*painter.base_size,coordy-1.5*painter.base_size), *(coordx+0.5*Square_element.size,coordy-1.5*Square_element.size),
*(coordx+0.5*painter.base_size,coordy-0.5*painter.base_size), *(coordx+0.5*Square_element.size,coordy-0.5*Square_element.size),
*(coordx+1.5*painter.base_size,coordy-0.5*painter.base_size), *(coordx+1.5*Square_element.size,coordy-0.5*Square_element.size),
*(coordx+1.5*painter.base_size,coordy+0.5*painter.base_size), *(coordx+1.5*Square_element.size,coordy+0.5*Square_element.size),
*(coordx+0.5*painter.base_size,coordy+0.5*painter.base_size), *(coordx+0.5*Square_element.size,coordy+0.5*Square_element.size),
*(coordx+0.5*painter.base_size,coordy+1.5*painter.base_size), *(coordx+0.5*Square_element.size,coordy+1.5*Square_element.size),
*(coordx-0.5*painter.base_size,coordy+1.5*painter.base_size), *(coordx-0.5*Square_element.size,coordy+1.5*Square_element.size),
*(coordx-0.5*painter.base_size,coordy+0.5*painter.base_size), *(coordx-0.5*Square_element.size,coordy+0.5*Square_element.size),
*(coordx-1.5*painter.base_size,coordy+0.5*painter.base_size), *(coordx-1.5*Square_element.size,coordy+0.5*Square_element.size),
*(coordx-1.5*painter.base_size,coordy-0.5*painter.base_size), *(coordx-1.5*Square_element.size,coordy-0.5*Square_element.size),
*(coordx-0.5*painter.base_size,coordy-0.5*painter.base_size), *(coordx-0.5*Square_element.size,coordy-0.5*Square_element.size),
)) ))
# disk
class Disk(Polyomino):
# square building block of polyominos
class Square_element():
# size
size=50
def __init__(self,x,y,**kwargs): def __init__(self,x,y,**kwargs):
super(Disk,self).__init__(**kwargs,elements=[Element_circle(x,y,size=kwargs.get("size",1.0))]) self.pos=Point(x,y)
# set position
def setpos(self,x,y):
self.pos.x=x
self.pos.y=y
# check whether a square at pos interacts with square
def check_interaction(self,pos):
return l_infinity(pos-self.pos)<1
# check whether a square at position pos is touching self
def check_touch(self,pos):
# allow for error
if in_interval(l_infinity(pos-self.pos),1-1e-11,1+1e-11):
return True
return False
# find position along a line that comes in contact with the line going through pos in direction v
def move_on_line_to_stick(self,pos,v):
# compute intersections with four lines making up square
if v.x!=0:
if v.y!=0:
intersections=[\
Point(self.pos.x+1,pos.y+v.y/v.x*(self.pos.x+1-pos.x)),\
Point(self.pos.x-1,pos.y+v.y/v.x*(self.pos.x-1-pos.x)),\
Point(pos.x+v.x/v.y*(self.pos.y+1-pos.y),self.pos.y+1),\
Point(pos.x+v.x/v.y*(self.pos.y-1-pos.y),self.pos.y-1)\
]
else:
intersections=[\
Point(self.pos.x+1,pos.y+v.y/v.x*(self.pos.x+1-pos.x)),\
Point(self.pos.x-1,pos.y+v.y/v.x*(self.pos.x-1-pos.x))
]
else:
if v.y!=0:
intersections=[\
Point(pos.x+v.x/v.y*(self.pos.y+1-pos.y),self.pos.y+1),\
Point(pos.x+v.x/v.y*(self.pos.y-1-pos.y),self.pos.y-1)\
]
else:
print("error: move_on_line_to_stick called with v=0, please file a bug report with the developer",file=sys.stderr)
exit(-1)
# compute closest one, on square
closest=None
dist=math.inf
for i in range(0,len(intersections)):
# check that it is on square
if abs(intersections[i].x-self.pos.x)<=1+1e-11 and abs(intersections[i].y-self.pos.y)<=1+1e-11:
if (intersections[i]-pos)**2<dist:
closest=intersections[i]
dist=(intersections[i]-pos)**2
if closest==None:
print("error: cannot move particle at (",pos.x,",",pos.y,") to the boundary of (",self.pos.x,",",self.pos.y,") in direction (",v.x,",",v.y,")",file=sys.stderr)
exit(-1)
# return difference to pos
return closest-pos
# move along edge of square
def move_along(self,delta,pos):
rel=pos-self.pos
# check if the particle is stuck in the x direction
if isint_nonzero(rel.x):
# check y direction
if isint_nonzero(rel.y):
# in corner
if sgn(delta.y)==-sgn(rel.y):
# stuck in x direction
return self.move_stuck_x(delta,pos)
elif sgn(delta.x)==-sgn(rel.x):
# stuck in y direction
return self.move_stuck_y(delta,pos)
# stuck in both directions
return pos
else:
# stuck in x direction
return self.move_stuck_x(delta,pos)
elif isint_nonzero(rel.y):
# stuck in y direction
return self.move_stuck_y(delta,pos)
# this should never happen
else:
print("error: stuck particle has non-integer relative position: (",rel.x,",",rel.y,")",file=sys.stderr)
exit(-1)
# move when stuck in the x direction
def move_stuck_x(self,delta,pos):
# only move in y direction
candidate=Point(0,delta.y)
# do not move past corners
rel=pos.y-self.pos.y
if delta.y>0:
if rel<math.ceil(rel)-1e-11 and delta.y+rel>math.ceil(rel)+1e-11 and math.ceil(rel)!=0:
# stick to corner
candidate.y=math.ceil(rel)+self.pos.y-pos.y
else:
if rel>math.floor(rel)+1e-11 and delta.y+rel<math.floor(rel)-1e-11 and math.floor(rel)!=0:
# stick to corner
candidate.y=math.floor(rel)+self.pos.y-pos.y
return candidate
# move when stuck in the y direction
def move_stuck_y(self,delta,pos):
# onlx move in x direction
candidate=Point(delta.x,0)
# do not move past corners
rel=pos.x-self.pos.x
if delta.x>0:
if rel<math.ceil(rel)-1e-11 and delta.x+rel>math.ceil(rel)+1e-11 and math.ceil(rel)!=0:
# stick to corner
candidate.x=math.ceil(rel)+self.pos.x-pos.x
else:
if rel>math.floor(rel)+1e-11 and delta.x+rel<math.floor(rel)-1e-11 and math.floor(rel)!=0:
# stick to corner
candidate.x=math.floor(rel)+self.pos.x-pos.x
return candidate

View File

@@ -45,9 +45,9 @@ class Status_bar(Label):
spaces=int(self.width/self.char_width)-len(self.raw_text)-13 spaces=int(self.width/self.char_width)-len(self.raw_text)-13
if spaces>0: if spaces>0:
if self.app.painter.reference==None: if self.app.painter.reference==None:
self.raw_text+=" "*spaces+"({:05.2f},{:05.2f})\n".format(self.app.painter.selected[0].elements[0].pos.x,self.app.painter.selected[0].elements[0].pos.y) self.raw_text+=" "*spaces+"({:05.2f},{:05.2f})\n".format(self.app.painter.selected[0].squares[0].pos.x,self.app.painter.selected[0].squares[0].pos.y)
else: else:
self.raw_text+=" "*spaces+"({:05.2f},{:05.2f})\n".format(self.app.painter.selected[0].elements[0].pos.x-self.app.painter.reference.elements[0].pos.x,self.app.painter.selected[0].elements[0].pos.y-self.app.painter.reference.elements[0].pos.y) self.raw_text+=" "*spaces+"({:05.2f},{:05.2f})\n".format(self.app.painter.selected[0].squares[0].pos.x-self.app.painter.reference.squares[0].pos.x,self.app.painter.selected[0].squares[0].pos.y-self.app.painter.reference.squares[0].pos.y)
# do not wrap # do not wrap
self.text=self.raw_text[:min(len(self.raw_text),int(self.width/self.char_width))] self.text=self.raw_text[:min(len(self.raw_text),int(self.width/self.char_width))]

View File

@@ -1,5 +1,3 @@
import math
# sign function # sign function
def sgn(x): def sgn(x):
if x>=0: if x>=0:
@@ -22,10 +20,3 @@ def remove_fromlist(a,x):
a[a.index(x)]=a[len(a)-1] a[a.index(x)]=a[len(a)-1]
a=a[:len(a)-1] a=a[:len(a)-1]
return a return a
# snap to a grid: ceiling
def ceil_grid(x,size):
return math.ceil(x/size)*size
# snap to a grid: floor
def floor_grid(x,size):
return math.floor(x/size)*size