2270 lines
102 KiB
TeX
2270 lines
102 KiB
TeX
\documentclass[a4paper,preprintnumbers,amsmath,amssymb,twocolumn,10pt]{revtex4}
|
||
|
||
\usepackage{graphicx}
|
||
\usepackage{dcolumn}
|
||
\usepackage{bm}
|
||
\usepackage{epstopdf}
|
||
\usepackage{dsfont}
|
||
\usepackage{color}
|
||
\usepackage{amsthm}
|
||
|
||
|
||
\newcount\driver
|
||
\newcount\bozza
|
||
|
||
|
||
\font\cs=cmcsc10 scaled\magstep1
|
||
\font\ottorm=cmr8 scaled\magstep1 \font\msxtw=msbm10
|
||
scaled\magstep1 \font\euftw=eufm10
|
||
scaled\magstep1 \font\msytw=msbm10 scaled\magstep1
|
||
\font\msytww=msbm8 scaled\magstep1 \font\msytwww=msbm7
|
||
scaled\magstep1 \font\indbf=cmbx10 scaled\magstep2
|
||
\font\grbold=cmmib10 scaled\magstep1
|
||
\font\amit=cmmi7 \def\sf{\textfont1=\amit} \font\bigtenrm=cmr10
|
||
scaled \magstep2 \font\bigteni=cmmi10 scaled
|
||
\magstep1
|
||
|
||
{\count255=\time\divide\count255 by 60
|
||
\xdef\hourmin{\number\count255}
|
||
\multiply\count255 by-60\advance\count255 by\time
|
||
\xdef\hourmin{\hourmin:\ifnum\count255<10 0\fi\the\count255}}
|
||
|
||
|
||
|
||
|
||
\let\a=\alpha \let\b=\beta \let\g=\gamma \let\d=\delta \let\e=\varepsilon
|
||
\let\z=\zeta \let\h=\eta \let\th=\vartheta \let\k=\kappa \let\l=\lambda
|
||
\let\m=\mu \let\n=\nu \let\x=\xi \let\p=\pi \let\r=\rho
|
||
\let\s=\sigma \let\t=\tau \let\f=\varphi \let\ph=\varphi \let\c=\chi
|
||
\let\ps=\psi \let\y=\upsilon \let\o=\omega \let\si=\varsigma
|
||
\let\G=\Gamma \let\D=\Delta \let\Th=\Theta \let\L=\Lambda \let\X=\Xi
|
||
\let\P=\Pi \let\Si=\Sigma \let\F=\Phi \let\Ps=\Psi
|
||
\let\O=\Omega \let\Y=\Upsilon
|
||
|
||
|
||
\def\PP{{\cal P}}\def\EE{{\cal E}}\def\MM{{\cal M}}\def\VV{{\cal V}}
|
||
\def\FF{{\cal F}}\def\HH{{\cal H}}\def\WW{{\cal W}}
|
||
\def\TT{{\cal T}}\def\NN{{\cal N}}\def\BB{{\cal B}}\def\ZZ{{\cal Z}}
|
||
\def\RR{{\cal R}}\def\LL{{\cal L}}\def\JJ{{\cal J}}\def\QQ{{\cal Q}}
|
||
\def\DD{{\cal D}}\def\AA{{\cal A}}\def\GG{{\cal G}}\def\SS{{\cal S}}
|
||
\def\OO{{\cal O}}\def\XXX{{\bf X}}\def\YYY{{\bf Y}}\def\WWW{{\bf W}}
|
||
\def\KK{{\cal K}}
|
||
|
||
|
||
\def\ggg{{\bf g}}\def\fff{{\bf f}}\def\ff{{\bf f}}
|
||
|
||
|
||
\def\pp{{\bf p}}\def\qq{{\bf q}}\def\ii{{\bf i}}\def\xx{{\bf x}}
|
||
\def\aaa{{\bf a}} \def\bb{{\bf b}} \def\dd{{\bf d}}
|
||
\def\yy{{\bf y}}\def\kk{{\bf k}}\def\mm{{\bf m}}\def\nn{{\bf n}}
|
||
\def\zz{{\bf z}}\def\uu{{\bf u}}\def\vv{{\bf v}}\def\ww{{\bf w}}
|
||
\def\xxi{\hbox{\grbold \char24}} \def\bP{{\bf P}}\def\rr{{\bf r}}
|
||
\def\tt{{\bf t}}\def\bT{{\bf T}}
|
||
|
||
|
||
\def\ss{{\underline \sigma}} \def\oo{{\underline \omega}}
|
||
\def\ee{{\underline \varepsilon}} \def\aa{{\underline \alpha}}
|
||
\def\un{{\underline \nu}} \def\ul{{\underline \lambda}}
|
||
\def\um{{\underline \mu}} \def\ux{{\underline\xx}}
|
||
\def\uk{{\underline \kk}} \def\uq{{\underline\qq}}
|
||
\def\uaa{{\underline \aaa}} \def\ub{{\underline\bb}}
|
||
\def\uc{{\underlinec}} \def\ud{{\underline\dd}}
|
||
\def\up{{\underline\pp}} \def\ua{{\underline \a}}
|
||
\def\ut{{\underline t}} \def\uxi{{\underline \xi}}
|
||
\def\umu{{\underline \m}} \def\uv{{\underline\vv}}
|
||
\def\ue{{\underline \e}} \def\uy{{\underline\yy}}
|
||
\def\uz{{\underline \zz}}
|
||
\def\uw{{\underline \ww}} \def\uo{{\underline \o}}
|
||
\def\us{{\underline \s}} \def\xxx{{\underline \xx}}
|
||
\def\kkk{{\underline\kk}} \def\uuu{{\underline\uu}}
|
||
\def\udpr{{\underline\Dpr}}
|
||
\def\ggg{\bf g}
|
||
\def\uu{\bf u}
|
||
\def\III{\hbox{\msytw I}}
|
||
\def\MMM{\hbox{\euftw M}} \def\BBB{\hbox{\euftw B}}
|
||
\def\RRR{\hbox{\msytw R}} \def\rrrr{\hbox{\msytww R}}
|
||
\def\rrr{\hbox{\msytwww R}}
|
||
|
||
\def\NNN{\hbox{\msytw N}} \def\nnnn{\hbox{\msytww N}}
|
||
\def\nnn{\hbox{\msytwww N}} \def\ZZZ{\hbox{\msytw Z}}
|
||
\def\zzzz{\hbox{\msytww Z}} \def\zzz{\hbox{\msytwww Z}}
|
||
\def\TTT{\hbox{\msytw T}} \def\tttt{\hbox{\msytww T}}
|
||
\def\ttt{\hbox{\msytwww T}} \def\EE{\hbox{\msytw E}}
|
||
\def\eeee{\hbox{\msytww E}} \def\eee{\hbox{\msytwww E}}
|
||
|
||
|
||
\let\dpr=\partial
|
||
\let\circa=\cong
|
||
\let\bs=\backslash
|
||
\let\==\equiv
|
||
\let\txt=\textstyle
|
||
\let\io=\infty
|
||
\let\0=\noindent
|
||
|
||
|
||
|
||
|
||
\def\pagina{{\vfill\eject}}
|
||
\def\*{{\hfill\break\null\hfill\break}}
|
||
\def\bra#1{{\langle#1|}}
|
||
\def\ket#1{{|#1\rangle}}
|
||
\def\media#1{{\langle#1\rangle}}
|
||
\def\ie{\hbox{\it i.e.\ }}
|
||
\def\eg{\hbox{\it e.g.\ }}
|
||
|
||
|
||
\def\tilde#1{{\widetilde #1}}
|
||
|
||
|
||
\def\Dpr{\V\dpr\,}
|
||
\def\aps{{\it a posteriori}}
|
||
\def\lft{\left}
|
||
\def\rgt{\right}
|
||
\def\der{\hbox{\rm d}}
|
||
\def\la{{\langle}}
|
||
\def\ra{{\rangle}}
|
||
\def\norm#1{{\left|\hskip-.05em\left|#1\right|\hskip-.05em\right|}}
|
||
\def\tgl#1{\!\!\not\!#1\hskip1pt}
|
||
\def\tende#1{\,\vtop{\ialign{##\crcr\rightarrowfill\crcr
|
||
\noalign{\kern-1pt\nointerlineskip}
|
||
\hskip3.pt${\scriptstyle #1}$\hskip3.pt\crcr}}\,}
|
||
\def\otto{\,{\kern-1.truept\leftarrow\kern-5.truept\to\kern-1.truept}\,}
|
||
\def\fra#1#2{{#1\over#2}}
|
||
|
||
|
||
\def\sde{{\cs SDe}}
|
||
\def\wti{{\cs WTi}}
|
||
\def\osa{{\cs OSa}}
|
||
\def\ce{{\cs CE}}
|
||
\def\rg{{\cs RG}}
|
||
|
||
|
||
\def\lp{{\hskip-1pt:\hskip 0pt}}
|
||
\def\rp{{\hskip-1pt :\hskip1pt}}
|
||
\def\defi{{\buildrel \;def\; \over =}}
|
||
\def\apt{{\;\buildrel apt \over =}\;}
|
||
\def\nequiv{\not\equiv}
|
||
\def\Tr{\rm Tr}
|
||
\def\diam{{\rm diam}}
|
||
\def\sgn{\rm sgn}
|
||
\def\wt#1{\widetilde{#1}}
|
||
\def\wh#1{\widehat{#1}}
|
||
\def\hat#1{\wh{#1}}
|
||
\def\sqt[#1]#2{\root #1\of {#2}}
|
||
|
||
|
||
\def\ha{{\widehat \a}}\def\hx{{\widehat \x}}\def\hb{{\widehat \b}}
|
||
\def\hr{{\widehat \r}}\def\hw{{\widehat w}}\def\hv{{\widehat v}}
|
||
\def\hf{{\widehat \f}}\def\hW{{\widehat W}}\def\hH{{\widehat H}}
|
||
\def\hB{{\widehat B}}
|
||
\def\hK{{\widehat K}} \def\hW{{\widehat W}}\def\hU{{\widehat U}}
|
||
\def\hp{{\widehat \ps}} \def\hF{{\widehat F}}
|
||
\def\bp{{\bar \ps}}
|
||
\def\hh{{\hat \h}}
|
||
\def\jm{{\jmath}}
|
||
\def\hJ{{\widehat \jmath}}
|
||
\def\hJ{{\widehat J}}
|
||
\def\hg{{\widehat g}}
|
||
\def\tg{{\tilde g}}
|
||
\def\hQ{{\widehat Q}}
|
||
\def\hC{{\widehat C}}
|
||
\def\hA{{\widehat A}}
|
||
\def\hD{{\widehat \D}}
|
||
\def\hDD{{\hat \D}}
|
||
\def\bl{{\bar \l}}
|
||
\def\hG{{\widehat G}}
|
||
\def\hS{{\widehat S}}
|
||
\def\hR{{\widehat R}}
|
||
\def\hM{{\widehat M}}
|
||
\def\hN{{\widehat N}}
|
||
\def\hn{{\widehat \n}}
|
||
|
||
|
||
|
||
|
||
\def\PP{{\cal P}}\def\EE{{\cal E}}\def\MM{{\cal M}}\def\VV{{\cal V}}
|
||
\def\FF{{\cal F}}\def\HH{{\cal H}}\def\WW{{\cal W}}
|
||
\def\TT{{\cal T}}\def\NN{{\cal N}}\def\BB{{\cal B}}\def\ZZ{{\cal Z}}
|
||
\def\RR{{\cal R}}\def\LL{{\cal L}}\def\JJ{{\cal J}}\def\QQ{{\cal Q}}
|
||
\def\DD{{\cal D}}\def\AA{{\cal A}}\def\GG{{\cal G}}\def\SS{{\cal S}}
|
||
\def\OO{{\cal O}}\def\AAA{{\cal A}}
|
||
|
||
|
||
\def\T#1{{#1_{\kern-3pt\lower7pt\hbox{$\widetilde{}$}}\kern3pt}}
|
||
\def\VVV#1{{\underline #1}_{\kern-3pt
|
||
\lower7pt\hbox{$\widetilde{}$}}\kern3pt\,}
|
||
\def\W#1{#1_{\kern-3pt\lower7.5pt\hbox{$\widetilde{}$}}\kern2pt\,}
|
||
\def\Re{{\rm Re}\,}\def\Im{{\rm Im}\,}
|
||
\def\lis{\overline}\def\tto{\Rightarrow}
|
||
\def\etc{{\it etc}} \def\acapo{\hfill\break}
|
||
\def\mod{{\rm mod}\,} \def\per{{\rm per}\,} \def\sign{{\rm sign}\,}
|
||
\def\indica{\leaders \hbox to 0.5cm{\hss.\hss}\hfill}
|
||
\def\guida{\leaders\hbox to 1em{\hss.\hss}\hfill}
|
||
\mathchardef\oo= "0521
|
||
|
||
|
||
\def\V#1{{\bf #1}}
|
||
\def\pp{{\bf p}}\def\qq{{\bf q}}\def\ii{{\bf i}}\def\xx{{\bf x}}
|
||
\def\yy{{\bf y}}\def\kk{{\bf k}}\def\mm{{\bf m}}\def\nn{{\bf n}}
|
||
\def\dd{{\bf d}}\def\zz{{\bf z}}\def\uu{{\bf u}}\def\vv{{\bf v}}
|
||
\def\xxi{\hbox{\grbold \char24}} \def\bP{{\bf P}}\def\rr{{\bf r}}
|
||
\def\tt{{\bf t}} \def\bz{{\bf 0}}
|
||
\def\ss{{\underline \sigma}}\def\oo{{\underline \omega}}
|
||
\def\xxx{{\underline\xx}}
|
||
\def\qed{\raise1pt\hbox{\vrule height5pt width5pt depth0pt}}
|
||
\def\barf#1{{\tilde \f_{#1}}} \def\tg#1{{\tilde g_{#1}}}
|
||
\def\bq{{\bar q}} \def\bh{{\bar h}} \def\bp{{\bar p}} \def\bpp{{\bar \pp}}
|
||
\def\Val{{\rm Val}}
|
||
\def\indic{\hbox{\raise-2pt \hbox{\indbf 1}}}
|
||
\def\bk#1#2{\bar\kk_{#1#2}}
|
||
\def\tdh{{\tilde h}}
|
||
|
||
|
||
\def\RRR{\hbox{\msytw R}} \def\rrrr{\hbox{\msytww R}}
|
||
\def\rrr{\hbox{\msytwww R}}
|
||
\def\NNN{\hbox{\msytw N}} \def\nnnn{\hbox{\msytww N}}
|
||
\def\nnn{\hbox{\msytwww N}} \def\ZZZ{\hbox{\msytw Z}}
|
||
\def\zzzz{\hbox{\msytww Z}} \def\zzz{\hbox{\msytwww Z}}
|
||
\def\TTT{\hbox{\msytw T}} \def\tttt{\hbox{\msytww T}}
|
||
\def\ttt{\hbox{\msytwww T}}
|
||
|
||
|
||
|
||
|
||
\def\ins#1#2#3{\vbox to0pt{\kern-#2 \hbox{\kern#1 #3}\vss}\nointerlineskip}
|
||
|
||
|
||
\newdimen\xshift \newdimen\xwidth \newdimen\yshift
|
||
|
||
|
||
\def\insertplot#1#2#3#4#5#6{\xwidth=#1pt \xshift=\hsize \advance\xshift by-\xwidth \divide\xshift by 2\begin{figure}[ht]
|
||
\vspace{#2pt} \hspace{\xshift}
|
||
\begin{minipage}{#1pt}
|
||
#3 \ifnum\driver=1 \griglia=#6
|
||
\ifnum\griglia=1 \openout13=griglia.ps \write13{gsave .2
|
||
setlinewidth} \write13{0 10 #1 {dup 0 moveto #2 lineto } for}
|
||
\write13{0 10 #2 {dup 0 exch moveto #1 exch lineto } for}
|
||
\write13{stroke} \write13{.5 setlinewidth} \write13{0 50 #1 {dup 0
|
||
moveto #2 lineto } for} \write13{0 50 #2 {dup 0 exch moveto #1
|
||
exch lineto } for} \write13{stroke grestore} \closeout13
|
||
\special{psfile=griglia.ps} \fi
|
||
\special{psfile=#4.ps}\fi\ifnum\driver=2 \special{pdf:epdf (#4.pdf)}\fi
|
||
\end{minipage}
|
||
\caption{#5}
|
||
\end{figure}
|
||
}
|
||
|
||
|
||
\def\gtopl{\hbox{\msxtw \char63}}
|
||
\def\ltopg{\hbox{\msxtw \char55}}
|
||
|
||
|
||
\newdimen\shift \shift=-1.5truecm
|
||
\def\lb#1{\ifnum\bozza=1
|
||
\label{#1}\rlap{\hbox{\hskip\shift$\scriptstyle#1$}}
|
||
\else\label{#1} \fi}
|
||
|
||
|
||
\def\be{\begin{equation}}
|
||
\def\ee{\end{equation}}
|
||
\def\bea{\begin{eqnarray}}\def\eea{\end{eqnarray}}
|
||
\def\bean{\begin{eqnarray*}}\def\eean{\end{eqnarray*}}
|
||
\def\bfr{\begin{flushright}}\def\efr{\end{flushright}}
|
||
\def\bc{\begin{center}}\def\ec{\end{center}}
|
||
\def\bal{\begin{align}}\def\eal{\end{align}}
|
||
\def\ba#1{\begin{array}{#1}} \def\ea{\end{array}}
|
||
\def\bd{\begin{description}}\def\ed{\end{description}}
|
||
\def\bv{\begin{verbatim}}\def\ev{\end{verbatim}}
|
||
\def\nn{\nonumber}
|
||
\def\Halmos{\hfill\vrule height10pt width4pt depth2pt \par\hbox to \hsize{}}
|
||
\def\pref#1{(\ref{#1})}
|
||
\def\Dim{{\bf Dim. -\ \ }} \def\Sol{{\bf Soluzione -\ \ }}
|
||
\def\virg{\quad,\quad}
|
||
\def\bsl{$\backslash$}
|
||
|
||
|
||
|
||
|
||
|
||
|
||
\def\ins#1#2#3{\vbox to0pt{\kern-#2 \hbox{\kern#1 #3}\vss}\nointerlineskip}
|
||
|
||
|
||
\newdimen\xshift \newdimen\xwidth \newdimen\yshift
|
||
\newcount\griglia
|
||
|
||
|
||
\def\insertplot#1#2#3#4#5#6{\xwidth=#1pt \xshift=\hsize \advance\xshift by-\xwidth \divide\xshift by 2\begin{figure}[ht]
|
||
\vspace{#2pt} \hspace{\xshift}
|
||
\begin{minipage}{#1pt}
|
||
#3 \ifnum\driver=1 \griglia=#6
|
||
\ifnum\griglia=1 \openout13=griglia.ps \write13{gsave .2
|
||
setlinewidth} \write13{0 10 #1 {dup 0 moveto #2 lineto } for}
|
||
\write13{0 10 #2 {dup 0 exch moveto #1 exch lineto } for}
|
||
\write13{stroke} \write13{.5 setlinewidth} \write13{0 50 #1 {dup 0
|
||
moveto #2 lineto } for} \write13{0 50 #2 {dup 0 exch moveto #1
|
||
exch lineto } for} \write13{stroke grestore} \closeout13
|
||
\special{psfile=griglia.ps} \fi
|
||
\special{psfile=#4.ps}\fi\ifnum\driver=2 \special{pdf:epdf (#4.pdf)}\fi
|
||
\end{minipage}
|
||
\caption{#5}
|
||
\end{figure}
|
||
}
|
||
|
||
|
||
\def\gtopl{\hbox{\msxtw \char63}}
|
||
\def\ltopg{\hbox{\msxtw \char55}}
|
||
|
||
|
||
\newdimen\shift \shift=-1.5truecm
|
||
\def\lb#1{\label{#1}\rlap{\hbox{\hskip\shift$\scriptstyle#1$}}
|
||
\else\label{#1} \fi}
|
||
|
||
|
||
\def\be{\begin{equation}}
|
||
\def\ee{\end{equation}}
|
||
\def\bea{\begin{eqnarray}}\def\eea{\end{eqnarray}}
|
||
\def\bean{\begin{eqnarray*}}\def\eean{\end{eqnarray*}}
|
||
\def\bfr{\begin{flushright}}\def\efr{\end{flushright}}
|
||
\def\bc{\begin{center}}\def\ec{\end{center}}
|
||
\def\bal{\begin{align}}\def\eal{\end{align}}
|
||
\def\ba#1{\begin{array}{#1}} \def\ea{\end{array}}
|
||
\def\bd{\begin{description}}\def\ed{\end{description}}
|
||
\def\bv{\begin{verbatim}}\def\ev{\end{verbatim}}
|
||
\def\nn{\nonumber}
|
||
\def\Halmos{\hfill\vrule height10pt width4pt depth2pt \par\hbox to \hsize{}}
|
||
\def\pref#1{(\ref{#1})}
|
||
\def\Dim{{\bf Dim. -\ \ }} \def\Sol{{\bf Soluzione -\ \ }}
|
||
\def\virg{\quad,\quad}
|
||
\def\bsl{$\backslash$}
|
||
|
||
|
||
|
||
|
||
\driver=1 \bozza=0
|
||
|
||
\usepackage{amsmath}
|
||
\usepackage{amsfonts}
|
||
\usepackage{amssymb}
|
||
\usepackage{epstopdf}
|
||
|
||
|
||
\font\msytw=msbm9 scaled\magstep1 \font\msytww=msbm7
|
||
scaled\magstep1 \font\msytwww=msbm5 scaled\magstep1
|
||
\font\cs=cmcsc10
|
||
|
||
\let\a=\alpha \let\b=\beta \let\g=\gamma \let\d=\delta
|
||
\let\e=\varepsilon
|
||
\let\z=\zeta \let\h=\eta \let\th=\theta \let\k=\kappa \let\l=\lambda
|
||
\let\m=\mu \let\n=\nu \let\x=\xi \let\p=\pi \let\r=\rho
|
||
\let\s=\sigma \let\t=\tau \let\f=\varphi \let\ph=\varphi\let\c=\chi
|
||
\let\ps=\Psi \let\y=\upsilon \let\o=\omega\let\si=\varsigma
|
||
\let\G=\Gamma \let\D=\Delta \let\Th=\Theta\let\L=\Lambda \let\X=\Xi
|
||
\let\P=\Pi \let\Si=\Sigma \let\F=\Phi \let\Ps=\Psi
|
||
\let\O=\Omega \let\Y=\Upsilon
|
||
|
||
\def\PPP{{\cal P}}\def\EE{{\cal E}}\def\MM{{\cal M}} \def\VV{{\cal V}}
|
||
\def\FF{{\cal F}} \def\HHH{{\cal H}}\def\WW{{\cal W}}
|
||
\def\TT{{\cal T}}\def\NN{{\cal N}} \def\BBB{{\cal B}}\def\III{{\cal I}}
|
||
\def\RR{{\cal R}}\def\LL{{\cal L}} \def\JJ{{\cal J}} \def\OO{{\cal O}}
|
||
\def\DD{{\cal D}}\def\AAA{{\cal A}}\def\GG{{\cal G}} \def\SS{{\cal S}}
|
||
\def\KK{{\cal K}}\def\UU{{\cal U}} \def\QQ{{\cal Q}} \def\XXX{{\cal X}}
|
||
|
||
|
||
\def\qq{{\bf q}} \def\pp{{\bf p}}
|
||
\def\vv{{\bf v}} \def\xx{{\bf x}} \def\yy{{\bf y}} \def\zz{{\bf z}}
|
||
\def\aa{{\bf a}}\def\hh{{\bf h}}\def\kk{{\bf k}}
|
||
\def\mm{{\bf m}}\def\PP{{\bf P}}
|
||
|
||
\def\dd{{\boldsymbol{\delta}}}
|
||
|
||
\def\ddd{\boldsymbol{\d}}
|
||
\def\TTTT{\mathbf{T}}
|
||
|
||
\def\nn{\nonumber}
|
||
\def\us{\underset}
|
||
\def\os{\overset}
|
||
|
||
\def\RRR{\hbox{\msytw R}} \def\rrrr{\hbox{\msytww R}}
|
||
\def\rrr{\hbox{\msytwww R}}
|
||
\def\NNN{\hbox{\msytw N}} \def\nnnn{\hbox{\msytww N}}
|
||
\def\nnn{\hbox{\msytwww N}} \def\ZZZ{\hbox{\msytw Z}}
|
||
\def\zzzz{\hbox{\msytww Z}} \def\zzz{\hbox{\msytwww Z}}
|
||
\def\TTT{\hbox{\msytw T}}
|
||
|
||
|
||
|
||
\def\\{\hfill\break}
|
||
\def\={:=}
|
||
\let\io=\infty
|
||
\let\0=\noindent\def\pagina{{\vfill\eject}}
|
||
\def\media#1{{\langle#1\rangle}}
|
||
\let\dpr=\partial
|
||
\def\sign{{\rm sign}}
|
||
\def\const{{\rm const}}
|
||
\def\tende#1{\,\vtop{\ialign{##\crcr\rightarrowfill\crcr\noalign{\kern-1pt
|
||
\nointerlineskip} \hskip3.pt${\scriptstyle #1}$\hskip3.pt\crcr}}\,}
|
||
\def\otto{\,{\kern-1.truept\leftarrow\kern-5.truept\to\kern-1.truept}\,}
|
||
\def\defin{{\buildrel def\over=}}
|
||
\def\wt{\widetilde}
|
||
\def\wh{\widehat}
|
||
\def\to{\rightarrow}
|
||
\def\la{\left\langle}
|
||
\def\ra{\right\rangle}
|
||
\def\qed{\hfill\raise1pt\hbox{\vrule height5pt width5pt depth0pt}}
|
||
\def\Val{{\rm Val}}
|
||
\def\ul#1{{\underline#1}}
|
||
\def\lis{\overline}
|
||
\def\V#1{{\bf#1}}
|
||
\def\be{\begin{equation}}
|
||
\def\ee{\end{equation}}
|
||
\def\bp{\begin{pmatrix}}
|
||
\def\ep{\end{pmatrix}}
|
||
\def\bea{\begin{eqnarray}}
|
||
\def\eea{\end{eqnarray}}
|
||
\def\nn{\nonumber}
|
||
\def\pref#1{(\ref{#1})}
|
||
\def\ie{{\it i.e.}}
|
||
\def\lb{\label}
|
||
\def\eg{{\it e.g.}}
|
||
|
||
\def\Tr{\mathrm{Tr}}
|
||
\def\eu{\mathrm{e}}
|
||
|
||
|
||
|
||
\newtheorem{lemma}{Lemma}[section]
|
||
\newtheorem{remark}{Remark}[section]
|
||
\newtheorem{theorem}{Theorem}[section]
|
||
\newtheorem{cor}{Corollary}[section]
|
||
\newtheorem{oss}{Remark}
|
||
|
||
\begin{document}
|
||
|
||
\title{Incommensurate Twisted Bilayer Graphene: emerging quasi-periodicity and stability}
|
||
|
||
\author{Ian Jauslin}
|
||
\affiliation{Rutgers University, Department of Mathematics, New Brunswick, USA}
|
||
\email{ian.jauslin@rutgers.edu}
|
||
|
||
\author{Vieri Mastropietro}
|
||
\affiliation{Università di Roma ``La Sapienza'', Department of Physics, Rome, Italy }
|
||
\email{vieri.mastropietro@uniroma1.it}
|
||
|
||
\begin{abstract} We consider a lattice model of Twisted Bilayer Graphene (TBG). The presence of incommensurate angles produces
|
||
an emerging quasi-periodicity manifesting itself in large momenta Umklapp interactions that almost connect
|
||
the Dirac points. We rigorously establish the stability of the semimetallic phase
|
||
via a Renormalization Group analysis combined with number theoretical properties of irrationals, similar to the ones used in Kolmogorov-Arnold-Moser (KAM) theory
|
||
for the stability of invariant tori.
|
||
The interlayer hopping is weak and short ranged and the angles are chosen in a large measure set. The result provides a justification, in the above regime,
|
||
to the effective continuum description of TBG in which large momenta interlayer interactions are neglected.
|
||
\end{abstract}
|
||
\maketitle
|
||
|
||
|
||
\section{Introduction}
|
||
|
||
The discovery that at certain angles Twisted Bilayer Graphene (TBG) develops superconductivity \cite{a}
|
||
has generated much interest in such materials both for technological and theoretical reasons \cite{b}. It was predicted, using continuum models obtained by keeping only the dominant harmonics in the lattice model
|
||
\cite{1}, \cite{2},\cite{3},
|
||
that at such angles some strongly correlated behaviour should appear, but not of superconducting type. The mechanism behind the superconductivity remains elusive.
|
||
|
||
Taking the lattice into account breaks several symmetries of the continuum description
|
||
\cite{1aa1}, \cite{1aa2} leading to effects like the possible shift of Fermi points.
|
||
More interestingly,
|
||
for generic angles, excluding a special set
|
||
\cite{1bb}, \cite{1aaa}, one has an incommensurate structure;
|
||
in such a case Bloch band theory does not apply and one has
|
||
an emergent quasi-periodicity \cite{H1}-\cite{H5}, with some feature in common with the one in fermions with quasi-periodic potentials
|
||
\cite{P0}-\cite{P2}.
|
||
It is known that electronic quasi-periodic systems have remarkable properties. In 1d they produce a
|
||
metal-insulator transition \cite{Au},\cite{DS},\cite{FS}. The interplay with a many body interaction
|
||
produces peculiar phases with anomalous gaps or many body localization
|
||
\cite{Q0}--\cite{M11}. Quasi-periodicity has been studied also in Weyl semimetals
|
||
\cite{P4}, \cite{W0},\cite{W1} or in the 2d Ising model \cite{Lu},
|
||
\cite{Ca}, \cite{Ga}.
|
||
It is therefore natural to expect that quasi-periodicity plays an important role in the interacting phases of TBG.
|
||
Most theoretical analyis are however based on continuum effective description,
|
||
do not distinguish between commensurate and incommensurate angles, and are
|
||
based on the assumption that lattice effects
|
||
preserve the semimetallic phase \cite{1}, \cite{2}, \cite{3}.
|
||
|
||
|
||
We consider
|
||
a lattice model for TBG
|
||
consisting of two graphene layers
|
||
one on top of the other and rotated by an angle $\th$. The momenta involved in the two-particle scattering process are of the form
|
||
$
|
||
k_1-k_2+G+G'=0$ with $G=l_1b_1+l_2b_2\equiv lb$, $G'=m_1b'_1+m_2b_2'\equiv mb'$,
|
||
$l\equiv(l_1,l_2)\in\ZZZ^2$, $m\equiv(m_1,m_2)\in \ZZZ^2$, and $b_1,b_2$ are the vectors of the reciprocal lattice and $b'_i=R^T(\th) b_i$ the reciprocal lattice of the twisted layer
|
||
in which $R(\th)$ is the rotation matrix; the terms involving non zero $G,G'$ are also known as Umklapp interactions.
|
||
Note that, apart from special angles, $G'$ is not commensurate with $G$ and the effect of the mismatch of the lattices
|
||
is very similar to the effect of a quasi-periodic potential. This is quite clear comparing for instance with the conservation law of 1d fermions
|
||
with Aubry-Andr\'e potential $\cos 2\pi \o x$, which is
|
||
$k_1-k_1+2l\pi+2\pi \o m=0$ with $\o$ irrational.
|
||
|
||
It is expected that the relevant processes in TBG are the ones connecting the Dirac points as closely as possible, that is
|
||
the terms that minimize the quantity
|
||
$| G+G'+ p_{F,i}-p'_{F,j}|$ where $p_{F,i}$ $p'_{F,j}$ are the Dirac points
|
||
of the two layers.
|
||
The approximation at the basis of the effective models \cite{1}, \cite{2},\cite{3}
|
||
consists in taking restricting the interaction to only the terms
|
||
$G=G'=0$ or $G=b_1, G'=-b'_1$ or $G=b_2, G'=-b'_2$ and taking the continuum limit, based on the fact that larger
|
||
values of $G$ or $G'$ are exponentially depressed \cite{111}.
|
||
However in the incommensurate case, Umklapp terms with
|
||
very large values of $G,G'$ make $| G+G'+ p_{F,i}-p'_{F,j}|$ arbitrarely small, producing almost relevant processes
|
||
which can destroy the semimetallic behaviour.
|
||
In the 1d Aubry-Andr\'e model the processes that produce small values for
|
||
$2 \e p_F+2l\pi+2\pi \o m$, $\e=0,\pm 1$ are indeed the ones producing the insulating behaviour at large coupling, while
|
||
at weak coupling the metallic regime persists. Similarly
|
||
the persistence or not of the semimetallic regime in TBG depends on the relevance or irrelevance of the terms involving large $G, G'$ that
|
||
almost connect the Dirac points. This fact cannot be understood only on the basis of perturbative arguments; it is indeed a non perturbative phenomenon which can be established only by the convergence or divergence of the whole series expansion.
|
||
Despite the similarity of quasi-periodic potentials and incommensurate TBG, there are crucial differences like the higher dimensionality of TBG and the
|
||
fact that the frequencies are not independent parameters but are functions of a single parameter, the angle
|
||
between the layers, and this produces rather different small divisors.
|
||
|
||
The aim of this paper is to investigate when the quasi-metallic phase is stable against the large momentum processes
|
||
in the incommensurate case. The analysis is based on
|
||
Renormalization Group
|
||
methods combined with number theoretical properties of irrationals, similar to the ones used in Kolmogorov-Arnold-Moser (KAM) theory
|
||
for the stability of invariant tori.
|
||
Due to the difficulty of getting information on the single particle spectrum, we analyze the
|
||
behavior of the Euclidean correlations, which provide information on the spectrum close to the Fermi points.
|
||
Such methods are robust enough to be extended to many-body systems, as it was done for the interacting Aubry-Andr\'e model \cite{M11}
|
||
or in Weyl semimetals \cite{W1}. Our main result is the proof of the stability
|
||
of the semimetallic phase in a large measure set of angles in the incommensurate case.
|
||
|
||
The paper is organized in the following way. In Section \ref{sec:model} the lattice model of TBG
|
||
is presented. In Section \ref{sec:feynman} a perturbative expansion for the correlations is derived.
|
||
In Section \ref{sec:feynman1} the emerging quasi-periodicity and the small divisor problem is described, together with the required (number theoretical) Diophantine conditions. Section \ref{sec:result} contains a statement of the main result and in Section \ref{sec:renormalized} the
|
||
Renormalization Group derivation is presented. The Appendices detail the more technical aspects of the analysis.
|
||
|
||
\section{Incommensurate TBG}\label{sec:model}
|
||
We consider the lattice TBG model introduced in \cite{1}, \cite{2}.
|
||
We focus on this model for the sake of definiteness but our methods could be applied more generally.
|
||
We consider two graphene layers rotated with respect to one another by an angle $\theta$ around a point $\xi=(0,1/2)$ (that is, the point between an a and b atom, chosen so that the twisted model preserves the $C_2T$ symmetry in Appendix \ref{sec:symmetry}).
|
||
The Hamiltonian of the system will be written as
|
||
\begin{equation}
|
||
H=H_1+H_2+V
|
||
\end{equation}
|
||
where $H_1$ and $H_2$ are hopping Hamiltonians within the layers 1 and 2 respectively and $V$ is an interlayer hopping term.
|
||
The first graphene layer is defined on the
|
||
lattice $\mathcal L_1:=\{n_1 A_1+n_2 A_2,\ n_1,n_2\in\mathbb Z\}$
|
||
with $A_1={1\over 2}(3,\sqrt{3})
|
||
,\quad
|
||
A_2={1\over 2}(3,-\sqrt{3})$.
|
||
We introduce the nearest-neighbor vectors: $\d_1=(1,0)$, $\d_2={1\over 2}(-1, \sqrt{3})$, $\d_2={1\over 2}(-1, -\sqrt{3})$.
|
||
We will write the Hamiltonian in second quantized form: for $x\in \mathcal L_1$, we introduce {\it annihilation operators} $c_{1,x,a}$ and $c_{1,x,b}$ corresponding respectively to annihilating a fermion located at $x$ and $x+\d_1$.
|
||
The nearest neighbor hopping Hamiltonian is
|
||
\be H_1= -t\sum_{x\in \mathcal L_1}\sum_{i=0}^2 (c_{1,x,a}^\dagger c_{1,x+A_i,b}+ c_{1,x+A_i,b}^\dagger c_{1,x,a})\ee
|
||
where $A_0:=0$ (note that $\d_1-\d_2=A_2, \d_2-\d_3=A_3$).
|
||
We will do much of the computation in Fourier space, and we here introduce the Fourier transform $\hat c_{1,k,\alpha}$ of $c_{1,x,\alpha}^\pm$ in such a way that, for $\alpha\in\{a,b\}$,
|
||
\begin{equation}
|
||
c_{1,x,\alpha}
|
||
=\frac1{|\hat{\mathcal L}_1|}\int_{\hat{\mathcal L}_1} dk\ e^{-ik(x-\xi)}\hat c_{1,k,\alpha}
|
||
\end{equation}
|
||
with $|\hat{\mathcal L}_1|=8 \pi^2/3 \sqrt{3}$, and
|
||
$
|
||
\hat{\mathcal L}_1:=\mathbb R^2/(b_1\mathbb Z+b_2\mathbb Z)$ in which
|
||
\begin{equation}
|
||
b_1= {\textstyle{2\pi\over 3}}(1,\sqrt{3})
|
||
,\quad
|
||
b_2= {\textstyle{2\pi\over 3}}(1,-\sqrt{3})
|
||
.
|
||
\label{bi}
|
||
\end{equation}
|
||
In Fourier space,
|
||
\begin{equation}
|
||
H_1=
|
||
\frac t{|\hat{\mathcal L}_1|}\int_{\hat{\mathcal L}_1}dk\ \left(\Omega(k)\hat c_{1,k,a}^\dagger\hat c_{1,k,b}+\Omega^*(k)\hat c_{1,k,b}^\dagger\hat c_{1,k,a}\right)
|
||
\label{H1k}
|
||
\end{equation}
|
||
with $\Omega(k_x,k_y):=1+2e^{-i\frac32k_x}\cos({\textstyle\frac{\sqrt 3}2k_y})$.
|
||
|
||
|
||
The second graphene layer is rotated by an angle $\theta$ around the point $\xi=(0,1/2)$, that is, it is defined on the lattice
|
||
\be \mathcal L_2=\xi+R(\theta)(\mathcal L_1-\xi),\quad R(\th)=\begin{pmatrix} c_\th &-s_\th \\s_\th & c_\th \end {pmatrix}\ee
|
||
(we use the shorthand throughout this paper that $c_\th\equiv\cos\th, s_\th\equiv\sin \th$).
|
||
The annihilation operators in the second layer are denoted by $c_{2,x,a}$ and $c_{2,x,b}$.
|
||
The hopping Hamiltonian of this second layer is
|
||
\begin{equation}
|
||
H_2= -t\sum_{x\in \mathcal L_2}\sum_{i=0}^2 (c_{2,x,a}^\dagger c_{2,x+RA_i,b}+ c_{2,x+R A_i,b}^\dagger c_{2,x,a})
|
||
\end{equation}
|
||
where $R\equiv R(\theta)$.
|
||
We define the Fourier transform in the second layer: if
|
||
$b'_1:=R b_1$, $b'_2:=R b_2$
|
||
and
|
||
\begin{equation}
|
||
c_{2,x,\alpha}
|
||
=\frac1{|\hat{\mathcal L}_1|}\int_{\hat{\mathcal L}_2} dk\ e^{-ik(x-\xi)}\hat c_{2,k,\alpha}
|
||
\end{equation}
|
||
we find
|
||
\begin{equation}
|
||
\begin{array}{r@{\ }>\displaystyle l}
|
||
H_2=&
|
||
\frac t{|\hat{\mathcal L}_1|}\int_{\hat{\mathcal L}_2}d k\
|
||
\cdot\\&\cdot\left(\Omega(R^T k)\hat c_{2,k,a}^\dagger\hat c_{2,k,b}+\Omega^*(R^Tk)\hat c_{2,k,b}^\dagger\hat c_{2,k,a}\right)
|
||
.
|
||
\label{H2k}
|
||
\end{array}
|
||
\end{equation}
|
||
|
||
In the absence of interlayer coupling the two graphene layers are decoupled;
|
||
the single particle spectrum for layer 1 is $\pm |\Omega(k)|$
|
||
and the Fermi points
|
||
are given by the relation
|
||
$\O(p_{F,1}^\pm)=0$ with
|
||
\begin{equation}
|
||
p_{F,1}^\pm={2\pi\over 3}(1,\pm {\textstyle{1\over \sqrt{3}}})
|
||
\label{pF}
|
||
\end{equation}
|
||
for momenta close to such points one has
|
||
$|\Omega(k)| \sim {3\over 2} t |k-p_{F,1}^\pm|$, that is the dispersion relation is
|
||
almost linear (relativistic) up to quadratic corrections, forming approximate {\it Dirac cones}. In the same way the
|
||
dispersion relation for layer 2 is $\pm |\Omega(R^T k)|$;
|
||
the Fermi points are $\O(R^T p_{F,2}^\pm)=0$ with
|
||
$p_{F,2}^\pm=R(p_{F,1}^\pm)$
|
||
and $|\Omega(R^T k)| \sim {3\over 2} t |k-p_{F,2}^\pm|$. We are interested in understanding how these four Dirac cones are modified in the presence of the interlayer hopping.
|
||
|
||
|
||
We couple the 2 layers by an interlayer hopping Hamiltonian, which couples atoms of type a to atoms of type b:
|
||
\begin{equation}
|
||
\begin{array}{>\displaystyle l}
|
||
V=
|
||
\l \sum_{x_1\in \mathcal L_1} \sum_{x'_2\in\mathcal L_2}\sum_{\alpha\in\{a,b\}} \varsigma(x_1+d_\alpha-x'_2-Rd_{\alpha})
|
||
\cdot\\
|
||
\hfill\cdot(c^\dagger_{1,x_1,\alpha}c_{2,x'_2,\alpha}+c_{2,x_2',\alpha}^\dagger c_{1,x_1,\alpha})
|
||
\end{array}\end{equation}
|
||
$d_a=(0,0), d_b=\d_1$, and $\varsigma(x)=\varsigma(-x)$,
|
||
\be
|
||
\varsigma(x_1-x_2)=\int_{\mathbb R^2}\frac{dq}{4\pi^2}\ e^{i q(x_1-x_2)} \hat \varsigma(q)
|
||
,\quad
|
||
|\hat\varsigma(q)|\le e^{-\k |q|}
|
||
.
|
||
\label{interlayer}
|
||
\ee
|
||
We restrict the interlayer term to hoppings between atoms of type a to atoms of type a and type b to b for technical reasons.
|
||
This is so that the ``Inversion'' symmetry in Appendix \ref{sec:symmetry} is satisfied.
|
||
We could just as easily consider a model where the interlayer hopping occurs only between atoms of type a to atoms of type b.
|
||
We could relax this restriction and allow for all possible hoppings, but we would then need to add extra counterterms (see (\ref{counterterms})) to the model.
|
||
For the sake of simplicity, we avoid this and only consider these interlayer hoppings.
|
||
|
||
|
||
Note that, whereas the Fourier transform for $c$ is defined on $\hat{\mathcal L}_i$, the Fourier transform of $\varsigma$ is defined on all $\mathbb R^2$.
|
||
We write $V$ in Fourier space: we get, see App. \ref{app:fourierV}
|
||
\bea
|
||
&&V=
|
||
\frac \l{4\pi^2|\hat{\mathcal L}_1|}\sum_{\alpha}\left(\sum_{l\in\mathbb Z^2}\int_{\hat{\mathcal L}_1}d k \
|
||
\tau^{(1)}_{l,\alpha}(k+l b)
|
||
\hat c^\dagger_{1,k,\alpha}\hat c_{2,k+l b,\alpha}
|
||
\right.\nn\\
|
||
&&\left.+\sum_{m\in\mathbb Z^2}\int_{\hat{\mathcal L}_2}d k\
|
||
\tau_{m,\alpha}^{(2)}(k+m b')
|
||
\hat c^\dagger_{2,k,\alpha}\hat c_{1,k+m b',\alpha}\right)
|
||
\nn\label{11}
|
||
\eea
|
||
where we use the notation $lb\equiv l_1b_1+l_2b_2$, $mb'\equiv m_1b_1'+m_2b_2'$, and
|
||
\begin{equation}
|
||
\tau^{(1)}_{l,\alpha}(k)
|
||
:=e^{i \xi lb}e^{-ik(d_\alpha-Rd_{\alpha})}
|
||
e^{-i\xi \sigma_{k,1}b'}\hat\varsigma^*(k)
|
||
\label{tau1}
|
||
\end{equation}
|
||
\begin{equation}
|
||
\tau^{(2)}_{m,\alpha}(k):=e^{i\xi mb'}e^{-ik(d_\alpha-Rd_{\alpha})}e^{-i\xi \sigma_{k,2}b}\hat\varsigma(k)
|
||
\label{tau2}
|
||
\end{equation}
|
||
in which $\sigma_{k,i}\in \mathbb Z^2$ is the unique integer vector such that
|
||
$
|
||
k-\sigma_{k,1}b'\in\hat{\mathcal L}_2
|
||
,\
|
||
k-\sigma_{k,2}b\in\hat{\mathcal L}_1
|
||
$. Note that the difference of the momenta of the two fermions is given by $l b+m b'$.
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
The position of the Dirac points are in general modified (renormalized)
|
||
by the interlayer hopping.
|
||
It is conventient to fix the values of the renormalized
|
||
Dirac points by properly choosing the bare ones. This can be achieved by replacing
|
||
$\O(k)$
|
||
with $\O(k)+\nu_{i,\o}$ close to each Dirac points, that is adding
|
||
a counterterm has the form
|
||
\begin{eqnarray}
|
||
&&M=
|
||
\sum_{\omega\in\{+,-\}}\sum_{i=1,2}\int_{\hat{\mathcal L}_i} dk\ \chi_{\omega,i}(k)( \nu_{i,\omega} \hat c_{i,k,a}^\dagger\hat c_{i,k,b}\nn\\
|
||
&&+ \nu^*_{i,\omega} \hat c_{i,k,b}^\dagger\hat c_{i,k,a})
|
||
\label{counterterms}
|
||
\end{eqnarray}
|
||
where $\chi_{\o,i}(k)$ is a smooth compactly supported function that is
|
||
non vanishing for $||k-p_{F,i}^\o||_i\le 1/\gamma$, for some $\gamma>1$, in which $||.||_i$ is the norm on the torus $\hat{\mathcal L}_i$.
|
||
|
||
|
||
Our main result concerns the two-point Schwinger function, which we define as follows.
|
||
We first introduce a Euclidean time component: given an inverse temperature $\beta>0$, we define for $x_0\in[0,\beta)$,
|
||
\begin{equation}
|
||
c_{j,x,\alpha}(x_0):=e^{-x_0\bar H}c_{j,x,\alpha}e^{x_0\bar H}
|
||
.
|
||
\end{equation}
|
||
and $\bar H=H+M$. Combining the Euclidean time component with the spatial one, we define $\Lambda_i:=[0,\infty)\times \mathcal L_i$.
|
||
The corresponding Fourier-space operators are
|
||
\begin{equation}
|
||
\hat
|
||
c_{j,k,\alpha}(k_0)=
|
||
\int_0^\beta dx_0 e^{-ix_0k_0}\sum_{x\in \mathcal L_j}e^{-i(x-\xi)k}c_{j,x,\alpha}(x_0)
|
||
\end{equation}
|
||
which is defined for $(k_0,k)\in\hat \Lambda_j:=\frac{2\pi}\beta \mathbb Z\times \hat{\mathcal L}_j$.
|
||
|
||
Now, given $j,j'\in\{1,2\}$, $\mathbf k=(k_0,k)\in \Lambda_j$, the two-point Schwinger function is defined as the $2\times2$ matrix $S_{j,j'}(\mathbf k)$ whose components are indexed by $\alpha,\alpha'\in\{a,b\}$:
|
||
\begin{equation}\label{xx}
|
||
(\hat S_{j,j'}(\mathbf k))_{\alpha,\alpha'}:=
|
||
\frac{\mathrm{Tr}(e^{-\beta \bar H}T(\hat c_{j,k,\alpha}(k_0),\hat c_{j',k,\alpha'}^\dagger(k_0)))}{\mathrm{Tr}(e^{-\beta\bar H})}
|
||
\end{equation}
|
||
where $T$ is the time ordering operator, which is bilinear, and is defined in real-space $
|
||
T(c_{j,x,\alpha}(x_0),c_{j',y,\alpha'}^\dagger(y_0))=$
|
||
\begin{equation}
|
||
\left\{\begin{array}{>\displaystyle ll}
|
||
c_{j,x,\alpha}(x_0)c_{j',y,\alpha'}^\dagger(y_0)&\mathrm{if\ }x_0<y_0\\
|
||
-c_{j',y,\alpha'}^\dagger(y_0)c_{j,x,\alpha}(x_0)&\mathrm{if\ }x_0\geqslant y_0
|
||
.
|
||
\end{array}\right.
|
||
\end{equation}
|
||
|
||
|
||
To compute the Schwinger functions, we will use the Grassmann integral formalism.
|
||
To do so, we add an imaginary time component to all position vectors: we define $\mathbf A_i:=(0,A_i)$.
|
||
Given $\mathbf x=(x_0,x)\in \Lambda_j\equiv [0,\beta)\times \mathcal L_j$, we introduce Grassmann variables
|
||
$\psi^\pm_{\mathbf x,a,j}, \psi^\pm_{\mathbf x,b,j}$ and their Fourier transforms
|
||
\begin{equation}
|
||
\psi_{j,\mathbf x,\alpha}^\pm
|
||
=\frac1{|\hat\Lambda_j|}\int_{\hat\Lambda_j} d\mathbf k\ e^{\pm i\mathbf k(\mathbf x-\bm\xi)}\hat\psi_{j,\mathbf k,\alpha}^\pm
|
||
\end{equation}
|
||
with $|\hat\Lambda_j|=8 \pi^2/3 \sqrt{3}$,
|
||
$\bm\xi=(0,\xi)$ and $\hat\Lambda_j=\frac{2\pi}\beta\mathbb Z\times \hat{\mathcal L}_j$. The Schwinger fiunctions are given by
|
||
\begin{equation}
|
||
(S_{j,j'}(\xx,\yy))_{\alpha,\alpha'}:={\int P(d\psi)\ e^{-\b (V(\psi)+M(\psi))} \psi^-_{j,\xx,\alpha} \psi^+_{j',\yy\,\alpha'}\over
|
||
\int P(d\psi)\ e^{-\b (V(\psi)+M(\psi))}}
|
||
\end{equation}
|
||
where $P(d\psi)=P(d\psi_1)P(d\psi_2)$ where $P(d\psi_1)$ is the Grassmann integration with propagator
|
||
\begin{equation}
|
||
\hat g_1(\kk)=\begin{pmatrix} -i k_0 &\O(k) \\
|
||
\O^*(k) & -i k_0\end{pmatrix}^{-1}
|
||
.
|
||
\end{equation}
|
||
and $g_1(\xx,\yy)=\frac t{|\hat{\mathcal L}_1|}\int_{\hat\Lambda_1}d\mathbf k e^{i\kk(\xx-\yy)} \hat g_1(\kk)$
|
||
and
|
||
\begin{equation}
|
||
\hat g_1(\kk+p_F^\pm)\sim \begin{pmatrix} -i k_0 & -v_F(-ik_1\pm k_2) \\
|
||
-v_F (i k_1\pm k_2) & -i k_0\end{pmatrix}^{-1}
|
||
.
|
||
\end{equation}
|
||
$P(d\psi_2)$ has propagator
|
||
\begin{equation}
|
||
g_2(\xx,\yy)={1\over |\hat{\mathcal L}_1|}\int_{\hat\Lambda_2}d\kk e^{i\kk(\xx-\yy)} \hat g_2(\kk)
|
||
\end{equation}
|
||
with $
|
||
\hat g_2(\kk)=\begin{pmatrix} -i k_0 &\O(R^T k) \\
|
||
\O^*(R^T k) & -i k_0\end{pmatrix}^{-1}
|
||
\equiv
|
||
\hat g_1(R^T \mathbf k)$
|
||
which is singular at $p_{F,2}^\pm:=R p_{F,1}^\pm$ and periodic in $k$ with period $b'_1, b'_2$.
|
||
The interaction and counterterm are rewritten formally in terms of Grassmann variables:
|
||
\bea\label{112}
|
||
V(\psi)=&&
|
||
\frac \l{4\pi^2|\hat\Lambda_1|}\sum_{\alpha}\\
|
||
&&\cdot
|
||
\left(\sum_{l\in\mathbb Z^2}\int_{\hat\L_1}d \mathbf k \
|
||
\tau^{(1)}_{l,\alpha}(k+l b)
|
||
\hat\psi^+_{1,\mathbf k,\alpha}\hat\psi^-_{2,\mathbf k+l \mathbf b,\alpha}
|
||
\right.\nn\\
|
||
&&\left.+\sum_{m\in\mathbb Z^2}\int_{\hat\L_2}d\mathbf k\
|
||
\tau_{m,\alpha}^{(2)}(k+m b')
|
||
\hat\psi^+_{2,\mathbf k,\alpha}\hat\psi^-_{1,\mathbf k+m \mathbf b',\alpha}\right)
|
||
\nn
|
||
\eea
|
||
|
||
\be
|
||
M(\psi)=\sum_{\o,\i}
|
||
\int d\kk\ \chi_{\o,i}(k)
|
||
(\n_{i,\o}\psi^+_{i,\kk,\a}\psi^-_{i,\kk,\b}+\n^*_{i,\o}\psi^+_{i,\kk,\b}\psi^-_{i,\kk,\a})
|
||
\ee
|
||
|
||
|
||
|
||
|
||
\section{Perturbative expansion and small divisors}
|
||
\label{sec:feynman}
|
||
|
||
|
||
To compute the Schwinger functions $S(\mathbf k)$, we will use Feynman graph expansions. We give the rule setting $\n=0$ for definiteness.
|
||
The graphs for this model are chain graphs of the form depicted in Figure \ref{fig:feynman}
|
||
|
||
\begin{figure}
|
||
\hfil\includegraphics[width=8cm]{feynman.pdf}
|
||
\caption{\label{fig:feynman} Example of a Feynman diagram for $S_{1,1}(\mathbf k)$ with 4 vertices.}
|
||
\end{figure}
|
||
|
||
|
||
Each line $s$ is associated a layer label $i_s\in\{1,2\}$ and two valley indices $\alpha_s,\alpha'_s\in\{a,b\}$.
|
||
Each vertex has one entering line $s_1$ and an exiting line $s_2$, and we impose that these lines have different indices: $i_{s_1}=3-i_{s_2}$, and the same valley indices $\alpha_{s_1}=\alpha_{s_2}$.
|
||
To each vertex $r$ that has an entering line $s_1$ and exiting line $s_2$, we associate an index, which if $i_{s_1}=1$ we denote by $l_s\in \mathbb Z^2$, and if $i_{s_2}=2$ we denote by $m_s\in \mathbb Z^2$.
|
||
\begin{itemize}
|
||
\item
|
||
Each internal line $s$ with layer label $1$ coming from a vertex with index $m_s$ corresponds to the propagator $g_{1;\alpha_s,\alpha'_s}(\mathbf k+m_rb')$ (where $\mathbf k$ is the momentum at which $S$ is being evaluated).
|
||
Each internal line $s$ with layer label $2$ coming from a vertex with index $l_s$ corresponds to the propagator $g_{2;\alpha_s,\alpha'_s}(\mathbf k+l_rb)$.
|
||
\item
|
||
Each external line $s$ corresponds to the propagator $g_{i_s:\alpha_s,\alpha'_s}(\mathbf k)$.
|
||
\item
|
||
Each vertex $r$ that has an entering line $s_1$ and exiting line $s_2$ with
|
||
$i_{s_1}=1$ and $i_{s_2}=2$, if $s_1$ comes from a vertex with index $m_{r-1}$, the vertex $r$ corresponds to an interaction term $\lambda\tau_{l_r,\alpha_{s_2},\alpha'_{s_1}}^{(1)}(\mathbf k+m_{r-1}b'+l_rb)$.
|
||
\item
|
||
Each vertex $r$ that has an entering line $s_1$ and exiting line $s_2$ with
|
||
$i_{s_1}=2$ and $i_{s_2}=1$, if $s_2$ comes from a vertex with index $l_{r-1}$, the vertex $r$ corresponds to an interaction term $\lambda\tau_{m_r,\alpha_{s_2},\alpha'_{s_1}}^{(2)}(\mathbf k+l_{r-1}b+m_rb')$.
|
||
\end{itemize}
|
||
The value of a graph is obtained by taking the product over the lines of the corresponding propagators, and multiplying them by the product over the vertices of the interaction terms.
|
||
The Schwinger function is then obtained by taking a sum over all possible graphs with the correct external labels.
|
||
A more explicit expression for the Schwinger function is given in Appendix \ref{app:explicit_feynman}.
|
||
|
||
|
||
The persistence or not of the semimetallic behaviour depends on the convergence of the expansion.
|
||
One of the more important and difficult reasons for which convergence could, in principle, not occur, is that small divisors could accumulate, as we will now explain.
|
||
Note that if $\kk_1$ and $\kk_2$ are 2 neighboring terms their difference is given by $k_1-k_2+m b'+l b$;
|
||
moreover the propagator are singular at the Dirac points $p_F^{\o, i}$.
|
||
Consider therefore $g_1(\kk) \t^{(1)}_l (k+l b) g_2(\kk+l b)$
|
||
and suppose that $k$ is in the first Brillouin zone and is close to
|
||
$p_{F,1}^\o$, that is $k=p_{F,1}^\o+r_1$ with $r_1=O(\e)$ and $\e$ is a small parameter
|
||
(so that the propagator is $O(\e^{-1})$);
|
||
suppose now that $k+l b+mb'$ is also in the first Brillouin zone (by periodicity we can always add $m b'$ to achieve this)
|
||
and close to $p_{F,2}^{\o'}$, that is $k+l b+m b'=p_{F,2}^\o+r_2$ with $r_2=O(\e)$.
|
||
In principle this would produce an $O(\e^{-2} )$ contribution, that is an accumulation of small divisors which
|
||
could produce large contributions which can destroy convergence.
|
||
Note however that
|
||
\be
|
||
O(\e)=|r_1|+|r_2|\ge |r_1-r_2|=|l b+m b'-p_{F,2}^{\o'}-p_{F,1}^{\o}|\label{d1}
|
||
\ee
|
||
so that this accumulation of small divisors is possible only when the quantity in the r.h.s. is small.
|
||
The effect of such terms is rather delicate to be understoord.
|
||
Indeed
|
||
similar terms in the case of random potential produce a localization phase in 1d,
|
||
while an extended phase in hgher dimension, while a quasi periodic disorder in 1d produces an extended phase.
|
||
|
||
\section{Diophantine condtions}
|
||
\label{sec:feynman1}
|
||
As we noted above, the accumulation of small divisors can only occur when
|
||
$|l b+m b'+p_{F,i}^{\o}-p_{F,j}^{\o'}|$ is small.
|
||
For generic values of $\theta$ (for which $s_\theta$ or $c_\theta$ is irrational), this happens when $l,m$ are large enough, and the basic issue for stability is if small divisors are balanced by the fact that the interlayer hopping is weak for large values of $l,m$.
|
||
We therefore need to quantify the relation between the size of $lb+mb'+p_{F,i}^\omega-p_{F,j}^{\omega'}$ and that of $l,m$, which we do using number theoretical considerations.
|
||
One such consideration is the so called
|
||
{\it Diophantine} condition, which consists in restricting ourselves to values of $\theta$ for which, for any $\o, \o', i, j$
|
||
\be|p_{F,i}^\o-p_{F,j}^{\o'}+l b+m b'|\ge {C_0\over |y|^\t}\label{cond}
|
||
.
|
||
\ee
|
||
where $y$ is either $y=l$ or $y=m$ and $y\neq0$,
|
||
If this is satisfied, then when $|p_{F,i}^\o-p_{F,j}^{\o'}+l b+m b'|=O(\epsilon)$, then
|
||
\be
|
||
O(\e)\ge C_0 |l|^{-\t}.\ee
|
||
Therefore $|l|\ge \e^{-1/\t}$, and, due to the exponential decay of $\hat \varsigma$ in $\tau^{(1)}$ (see (\ref{interlayer})), so $|\t^{(1)}_l(k+l b)|\le e^{-\kappa\e^{-1/\t}}$ which compensates the small divisors $\e^{-2}$. This simple argument says that small divisors due to adjacent propagators do not accumulate.
|
||
Of course this
|
||
argument is not sufficient to prove the convergence of the series, and then the persistence of cones;
|
||
it says only that two adjacent propagators cannot be simultaneously small but it says nothing about non adjacent ones, which is the generic case.
|
||
This requires a Renormalization Group analysis, as we will discuss below.
|
||
|
||
A basic preliminary question is whether there are $\th$'s such that \pref{cond} holds. Such condition is usually assumed
|
||
in KAM theory or in the case of fermions with quasi periodic potentials; in such cases the frequencies are independent so that the fact that there is a large measure set of them verifying \pref{cond} follows from standard notions of number theory.
|
||
In the present case however the issue is much more subtle as
|
||
all the frequencies depend on a single parameters $\th$. Nevertheless, we prove the following lemma.
|
||
\begin{lemma}\label{lemm:dioph}
|
||
For every interval $[\th_0,\th_1]\subset[0,2\pi)$, the set $\DD:=\{\th\in [\th_0,\th_1]$ satisfying \pref{cond}$\}$
|
||
has measure $1-O(C_0/(\th_1-\th_0)^2)$, so that choosing $C_0$ small enough with respect to $\th_1-\th_0$, $\mathcal D$
|
||
has large relative measure.
|
||
\end{lemma}
|
||
|
||
We will provide a full proof of this lemma in Appendix \ref{sec:dioph}.
|
||
For the moment, let us discuss the main idea of this proof.
|
||
In order to keep things simple, we will focus on the case $i=j$ and $\omega=\omega'$ here.
|
||
Let
|
||
$
|
||
M:=
|
||
lb+mb'$
|
||
and we wish to obtain a lower bound on $|M|$.
|
||
To do so, we use a simple inequality: $\forall x,y\in \mathbb R$,
|
||
\begin{equation}
|
||
\sqrt{x^2+y^2}\ge
|
||
\frac{\sqrt3}2x-\omega\frac12y
|
||
\end{equation}
|
||
and so, since
|
||
\begin{equation}
|
||
\begin{array}{rl}
|
||
M=
|
||
\frac{2\pi}3
|
||
(&l_1 +l_2 +m_1 \varphi_1 +m_2 \varphi_2
|
||
,\\&
|
||
\sqrt{3}
|
||
(l_1 -l_2 +m_1 \varphi_3 -m_2 \varphi_4)
|
||
)
|
||
\end{array}
|
||
\label{M}
|
||
\end{equation}
|
||
with $\varphi_1=c_\theta-s_\theta \sqrt{3}$, $\varphi_2=c_\theta+s_\theta \sqrt{3}$, $\varphi_3=c_\theta+s_\theta/ \sqrt{3}$, $\varphi_4=c_\theta-s_\theta/ \sqrt{3}$,
|
||
we have
|
||
\begin{equation}
|
||
|M|\ge
|
||
\frac{2\pi}{\sqrt3}(l_\omega+m\cdot f_\omega)
|
||
\label{Mineq}
|
||
\end{equation}
|
||
with $l_+\equiv l_1$ and $l_-\equiv l_2$, and
|
||
\begin{equation}
|
||
f_\omega(\theta):=({\textstyle \frac{\varphi_1-\omega\varphi_3}2},\ {\textstyle \frac{\varphi_2+\omega\varphi_4}2})
|
||
.
|
||
\end{equation}
|
||
Thus, we wish to impose a condition on $\theta$ such that
|
||
$g_{l_\omega,m}(\theta):=| l_\omega
|
||
+m \cdot f_\omega(\theta)|\geqslant C_1|m|^{-\tau}$.
|
||
The measure of the complement of the
|
||
set where this is true is bounded by
|
||
\be
|
||
\sum_{m,l_\omega}^* \int_{-C_1|m|^{-\tau}}^{C_1|m|^{-\tau}} \frac1{g_{l_\omega,m}'}dg_{l_\omega,m}\ee
|
||
where $g'_{l_\omega,m}$ is the derivative of $g_{l_\omega,m}$, and $\sum^*_{k,l}$ has the constraint that $\exists \theta\in[\theta_0,\theta_1]$ such that $g_{l_\omega,m}(\theta)\in[-C_1|k|^{-\tau},C_1|k|^{-\tau}]$. Therefore we get the bound, taking into account the sum over $l_\omega$,
|
||
\be
|
||
\sum^*_{m} 2C_1 {|m|^{1-\tau}\over \min_{\theta} |m\cdot f_\omega'(\theta)|}\label{kxx}
|
||
\ee
|
||
Now, in order for this bound to be useful, we need a good bound on $m\cdot f_\omega'$.
|
||
Now $m\cdot f_\omega'(\theta)$ can be small, but only if $m$ is large enough.
|
||
This suggests we should control it using another Diophantine condition, but we would run into an infinite problem: we would need $m f_\omega''$ to be bounded below, for which we would impose an extra Diophantine condition, which would itself require a Diophantine condition on the third derivatives, et c\ae tera.
|
||
We can avoid this problem as follows.
|
||
If
|
||
$f_\omega'(0)=|f_\omega'(0)|(\cos\b,\sin\b)$ is non vanishing and $\th$ is small then
|
||
$(m\cdot f_\omega'/|f_\omega'|)\sim |m|\cos(\th_m)$
|
||
where $\th_m$ is the angle between $\b$ and $m$.
|
||
We can distinguish in the sum (\ref{kxx}) the sum over $m$
|
||
such that $|\th_m|, |\th_m-\pi| < \pi/4$ and the complementary set
|
||
$|\th_m-\pi/2|, |\th_m-3\pi/2| < \pi/4$.
|
||
In the first sum, $(m\cdot f_\omega'/|f_\omega'|)$ will be greater than $|m|$
|
||
up to some constant; we impose a Diophantine condition only for the second term:
|
||
for $|\th_m-\pi/2|, |\th_m-3\pi/2| < \pi/4$ we assume that $|l_\omega+m \cdot f_\omega'|\le C_1 |m|^{-\t}$.
|
||
Again we will end-up with a condition like (\ref{kxx})
|
||
involving
|
||
$m\cdot (f_\omega'/|f_\omega'|)'$ which in principle could be arbitrarily small.
|
||
However $(f'/|f'|)'$
|
||
is orthogonal to $f_\omega'/|f_\omega'|$ hence
|
||
$m\cdot (f_\omega'/|f_\omega'|)'\sim |m|\cos(\th_m+\pi/2)$
|
||
which, in this region, is greater than $|m|$.
|
||
|
||
Thus, we construct a large-measure set of $\theta$'s that satisfy $|l_\omega+m\cdot f_\omega(\theta)|\geqslant C_1|m|^{-\tau}$.
|
||
A detailed proof can be found in Appendix \ref{sec:dioph}.
|
||
|
||
|
||
\section{Stability of the semimetallic phase} \label{sec:result}
|
||
|
||
We are now ready to state our main result.
|
||
\vskip.2cm
|
||
{\bf Theorem}
|
||
{\it
|
||
For any interval $[\theta_0,\theta_1]\subset [0,2\pi)$, any $C_0>0$,
|
||
there exists a subset of $[\theta_0,\theta_1]$ whose measure is at least $1-O(C_0/(\theta_0-\theta_1)^2)$ such that \pref{cond}
|
||
holds,
|
||
and an $\e_0$ (depending on $C_0,\th_0,\th_1$), such that, for any $|\l|\le \e_0$, for a suitable choice of $\n_{i,\o}$
|
||
$
|
||
(\hat S_{j,j}(\mathbf k+\mathbf p_{F,j}^\o ))=$
|
||
\be
|
||
\begin{pmatrix}\label{43}
|
||
-i Z_{j,\o} k_0 & (i v_{j,\o} k_1- w_{j,\o} \o k_2 )\\
|
||
(-i v_{j,\o}^* k_1- w_{j,\o}^* \o k_2) & -i Z_{j,\o} k_0
|
||
\end{pmatrix}^{-1}(1+O(|k|^{\alpha}))
|
||
\ee
|
||
with $0\le \alpha\le 1$,
|
||
$Z=1+O(\l)$ real and
|
||
$v_{i,\omega}=3t/2+O(\l)$, $w_{i,\omega}=3t/2 +O(\l)$,
|
||
$\n_{j,\o}=O(\l)$.
|
||
}
|
||
|
||
\vskip.2cm
|
||
This result ensures that, even taking into account the
|
||
Umklapp
|
||
processes involving the exchange of very high momenta due to the emerging quasi-periodicity, the Weyl semimetallic phase persists
|
||
for small interalyer coupling and a large measure set of angles.
|
||
|
||
The interlayer coupling modifies
|
||
the position of the Dirac points;
|
||
we have properly chosen the bare Dirac points $p_{F,i}^\pm(\l)$ in absence of interlayer coupling given by $\O(p_{F,i}^\pm(\l))+\n_{i,\pm}=0$)
|
||
so that their renormalized physical value is $p_{F,i}^\pm$ given by (10).
|
||
This is essentially equivalent to say that the position of the Dirac points genericaly moves in a way depending on the angle, the layer and the coupling.
|
||
|
||
The velocities
|
||
$w_{j,\o}, v_{j,\o}$ and the wave function normalization $Z_{j,\o}$,
|
||
are renormalizated in a way generically dependent on the layer and the angle.
|
||
Note that a priori several other relevant terms could be present, but they are excluded by symmetry. The singularity
|
||
of the Schiwnger function is given by
|
||
$Z^2 k_0^2+R(k)$ with $R(k)\sim (|v|^2 k_1^2+|w|^2 k_2^2)
|
||
$; the singularity of the 2-point function is therefore the same as in absence of interlayer at weak coupling ensuring the stability of the semimetallic phase.
|
||
|
||
The result holds for irrational twisting angles verifying \pref{cond}. The relative measure of this set can be made arbitrarely close to $1$
|
||
by decreasing $C_0$. In the remaining sections
|
||
we prove the above result by a Renormalization Group analysis, leading
|
||
to a convergent expansion.
|
||
|
||
|
||
\section{The renormalized expansion}\label{sec:renormalized}
|
||
|
||
\subsection{Multiscale decomposition}
|
||
\label{sec:multiscale}
|
||
|
||
|
||
We introduce smooth cut-off functions: for $i=1,2$, $\o=\pm$, $h\in\{-\infty,\cdots,0\}$, let $\chi_{h,i,\o}(\kk)$ be a smooth function that vanishes outside the region $||\kk-\pp_{F,i}^\omega|| \le \g^{h-1}$ and that is equal to 1 for $||k-\pp_{F,i}^\omega||\ge \g^{h-2}$.
|
||
The constant $\g>1$ will be chosen below to be large enough. Note that, in this way, the supports of $\chi_{0,i,+}$ and $\chi_{0,i,-}$ do not overlap.
|
||
We define $\hat g_{i,\o}^{(\le 0)}(\kk)=\chi_{0,i,\o}(\kk)\hat g_i(\kk)$
|
||
and
|
||
\be \hat g_i(\kk)= g_i^{(1)}(\kk)+\sum_{\o=\pm} \hat g^{(\le 0)}_{i,\o} (\kk)
|
||
\ee
|
||
with $\hat g^{(1)}(\kk)=(1-\sum_\o \chi_{0,i,\o}(k))\hat g_i(\kk)$; this induces the Grassmann variable decomposition $\hat\psi_{i,\kk,\alpha}=\hat\psi_{i,\kk,\alpha}^{(1)}+\sum_{\o=\pm} \hat\psi^{(\le 0)}_{i,\kk,\alpha,\o}$
|
||
with propagators given by $\hat g^{(1)}_i$ and $\hat g^{(\le 0)}_{i,\o}$
|
||
respectively. Note that $\hat\psi^{(1)}$ correspond to fermions with momenta far from the Fermi points, while $\hat\psi^{(\le 0)}$ with momenta around $\pm \pp_{F,i}$.
|
||
|
||
|
||
We further decompose
|
||
\be
|
||
\hat g_{i,\o}^{(\le 0)} (\kk)=\sum_{h=-\io}^0
|
||
\hat g^{(h)}_{i,\o}( \kk)
|
||
\ee
|
||
where $\hat g_{i,\o}^{(h)}(\kk):=f_{h,i,\o}(\kk)\hat g_{i,\o}^{(\le 0)}$ in which $f_{h,i,\o}:=\chi_{h,i,\o}-\chi_{h-1,i,\o}$ is a smooth cutoff function supported in $ \g^{h-3} \le |\kk-\pp^\o_{F,i}|\le \g^{h-1}$ such that $\sum_{h=-\io}^0f_{h,i,\o}=\chi_{0,i,\o}$.
|
||
The integration is done recursively in the following way: assume that we have integrated the fields $\psi^{(1)},..,\psi^{(h-1)}$ obtaining
|
||
\be
|
||
e^{W}=\int\bar P(d\psi^{(\le h)}) e^{V^{(h)}(\psi,\phi)}
|
||
\ee
|
||
where $\bar P(d\psi^{(\le h)})$ is Gaussian integration with propagator $\bar g_{i,\omega}^{(\le h)}$ which will be defined inductively in (\ref{prop_ind}),
|
||
and
|
||
\bea
|
||
&&V^{(h)}(\psi,0)=
|
||
\\
|
||
&&\sum_{i,\o,\o',l,\alpha,\alpha'} \int_{\hat\L_i} d\kk W^{(h,\omega,\omega')}_{i,2,l,\alpha,\alpha'}(\kk)
|
||
\psi_{i,\kk,\alpha,\o}^+\psi_{2,\kk+lb,\alpha',\o'}^-+\nn\\
|
||
&&\sum_{i,\o,\o',m,\alpha,\alpha'} \int_{\hat\L_i} d\kk W^{(h,\omega,\omega')}_{i,1,m,\alpha,\alpha'}(\kk)
|
||
\psi_{i,\kk,\alpha,\o}^+\psi_{1,\kk+mb',\alpha',\o'}^-
|
||
.
|
||
\label{eff}
|
||
\eea
|
||
|
||
According to the RG procedure, we renormalize the relevant and marginal terms; we will see below that the term
|
||
with $l$ or $m$ non zero are actually irrelevant, due to improvements in the estimates due to the Diophantine condition.
|
||
We therefore define a localization operation in the following way
|
||
\bea
|
||
&&\LL W^{(h,\omega,\omega')}_{i,j,l}(\kk)=\d_ {\o,\o'}\d_{i,j} \d_ {l,0}[W^{(h,\omega,\omega)}_{i,i,0}(0,p_{F,i}^\o)+\nn\\
|
||
&&k_0 \partial_0 W^{(h,\omega,\omega)}_{i,i,0}(0,p_{F,i}^\o)+
|
||
(k-p_{F,i}^\o)\partial W^{(h,\omega,\omega)}_{i,i,0}(0,p_{F,i}^\o)
|
||
.
|
||
\label{loc}
|
||
\eea
|
||
The terms for which $\LL=0$ are called {\it non resonant} terms and the ones for which $\LL\not=0$ {\it resonant} terms. The terms containing derivatives
|
||
are marginal ones and produce wave function or velocities renormalizations, while the terms without derivatives are the relevant terms.
|
||
The action of $\mathcal L$ on the effective potential $V^{(h)}$ is
|
||
\begin{equation}
|
||
\LL V^{(h)}=\LL_1 V^{(h)}+\LL_2 V^{(h)}
|
||
\end{equation}
|
||
with
|
||
\begin{equation}
|
||
\LL_1 V^{(h)}:=\sum_{i,\omega,\a,\a'}\int_{\hat \Lambda_i} d\kk \g^h\n_{h,\omega,\a,\a',i}
|
||
\psi^+_{\kk,\o,i,\a}\psi^-_{\kk,\o,i,\a'}
|
||
\end{equation}
|
||
and
|
||
\begin{equation}
|
||
\LL_2 V^{(h)}:=\sum_{i,j,\omega,\a,\a'}\int_{\hat \Lambda_i} d\kk
|
||
z_{h,\o,\a,\a',i,j} (\mathbf k-\mathbf p_{F,i}^\omega)_j\psi^+_{\kk,\o,i,\a} \psi^-_{\kk,\o,i,\a'}
|
||
\end{equation}
|
||
with
|
||
\begin{equation}\label{ai}
|
||
\nu_{h,\omega,\alpha,\alpha',i}:=\gamma^{-h} W_{i,i,0,\alpha,\alpha'}^{h,\omega,\omega}(0,p_{F,i}^\omega)
|
||
\end{equation}
|
||
\begin{equation}
|
||
z_{h,\omega,\alpha,\alpha',i,j}:=-\partial_{\mathbf k_j}W_{i,i,0,\alpha,\alpha'}^{h,\omega,\omega}(0,p_{F,i}^\omega)
|
||
.
|
||
\end{equation}
|
||
|
||
The form of the resonant terms is severely constrained by symmetries: as is proved in Appendix \ref{sec:symm},
|
||
\bea
|
||
&&\n_{h,\o,a,a,i}=\n_{h,\o,b,b,i}=0\quad \n_{h,\o,a,b,i}=\n^*_{h,\o,b,a,i}\nn\\
|
||
&&z_{h,\o,b,a,i,1}=z_{h,\o,a,b,i,1}^*\quad
|
||
z_{h,\o,b,a,i,2}=z_{h,\o,a,b,i,2}^*
|
||
\\
|
||
&&z_{h,\o,a,a,i,1}=z_{h,\o,b,b,i,1}=
|
||
z_{h,\o,a,a,i,2}=z_{h,\o,b,b,i,2}=0
|
||
\nn
|
||
\\
|
||
&&z_{h,\o,b,a,i,0}=z_{h,\o,a,b,i,0}=0
|
||
\quad
|
||
z_{h,\o,a,a,i,0}=z_{h,\o,b,b,i,0}\in i \mathbb R
|
||
\nn
|
||
\eea
|
||
|
||
The contributions from $\mathcal L_2 V$ are marginal, and are absorbed into the propagator at every step of the integration:
|
||
\begin{equation}
|
||
\begin{array}{>\displaystyle l}
|
||
\bar g_{i,\omega}^{(\le h)}(\mathbf k)
|
||
:=
|
||
\chi_{h,i,\omega}(\mathbf k)
|
||
\cdot\\\hfill\cdot
|
||
\left((\bar g_{i,\omega}^{(\le h+1)}(\mathbf k))^{-1}
|
||
-\sum_j z_{h,\omega,\cdot,\cdot,i,j}(\mathbf k-\mathbf p_{F,i}^\omega)_j\right)^{-1}
|
||
\end{array}
|
||
\label{prop_ind}
|
||
\end{equation}
|
||
Thus,
|
||
\begin{equation}
|
||
\begin{array}{>\displaystyle l}
|
||
\bar g_{i,\o}^{(\le h)}(\kk+\pp_{F,i}^\o)=
|
||
\chi_{h,i,\o}(\kk)(1+O(k))
|
||
\cdot\\\hfill\cdot
|
||
\begin{pmatrix}
|
||
-i Z_{i,\o,h} k_0 & (i v_{i,\o,h} k_1- w_{i,\o,h} \o k_2)\\
|
||
(-i v^*_{i,\o,h} k_1- w^*_{i,\o,h} \o k_2) & -i Z_{i,\o} k_0
|
||
\end{pmatrix}
|
||
^{-1}\label{prop}
|
||
\end{array}
|
||
\end{equation}
|
||
with
|
||
\bea
|
||
&&Z_{i,\omega,h}=Z_{i,\omega,h+1}-iz_{h,\o,a,a,i,0}
|
||
\nn\\
|
||
&&v_{i,\omega,h}= v_{i,\omega,h+1}+i z_{h,\o,a,b,i,1}
|
||
\nn\\
|
||
&&w_{i,\omega,h}= w_{i,\omega,h+1}+ \omega z_{h,\o,a,b,i,2}
|
||
.
|
||
\eea
|
||
|
||
After absorbing $\mathcal L_2V^{(h)}$ into the propagator, we are left with integrating $\LL_1 V^{(h)}$ and
|
||
\begin{equation}
|
||
\RR V^{(h)}:=(1-\mathcal L)V^{(h)}
|
||
\end{equation}
|
||
so
|
||
\be
|
||
e^{W}=\int \bar P(d\psi^{(\le h)}) e^{\LL_1 V^{(h)}(\psi)+\RR V^{(h)}(\psi)}
|
||
.
|
||
\label{renormalized_expansion}
|
||
\ee
|
||
|
||
\subsection{Feynman rules for the renormalized expansion} \label{sec:renormfeyn}
|
||
|
||
The renormalized expansion described above has a graphical representation that is similar to the Feynman diagram expansion from Section \ref{sec:feynman}.
|
||
There are two main differences: first, there are two different types of vertices: ``\emph{$\tau$-vertices}'', coming from $\mathcal R V^{(h)}$ in (\ref{renormalized_expansion}), and ``\emph{$\nu$-vertices}'', coming from $\mathcal L_1 V^{(h)}$.
|
||
Second, every line has a {\it scale label} $h$, corresponding to a propagator on scale $h$:
|
||
\begin{equation}
|
||
\bar g_{i,\omega}^{(h)}(\mathbf k):=f_{h,i,\omega}(\mathbf k)\bar g^{(\le h)}_{i,\omega}(\mathbf k)
|
||
.
|
||
\end{equation}
|
||
|
||
The scale labels induce an important structure: given a diagram, we group vertices together into nested \emph{clusters}, which are connected subgraphs in which the scales of the lines leaving the cluster are all smaller than the scales of the lines inside the cluster, see Figure \ref{fig:clusters}.
|
||
A cluster that is such that $\mathcal L$ applied to the cluster yields $0$ is called {\it non-resonant}, otherwise it is called {\it resonant}.
|
||
In other words, the action of $\mathcal R=1-\mathcal L$ is trivial on non-resonant clusters, and non-trivial on resonant ones.
|
||
|
||
Some clusters are single vertices (either $\nu$ or $\tau$) and are called \emph{trivial clusters}.
|
||
The clusters that contain internal lines are called \emph{non-trivial clusters}.
|
||
As per the construction above, if $h^{ext}_T$ is the largest of the scales of the external lines of a non-trivial cluster $T$, all its internal lines have a scale $h>h^{ext}_T$; $h_T$ is the largest scale of the propagators internal to the cluster $T$.
|
||
A non-trivial cluster $T$ contains sub-clusters $\tilde{T}\subset T$.
|
||
We call a cluster $\tilde T\subset T$ a \emph{maximal cluster}
|
||
if there is no other cluster $\bar T$ such that $\tilde T\subset \bar T\subset T$.
|
||
|
||
For each cluster, there are two external lines that connect the cluster to other ones.
|
||
In a non-resonant cluster $T$ with external lines of type $i_1=i_2=1$ and momenta
|
||
$k_1, k_2$ with $k_1$ in the first Brillouin zone
|
||
and $k_2=k_1+\hat m_T b+l b$ where $l b$ is chosen so that $k_2$ is in the first Brillouin zone,
|
||
if $A_0,..,A_N$
|
||
are the momenta associated to the $\t$ vertices contained in $T$ (the $\nu$ vertices do not change momentum)
|
||
one has $A_0=k_1+ l_0 b$, $A_1=k_1+l_0 b+m_1 b'$, $A_2=k_1+m_1 b'+l_2 b$, $A_3=k_1+m_3 b'+l_2 b$,..., $A_{N}=k_1+m_{N} b'+l_{N-1} b$ and
|
||
$m_{N}=\hat m_T$
|
||
with $N$ odd.
|
||
In the same way if the non-resonant cluster $T$ has one external line of type $i_1=1$ and momentum $k_1$, and one of type $i_2=2$ and momentum
|
||
$k_2$; assume that $k_1$ is in the first Brillouin zone
|
||
and $k_2=k_1+\hat l_T b+m b'$,
|
||
where $m b'$ is chosen such that $k_2$ is in the first Brillouin zone.
|
||
Now with $N$ even
|
||
the momenta associated to the $\t$ vertices in $T$ are
|
||
$A_0=k_1+ l_0 b$, $A_1=k_1+l_0 b+m_1 b'$, $A_2=k_1+m_1 b'+l_2 b$, $A_3=k_1+m_3 b'+l_2 b$,...$A_{N-1}=k+m_{N-2} b'+l_{N-1}b$,
|
||
$l_{N-1}=\hat l_T$.
|
||
|
||
|
||
The value associated to a graph $\G$ is denoted by
|
||
$W_\G(\kk)$ and is given by the product of the propagators and $\n,\t$ factors associated to the vertices, with the $\RR$ operation acting on each
|
||
non-resonant cluster. The effect of the $\RR$ operation on the non-resonant clusters can be written as
|
||
\be
|
||
\RR W^h(\kk+p_{F,i}^\o)=k^2\int_0^1 \partial^2 W(t \kk)\ee
|
||
|
||
|
||
\begin{figure}
|
||
\hfil\includegraphics[width=8cm]{cluster.pdf}
|
||
|
||
\caption{\label{fig:clusters} An example of graph of order $\l^7$ with the associated clusters, denoted by thick rectangles. In this example, $h<h_1<h_2<h_3$.}
|
||
\end{figure}
|
||
|
||
|
||
|
||
\subsection{Convergence of the series and persistence of the cones}
|
||
|
||
|
||
In order to bound the contribution of a Feynman graph we note that $|\bar g^{(h)}(k)|\le C \g^{-h}$ (by (\ref{prop})); therefore the product of propagators in the Feynman graph is bounded by
|
||
\be
|
||
\prod_{T\mathrm{\ n.t.}} \g^{-h_T (M_T+R_T-1)}\ee
|
||
where $M_T$ is the number of maximal non-resonant clusters contained in $T$, $R_T$ is the number of maximal resonant clusters contained in $T$, and $\prod_{T \mathrm{\ n.t.}}$ is a product over non-trivial clusters.
|
||
Note that the trivial clusters do not contribute, as they contain no internal lines.
|
||
The effect of the $\RR:= \mathds 1-\mathcal L$ (recall (\ref{loc})) operation on the non-trivial resonant clusters
|
||
produces an extra $\g^{2 (h_{T}^{\text{ext}}-h_T)}$ (the gain $h_T^{\mathrm{ext}}$ comes from the extra $(k-p_{F,i}^\omega)^2$ terms (which are on the scale of the external lines) and the $h_T$ loss from the extra second derivative (which are on the scale of the internal lines)).
|
||
Therefore, we get an extra factor:
|
||
\be
|
||
\prod_{T\ \mathrm{res\ n.t.}} \gamma^{2(h_{T}^{\text{ext}}-h_{T})}
|
||
\ee
|
||
where $\prod_{T\ \mathrm{res\ n.t.}}$ is the product over the non-trivial resonant clusters.
|
||
In addition, each maximal resonant cluster corresponds to a weight $\gamma^h\nu_h$, so, if $|\nu_h| \leqslant C |\lambda|$, we get an extra factor:
|
||
\begin{equation}
|
||
\prod_{T \mathrm{\ n.t.}}\gamma ^{h_T M_T^\nu} C |\lambda|
|
||
\end{equation}
|
||
where $M_T^\nu$ is the number of maximal resonant trivial clusters in $T$.
|
||
Thus, we get the following bound for the sum over all the labels of a renormalized graph with $q$ vertices:
|
||
\bea
|
||
&&\sum^*_{\underline h,\underline l, \underline m} [L(\underline l, \underline m)]
|
||
|\l|^q C^q
|
||
\left( \prod_{T\, \text{n.t.}} \g^{-h_T (M_T+R_T-1)}
|
||
\right) \nn\\
|
||
&&\Bigg(\prod_{T\ \mathrm{res\ n.t.}} \gamma^{2(h_{T}^{\text{ext}}-h_{T})}\Bigg)
|
||
\prod_{T \, \text{n.t.}} \gamma^{h_{ T} M^\n_{T}}
|
||
\label{lap}
|
||
\eea
|
||
where $L(\underline l, \underline m)$ is the norm of the product of the $\t$ functions:
|
||
\begin{equation}
|
||
L(\underline l,\underline m):=\prod_i| \t(A_i)|
|
||
\end{equation}
|
||
where $A_i$ are the momenta, which depend on the structure of the graph, and $\sum^*_{\underline h,\underline l, \underline m}$ is the sum over the scales and momenta associated to the vertices, as explained in Section \ref{sec:renormfeyn};
|
||
these sums are not independent, as they are constrained by the compact support properties of the propagators and of the Diophantine condition.
|
||
Now
|
||
defining $\mathds 1_{\Gamma\,\mathrm{res}}$ is equal to 1 if the maximal cluster $T_m$ is resonant and 0 otherwise, we have
|
||
\bea
|
||
&&\prod_{T\, \text{n.t.}} \g^{-h_T R_T} \prod_{T\ \mathrm{res\ n.t.}, T\not=T_m}
|
||
\gamma^{h_{T}^{\text{ext}}} \prod_{T\, \text{n.t.}}
|
||
\gamma^{h_{ T} M^\n_{T}}\le 1\nn\\\
|
||
&&\prod_{T\, \text{n.t.}} \g^{h_T}
|
||
\prod_{T\ \mathrm{res\ n.t.}, T\not= T_m}
|
||
\gamma^{-h_{T}}
|
||
\le \gamma^{h_{T_m} \mathds 1_{\Gamma\,\mathrm{res}}}
|
||
\eea
|
||
and then using that
|
||
if $T_m$ is resonant and $\LL$ is applied then $h_{T_m}=h+1$ we get
|
||
\be
|
||
\prod_{T\, \text{n.t.}} \g^{-h_T (R_T-1)} \gamma^{h_{ T} M^\n_{T}}\prod_{T\ \mathrm{res\ n.t.}}
|
||
\gamma^{(h_{T}^{\text{ext}}-h_{T})}
|
||
\le \gamma^{(h+1)\mathds 1_{\Gamma\,\mathrm{res}}}.\ee
|
||
|
||
Therefore, \pref{lap} is bounded by
|
||
\bea
|
||
&&\sum^*_{\underline h,\underline l, \underline m} [L(\underline l, \underline m)]
|
||
|\l|^q C^q
|
||
\gamma^{h \mathds 1_{\Gamma\,\mathrm{res}}}
|
||
\nn\\&&
|
||
\left( \prod_{T\, \text{n.t.}} \g^{-h_T M_T}
|
||
\right)
|
||
\Bigg(\prod_{T\ \mathrm{res\ n.t.}} \gamma^{(h_{T}^{\text{ext}}-h_{T})}\Bigg)
|
||
.
|
||
\label{lap1}
|
||
\eea
|
||
As the graphs are chains, there is no problematic combinatorial factor; the main issue
|
||
is the sum over $\underline h$; if we neglect the constraint in
|
||
$\sum^*_{\underline h,\underline l, \underline m}$ then we will get a factor $
|
||
\prod_{T\, \text{n.t.}}
|
||
(\sum_{h_T=-\io}^0 \g^{-h_T})$ which is divergent.
|
||
|
||
However, we have still not taken advantage of the Diophantine condition. In order to do that we note that
|
||
$
|
||
|\t^{(i)}(k)|\le C e^{-\kappa |k|}
|
||
$
|
||
from the exponential decay or $\hat \varsigma(k)$, see (\ref{interlayer}), (\ref{tau1})-(\ref{tau2}); we can write
|
||
\be
|
||
e^{-\kappa/2 |k|}=\prod_{h=-\io}^0 e^{-\kappa 2^h |k|}
|
||
\ee Consider the product of $\t$ factors:
|
||
\be
|
||
L(\underline l,\underline m)\equiv\prod_i| \t(A_i)|\le \prod_i e^{-\kappa |A_i|/2}
|
||
\prod_{h=-\infty}^1 e^{-\kappa 2^{h} |A_i|}\ee
|
||
which we estimate as
|
||
\be
|
||
L(\underline l,\underline m)\le \prod_i e^{-\kappa |A_i|/2}
|
||
\prod_{T\ \mathrm{nonres}\ni i} e^{-\kappa 2^{h_T} |A_i|}\ee
|
||
where in the last product $i$ is the label of the points $\t$ contained in $T$.
|
||
We then exchange the products:
|
||
\be
|
||
L(\underline l,\underline m)\le \left(\prod_i e^{-\kappa |A_i|/2}\right)
|
||
\prod_{T\ \mathrm{nonres}} \prod_{i\in T}e^{-\kappa 2^{h_T} |A_i|}\ee
|
||
Let us consider a non resonant cluster with external lines of type $1$;
|
||
we have
|
||
\be
|
||
|A_0|+|A_1|+\ldots\ge |A_0-A_1+A_2-A_3\ldots|= |\hat m_T b'|\ee
|
||
(see Section \ref{sec:renormfeyn}) so that
|
||
\be
|
||
\prod_{i\in T}e^{-\kappa 2^{h_T} |A_i|}
|
||
\le e^{-\kappa 2^{h_T} |\hat m_T b'|}
|
||
\ee
|
||
A similar analysis holds for $i_1=i_2=2$ with $\hat l\not=0$.
|
||
In the same way if the cluster $T$ has $i_1=1$ and $i_2=2$ and
|
||
$k_1, k_2$ are the momenta of the external lines
|
||
using that $|A_0|+|A_1|+\ldots$
|
||
\be\ge |A_0-A_1+A_2-A_3\ldots|\ge |k_1+\hat l b|\ge |\hat lb|-\frac{4\pi}3\ee
|
||
(where we used that $|k_1|\le\frac{4\pi}3$) as $k_1$ is in the first Brillouin zone
|
||
\be
|
||
\prod_{i\in T}e^{-\kappa 2^{h_T} |A_i|}\le
|
||
e^{-\kappa 2^{h_T} (|\hat l_T b|-\frac{4\pi}3)}
|
||
.
|
||
\ee
|
||
In addition, the Diophantine condition imposes a constraint between the momenta
|
||
of the external lines of a cluster $T$ and the $l,m$ labels associated to its internal vertices.
|
||
Consider a non resonant cluster with the following indices:
|
||
\begin{enumerate}
|
||
\item If $i_1=i_2=1$ and
|
||
$k_1, k_2$ are the momenta of the external lines; assume that $k_1$
|
||
is in the first Brillouin zone
|
||
and $k_1=:\bar k_1+p_{F,1}^{\o_1}$. Moreover $k_2:=k_1+\hat m_T b'+l b=:\bar k_2+p_{F,1}^{\o_2}$,
|
||
with $l$ chosen such that $k_2$ is in the first Brillouin zone; then, if $\hat m_T\not=0$, by (\ref{cond}),
|
||
\bea
|
||
&&2 \g^{h^{ext}_T}\ge |\bar k_1|+|\bar k_2|\ge |\bar k_1-\bar k_2|=\nn\\
|
||
&&|
|
||
p_{F,1}^{\o_1}-p_{F,1}^{\o_2}+\hat m_T b'+l b|\ge {C_0\over |\hat m_T|^\t}\eea
|
||
so that, if $\hat m_T\not=0$
|
||
\be
|
||
|\hat m_T|\ge ({\textstyle\frac12}C_0 \g^{-h^{\mathrm{ext}}_T})^{\frac1\tau}\label{cond1}
|
||
\ee
|
||
and so
|
||
\begin{equation}
|
||
|\hat m_Tb'|\ge c_1\g^{-h^{\mathrm{ext}}_T/\tau}
|
||
\end{equation}
|
||
for some constant $c_1>0$.
|
||
On the other hand if $\hat m_T=0$ but $\o_1\not=\o_2$ then $l=0$ so $\g^{h^{\mathrm{ext}}_T}\ge\frac12|p_{F,1}^{\omega_1}-p_{F,1}^{\omega_2}|=\frac{2\pi}{3\sqrt3}$ (recalling (\ref{pF})).
|
||
Thus, this eventuality does not occur provided $\gamma$ is large enough.
|
||
|
||
\item
|
||
In the case $i_1=1$ and $i_2=2$ and
|
||
$k_1, k_2$ are the momenta of the external lines; assume that $k_1$ is in the first Brillouin zone
|
||
and $k_1=:\bar k_1+p_{F,1}^{\o_1}$. Moreover $k_2:=k_1+\bar l b+m b'=:\bar k_2+p_{F,2}^{\o_2}$,
|
||
with $m$ chosen in such a way that $k_2$ is in the first Brillouin zone; then, if $\bar l\not=0$, by (\ref{cond}),
|
||
\bea
|
||
&&2 \g^{h^{ext}_T}\ge |\bar k_1|+|\bar k_2|\ge |\bar k_1-\bar k_2|=\\
|
||
&&|p_{1,F}^{\o_1}-p_{2,F}^{\o_2}+\hat l_T b+m b'|\ge {C_0\over |\hat l_T|^\t}\nn\eea
|
||
so that
|
||
\be|\hat l_T|\ge ({\textstyle\frac12}C_0 \g^{-h^{\mathrm{ext}}_T})^{\frac1\tau}\label{cond2}
|
||
\ee
|
||
and so
|
||
\begin{equation}
|
||
|\hat l_Tb|\ge c_1\g^{-h^{\mathrm{ext}}_T/\tau}
|
||
\end{equation}
|
||
If $\hat l_T=0$ then $2 \g^{h^{\mathrm{ext}}_T}\ge O(\th)$ for $\o_1=\o_2$ and $2 \g^{h^{\mathrm{ext}}_T}\ge O(1)$ for $\o_1=-\o_2$.
|
||
Thus, provided $\gamma\gg \theta^{-1}$, these eventualities do not present themselves provided $\gamma$ is large enough.
|
||
|
||
\item
|
||
A similar analysis holds for $i_1=2, i_1=1$, and $i_1=i_2=2$.
|
||
\end{enumerate}
|
||
|
||
Thus,
|
||
\begin{equation}
|
||
\prod_{i\in T}e^{-\kappa 2^{h_T}|A_i|}\le e^{-\kappa 2^{h_T}(c_1 \gamma^{-h_T^{\mathrm{ext}}/\tau}-\frac{4\pi}3)}
|
||
\end{equation}
|
||
which, provided $\gamma$ is large enough, yields
|
||
\begin{equation}
|
||
\prod_{i\in T}e^{-\kappa 2^{h_T}|A_i|}\le e^{-c_2\gamma^{-h_T^{\mathrm{ext}}/\tau}}
|
||
\end{equation}
|
||
for some constant $c_2$.
|
||
Therefore,
|
||
\be
|
||
L(\underline l,\underline m)\le e^{-c_2 \gamma^{-h/\tau}\mathds 1_{\Gamma\,\mathrm{nonres}}}
|
||
\prod_i e^{-\kappa |A_i|/2}
|
||
\prod\limits_{T\ \mathrm{n.t.}}
|
||
e^{-c_2 {M}_{T} \gamma^{-h_{T}/\tau}}\ee
|
||
where $\mathds 1_{\G\,\mathrm{nonres}}$ is equal to 1 if the maximal cluster is non resonant and $0$ otherwise.
|
||
Note that, provided $\gamma$ is chosen to be large enough, $e^{-c_2 \gamma^{-h/\tau}\mathds 1_{\Gamma\,\mathrm{nonres}}}\le \gamma^{3h \mathds 1_{\Gamma\,\mathrm{nonres}}}$, so
|
||
\be
|
||
L(\underline l,\underline m)\le \gamma^{3h\mathds 1_{\Gamma\,\mathrm{nonres}}}
|
||
\prod_i e^{-\kappa |A_i|/2}
|
||
\prod\limits_{T\ \mathrm{n.t.}}
|
||
e^{-c_2 {M}_{T} \gamma^{-h_{T}/\tau}}.\ee
|
||
|
||
Furthermore, using the bound $e^{-\a x}\le ({\beta\over \a})^\beta e^{-\beta}x^{-\beta}$ with $\beta= 3\tau M_T$, we find
|
||
\begin{equation}
|
||
e^{-c_2M_T \gamma^{-h_T/\tau}} \leq (\frac{c_2 e^1}{3\tau})^{-3\tau M_T} \gamma^{3M_T h_T}
|
||
.
|
||
\label{exp3}
|
||
\end{equation}
|
||
In addition, $\sum_{T\,\text{n.t.}} M_T \leq q$, since the clusters are nested in each other and for two clusters to be different they must differ by at least one vertex.
|
||
Now, let us introduce $M_T^\tau$ as the number of maximal non-resonant trivial clusters (i.e. maximal $\tau$-vertices) contained in $T$, and use the trivial bound $3M_T \le 2M_T+M_T^\tau$ along with (\ref{exp3}) to obtain
|
||
\begin{equation}
|
||
\prod_{T\ \mathrm{n.t.}}
|
||
e^{-c_2 M_{T} \gamma^{-h_{T}}/\tau} \le C_3^q
|
||
.\prod_{T\ \mathrm{n.t.}} \gamma^{h_{T} (2M_{T}+M_T^\tau)}
|
||
\label{asxq}
|
||
\end{equation}
|
||
Thus, plugging this into (\ref{lap1}), we find
|
||
\bea
|
||
&&\g^h \sum^*_{\underline h,\atop \underline l, \underline m}
|
||
[L]^{1\over 2} |\l|^q (CC_3)^q
|
||
\gamma^{h\mathds 1_{\Gamma\,\mathrm{res}}}
|
||
\gamma^{3h\mathds 1_{\Gamma\,\mathrm{nonres}}}
|
||
\nn\\&&
|
||
[\prod_{T\ \mathrm{res}}
|
||
\gamma^{(h_{T}^{\text{ext}}-h_{T})}]
|
||
\prod_{T\, \text{n.t.}} \g^{h_T (2M_T+M^\tau_T)}
|
||
.
|
||
\eea
|
||
In addition,
|
||
\begin{equation}
|
||
\prod_{T\ \mathrm{n.t.}} \gamma^{2h_T M_T}
|
||
=
|
||
\gamma^{-2h \mathds 1_{\Gamma\,\mathrm{nonres}}}\prod_{T\ \mathrm{nonres}}\gamma^{2h_T^{\mathrm{ext}}}
|
||
\end{equation}
|
||
|
||
\be
|
||
\g^h \sum^*_{\underline h,\atop \underline l, \underline m} [L]^{1\over 2} |\l|^q (CC_3)^q
|
||
[\prod_{T\, \text{n.t.}}
|
||
\gamma^{(h_{T}^{\text{ext}}-h_{T})}]
|
||
\prod_{T\,\text{n.t.}} \gamma^{h_{T} M^\tau_{T}} \label{ssa}
|
||
\ee
|
||
The crucial point is that the sum over the scales $h$ can be performed
|
||
summing over all the differences, taking into account that the scale $h$ is fixed.
|
||
Finally the sum over the $l,m$ is done using the factor $[L(\underline l, \underline m)]^{1\over 2}$.
|
||
(The gain term $\g^{h_T M_T^\tau}$ is dropped, as it does not lead to any significant gain.)
|
||
In conclusion the bound on a graph with $q$ vertices is $C_4^q\g^h |\l|^q$ assuming that $|\n_h|,|Z_h-1|,|v_h-1|,|w_h-1| \le C |\l|$.
|
||
|
||
\subsection{Beta function and Schwinger functions}
|
||
|
||
We are left with checking our assumption on $Z_h, \nu_h, w_h,v_h$.
|
||
We know that
|
||
$v_{i,\omega,h}= v_{i,\omega,h+1}-i z_{h,\o,a,b,i,1}$
|
||
with $z_{h,\o,a,b,i,1}$ expressed by the sum of renormalized Feynman graphs $\G$ such that the maximal scale of the clusters is $h+1$, an extra derivative is applied (which costs a factor $\gamma^{-h}$)
|
||
and the momenta of the external lines is fixed equal to $p_F^\o$.
|
||
Moreover by the compact support of the propagator there is at least a $\t$ vertex, as the $k=0$ value of a graph wih only $\n$ vertice is zero; therefore the
|
||
analogue of (\ref{ssa}) becomes
|
||
\be
|
||
\sum^*_{\underline h,\atop \underline l, \underline m} [L]^{1\over 2} |\l|^q (CC_3)^q [\prod_{T\, \text{n.t.}}
|
||
\gamma^{(h_{T}^{\text{ext}}-h_{T})}]
|
||
\gamma^{2h_{T^*}}
|
||
\label{weightzz}
|
||
\ee
|
||
where $T^*$ is the non trivial cluster containing a $\t$ vertex whose scale is the largest possible (we now use the gain $\g^{h_T M_T^\tau}$
|
||
dropped in the bound \pref{ssa}).
|
||
In addition, summing the differences $h_T^{\mathrm{ext}}-h_T$ along a sequence of clusters that goes from $h$ to $h_{T^*}$ and discarding the others, we bound
|
||
\begin{equation}
|
||
\sum_{T}(h_T^{\mathrm{ext}}-h_T) \leqslant h-h_{T^*}
|
||
\end{equation}
|
||
and so (\ref{weightzz}) is bounded by
|
||
\be \label{weightzz1}\g^{h\over 2}
|
||
\sum^*_{\underline h,\atop \underline l, \underline m} [L]^{1\over 2} |\l|^q (CC_3)^q \prod_{T\, \text{n.t.}}
|
||
\gamma^{ {1\over 2}(h_{T}^{\text{ext}}-h_{T})}
|
||
.
|
||
\ee
|
||
Estimating the sum as above, we find that $|z_{h,\o,a,b,i,1}|\le C_5 \l \g^{h\over 2}$, and $v_{i,\omega,h}= v_{i,\omega,0}-i \sum_{h'} z_{h',\o,a,b,i,1}$ hence $v_{i,\omega,h}= v_{i,\omega,0}+O(\l)$; moreover the limiting value is reached exponentially fast
|
||
$v_{i,\omega,h}=v_{i,\omega,-\infty}+O(\l \g^{h/2})$.
|
||
A similar argument holds for $Z_h, w_h$. Not
|
||
|
||
It remain to discuss the flow of $\n_h$; we can write, see
|
||
\pref{ai},
|
||
\be W_{i,i,0,\alpha,\alpha'}^{h,\omega,\omega}(0,p_{F,i}^\omega)
|
||
=\g^{h+1}\n_{h+1}+ \tilde W_{i,i,0,\alpha,\alpha'}^{h,\omega,\omega}(0,p_{F,i}^\omega)\ee where $\tilde W$ is given by the sum of the terms with a number of vertices greater or equal to $2$; therefore
|
||
\be
|
||
\nu_{h,\omega,\alpha,\alpha',i}=\g \nu_{h+1,\omega,\alpha,\alpha',i}+\b^h_\n
|
||
\label{appo2}
|
||
\ee
|
||
with $\b^h_\n=\g^{-h}
|
||
\tilde W_{i,i,0,\alpha,\alpha'}^{h,\omega,\omega}(0,p_{F,i}^\omega)$
|
||
is given by the sum with $q\ge 2$ of terms bounded by \pref{weightzz1}.
|
||
We have to prove that it is possible to choose the counterterms $\n_{\omega,\alpha,\alpha',i}$ so that $\n_{h,\omega,\alpha,\alpha',i}$ is bounded by $C \l$ for any scale $h$. Indeed from \pref{appo2} we get, $h\le -1$
|
||
\be
|
||
\nu_{h,\omega,\alpha,\alpha',i}=\g^{-h}(\nu_{\omega,\alpha,\alpha',i}+
|
||
\sum_{i=h}^{-1} \g^{i}\b^i_\n)
|
||
\label{appo3}
|
||
\ee
|
||
and choosing $\nu_{\omega,\alpha,\alpha',i}$ so that $\nu_{-\infty,\omega,\alpha,\alpha',i}=0$ we get
|
||
\be
|
||
\nu_{h,\omega,\alpha,\alpha',i}=-\g^{-h}\sum_{i=-\infty}^{h} \g^{i}\b^i_\n
|
||
\label{appo4}
|
||
\ee
|
||
and by using a fixed point argument we can show that there is a sequence such that
|
||
$|\nu_{h,\omega,\alpha,\alpha',i}|\le C \l\g^{h\over 2}$.
|
||
|
||
The application of the above bounds to the 2-point function, in order to derive
|
||
\pref{43}, is straightforward. The 2-point function can be written as
|
||
\be
|
||
\hat S_{j,j}(\mathbf k+\mathbf p_{F,j}^\o )) =\sum_{h=-\infty}^0 [\hat g^{(h)}((\mathbf k+\mathbf p_{F,j}^\o ))+r^h(\mathbf k)
|
||
\ee
|
||
where $r^h(\mathbf k) $ includes the contribution of term withs at least a vertex. We can replace in $g^{(h)}((\mathbf k+\mathbf p_{F,j}^\o ))$ the
|
||
$v_{i,\omega,h},w_{i,\omega,h},Z_{i,\omega,h}$ with
|
||
$v_{i,\omega,-\infty},w_{i,\omega,-\infty},Z_{i,\omega,-\infty}$ obtaining the dominant term in
|
||
\pref{43}; the subdominant term is obtained both from the
|
||
term containing the difference betwen
|
||
$v_{i,\omega,h}-v_{i,\omega,-\infty}$, $z_{i,\omega,h}-w_{i,\omega,-\infty}$,
|
||
$Z_{i,\omega,h}-Z_{i,\omega,-\infty}$, which have an extra factor $O(\l \g^{h/2})$, or the
|
||
terms with at least a vertex
|
||
which have at least
|
||
a $\n$ or a non resonant trivial vertex, with an extra $O(\g^{h/2})$
|
||
from the bounds after \pref{weightzz}.
|
||
|
||
\section{Conclusion }
|
||
|
||
Theoretical analyses of TBG are based on the assumption of the stability of the Weyl semimetallic phase, leading to the formulation of continuum effective models.
|
||
However in lattice TBG models wth generic angles there is an emerging quasi-periodicity manifesting themself in large momenta Umklapp interactions
|
||
that almost connect
|
||
the Dirac points, similar to the ones appearing in
|
||
electronic systems with quasi-periodic potential.
|
||
Such terms are neglected
|
||
in the continuum semimetallic approximations.
|
||
|
||
In this paper we have rigorously established the stability of the semimetallic phase in a lattice model, taking into full account the large momenta Umklapp interactions.
|
||
The analysis is based on number theoretical properties of irrationals
|
||
combined with a Renormalization Group analysis, and requires that the interlayer hopping is weak and short ranged and the the angles are chosen in a large measure set. The effect of the interaction is to produce a finite renormalization of the Dirac points and velocities. Non perturbative effects are excluded as the series are shown to be
|
||
convergent. Compared to the Aubry-Andr\'e or similar models, the number theoretical analysis is much more
|
||
involved due to the peculiar structure of the small divisors.
|
||
|
||
The stability of the Weyl phases provides a justification of the use of continnum models under the above assumptions.
|
||
In addition,
|
||
the present analysis paves the way to a more accurate evaluation of the
|
||
velocities as functions of the angles, talking into account lattice or higher orders effects, and the effect
|
||
of many body interactions,
|
||
whose interplay with the emerging quasi-periodicity
|
||
could lead to interesting phases.
|
||
|
||
\begin{acknowledgements}
|
||
We thank J. Pixley for many interesting discussions.
|
||
V.M. acknowledges support from the MUR, PRIN 2022 project MaIQuFi cod. 20223J85K3.
|
||
I.J. gratefully acknowledges support through NSF Grant DMS-2349077, and the Simons Foundation, Grant Number 825876.
|
||
\end{acknowledgements}
|
||
|
||
\vfill
|
||
\pagebreak
|
||
\widetext
|
||
|
||
\appendix
|
||
|
||
\section{Fourier transform of the interlayer hopping}\label{app:fourierV}
|
||
We write $V$ in Fourier space: we get
|
||
\begin{eqnarray}
|
||
&&V=\frac \lambda{|\hat{\mathcal L}_1|^2}\sum_{x_1\in \hat{\mathcal L}_1} \sum_{x'_2\in\Lambda_2}\sum_{\alpha\in\{a,b\}}
|
||
\int_{\mathbb R^2} \frac{dq}{4\pi^2}
|
||
\int_{\hat{\mathcal L}_1}dk_1
|
||
\int_{\hat{\mathcal L}_2}dk_2'\nonumber\\
|
||
&&
|
||
e^{i(k_1x_1-k_2'x_2'+q(x_1-x_2'))}
|
||
e^{iq(d_\alpha-Rd_{\alpha})}
|
||
e^{i \xi (k_2'-k_1)}
|
||
\hat\varsigma(q)\hat c^\dagger_{1,k_1,\alpha}\hat c_{2,k_2',\alpha}+\nonumber\\
|
||
&&e^{-i(k_1x_1-k_2'x_2'-q(x_1-x_2'))}
|
||
e^{iq(d_\alpha-Rd_{\alpha})}
|
||
e^{-i\xi(k_2'-k_1)}
|
||
\hat\varsigma(q)\hat c^\dagger_{2,k_2',\alpha}\hat c_{1,k_1,\alpha}\label{V211}
|
||
\end{eqnarray}
|
||
and using the Poisson summation formula
|
||
\begin{equation}
|
||
\sum_{x_1\in\mathcal L_1} e^{i (k_1+q)x_1}=|\hat{\mathcal L}_1|\sum_{l\in\mathbb Z^2} \d(k_1+q+l b)
|
||
\end{equation}
|
||
where we use the shorthand $lb\equiv l_1b_1+l_2b_2$, and
|
||
\begin{equation}
|
||
\sum_{x_2'\in \mathcal L_2} e^{-i (k_2+q) x'_2}=|\hat{\mathcal L}_1|\sum_{m\in\mathbb Z^2} \d(k_2+q+m b')
|
||
\end{equation}
|
||
Noting that
|
||
$\hat c_{2,k_1+lb-mb',\alpha}
|
||
\equiv
|
||
\hat c_{2,k_1+lb,\alpha}$, $
|
||
\hat c_{1,k_2'+mb'-lb,\alpha}
|
||
\equiv
|
||
\hat c_{1,k_2'+mb',\alpha}$ we finally obtain \pref{11}.
|
||
\bigskip
|
||
|
||
|
||
Rewriting (\ref{V211}) in terms of Grassmann variables, with the added imaginary time component, reads
|
||
\be\begin{array}{>\displaystyle l}
|
||
V=\frac{\beta\lambda}{|\hat\Lambda_1|^2}\sum_{x_1\in\mathcal L_1}
|
||
\sum_{x'_2\in\mathcal L_2}\sum_{\alpha\in\{a,b\}}
|
||
\int_{\mathbb R^2} \frac{dq}{4\pi^2}
|
||
\int_{\hat\Lambda_1}d\kk_1
|
||
\int_{\hat\Lambda_2}d\kk_2'\
|
||
\delta(k_{1,0}-k_{2,0}')
|
||
\cdot\\[0.5cm]\cdot
|
||
\left(
|
||
e^{i(k_1x_1-k_2x_2'+q(x_1-x_2'))}
|
||
e^{iq(d_\alpha-Rd_{\alpha})}
|
||
e^{i\xi(k_2'-k_1)}
|
||
\hat\varsigma(q)\hat\psi^+_{1,\kk_1,\alpha}\hat\psi^-_{2,\kk_2',\alpha}
|
||
\label{V2112}+\right.\\[0.5cm]\indent\left.+
|
||
e^{-i(k_1x_1-k_2x_2'-q(x_1-x_2'))}
|
||
e^{iq(d_\alpha-Rd_{\alpha})}
|
||
e^{-i\xi(k_2'-k_1)}
|
||
\hat\varsigma(q)\hat\psi^+_{2,\kk_2',\alpha}\hat\psi^-_{1,\kk_1,\alpha}
|
||
\right)
|
||
\end{array}\ee
|
||
where we use the notation $\mathbf k_1=(k_{1,0},k_1)$ and $\mathbf k_2'=(k_{2,0},k_2)$.
|
||
Again, using the Poisson formula, we find \pref{112}.
|
||
|
||
|
||
\section{Proof of Lemma \ref{lemm:dioph}}\label{sec:dioph}
|
||
|
||
|
||
To prove lemma \ref{lemm:dioph}, we will first prove a general result on a Diophantine condition for a generic function from $[0,2\pi)$ to $\mathbb R^2$.
|
||
We will then apply this result to $|p_{F,i}^\omega,p_{F,j}^{\omega'}+lb+mb'|$, viewed as a function of $\theta$, for the various values of $i,j,\omega,\omega'$.
|
||
|
||
\subsection{Diophantine condition from $\mathbb R$ to $\mathbb R^2$}
|
||
Let us consider an interval $[\theta_0,\theta_1]\subset[0,2\pi]$, and define, given constants $C_1>0,\tau>4$ that are fixed once and for all, two twice-differentiable functions $x:[0,2\pi)\to \mathbb R,f:[0,2\pi)\to \mathbb R^2$, and a subset $\Omega(x,f)\subset[\theta_0,\theta_1]$,
|
||
\begin{equation}\label{diophantine}
|
||
\mathcal D(x,f):=
|
||
\{\theta\in \Omega(x,f):\ \forall k\in\mathbb Z^2\setminus\{0\},
|
||
\ \forall l\in\mathbb Z,\ |x(\theta)+l
|
||
+k \cdot f(\theta)|\geqslant C_1|k|^{-\tau}\}
|
||
\end{equation}
|
||
We will show that, provided $\Omega$ is chosen appropriately, under certain conditions on $f$ and $x$, $\mathcal D$ has a large measure.
|
||
The novelty of this result is that $f$ takes values in $\mathbb R^2$, but is a function of a single variable; if $f$ were a function from $\mathbb R^n$ to $\mathbb R^n$, then the fact that $\mathcal D$ has a large measure would follow from standard arguments \cite{}.
|
||
Our result is stated for $\mathbb R^2$, but it could easily be adapted to any other dimension, provided $f$ takes a single real-valued argument.
|
||
\bigskip
|
||
|
||
In order to make our argument work, we will assume that $f'(\theta)$ (the derivative of $f$) remains inside a cone, that is, we assume that $\exists\xi\in \mathbb R^2$ with $|\xi|=1$ and $\alpha\in[0,\frac\pi4)$ such that, $\forall \theta\in [\theta_0,\theta_1]$,
|
||
\begin{equation}
|
||
f'(\theta)\in \mathcal C_\xi(\alpha)
|
||
:=\{y\in \mathbb R^2,\ |y\cdot\xi|>|y|\cos(\alpha)\}
|
||
.
|
||
\label{incone}
|
||
\end{equation}
|
||
We take the set $\Omega(x,f)$ in (\ref{diophantine}) to be
|
||
\begin{equation}
|
||
\Omega(x,f):=
|
||
\{\theta\in [\theta_0,\theta_1]:\ \forall k\in \zeta,
|
||
\ |x'(\theta)
|
||
+k \cdot f'(\theta)|\ge C_3|f'(\theta)||k|^{-\epsilon}\}
|
||
\label{Omega}
|
||
\end{equation}
|
||
where $C_3>0$ is a constant, $\epsilon\in(1,\tau-3)$, and
|
||
\begin{equation}
|
||
\zeta:=\mathbb Z^2\setminus(\{0\}\cup\mathcal C_\xi({\textstyle\frac\pi4}))
|
||
\label{zeta}
|
||
\end{equation}
|
||
(the reason why we choose $\Omega$ in this way will become apparent in the proof of Lemma \ref{lemma:diophantine} below).
|
||
|
||
|
||
|
||
\begin{lemma}\label{lemma:diophantine}
|
||
If the following estimates hold:
|
||
\begin{equation}
|
||
\min_{\theta\in [\theta_0,\theta_1]}|f'(\theta)|>0
|
||
,\
|
||
\min_{\theta\in [\theta_0,\theta_1]}|{\textstyle\frac{\partial}{\partial\theta} (\frac{f'(\theta)}{|f'(\theta)|}})|>0
|
||
\label{bound_df}
|
||
\end{equation}
|
||
$\forall \theta\in [\theta_0,\theta_1]$,
|
||
\begin{equation}
|
||
\min_{0<|k|<R_1}|x'(\theta)+k\cdot f'(\theta)|-C_3|f'(\theta)||k|^{-\epsilon}>0
|
||
\label{small_dx}
|
||
\end{equation}
|
||
with
|
||
\begin{equation}
|
||
R_1:= \frac{C_3+\frac{|x'(\theta)|}{|f'(\theta)|}}{\cos(\alpha+\frac\pi4)}
|
||
\label{R1}
|
||
\end{equation}
|
||
and, for some $\eta>0$,
|
||
\begin{equation}
|
||
\min_{0<|k|<R_2}
|
||
|{\textstyle\frac{\partial}{\partial \theta}(\frac{x'(\theta)}{|f'(\theta)|})}+k\cdot {\textstyle\frac \partial{\partial \theta}(\frac{f'(\theta)}{|f'(\theta)|})}|
|
||
-\eta|k||{\textstyle\frac \partial{\partial \theta}(\frac{f'(\theta)}{|f'(\theta)|})}|\cos(\alpha+{\textstyle\frac\pi4})
|
||
>0
|
||
\label{small_ddx}
|
||
\end{equation}
|
||
with
|
||
\begin{equation}
|
||
R_2:=
|
||
\eta+\frac{|{\textstyle \frac \partial{\partial \theta}(\frac{x'(\theta)}{|f'(\theta)|})}|}{|{\textstyle\frac \partial{\partial \theta}(\frac{f'(\theta)}{|f'(\theta)|})}|\cos(\alpha+{\textstyle\frac\pi4})}
|
||
\label{R2}
|
||
\end{equation}
|
||
then the measure of the complement of $\mathcal D$ is bounded by
|
||
\begin{equation}
|
||
|[\theta_0,\theta_1]\setminus\mathcal D(x,f)|
|
||
\le
|
||
O(C_3)+O({\textstyle \frac{C_1}{C_3 \beta}})
|
||
\end{equation}
|
||
where the constants in $O(\cdot)$ depend only on $\theta_0$, $\theta_1$, $x$, $f$, $\alpha$, $\epsilon$, $\tau$, $\eta$.
|
||
In particular, if we choose $C_3\ll \theta_1-\theta_0$ and $C_1\ll (\theta_1-\theta_0)^2$, then $\mathcal D(x,f)$ fills most of $[\theta_0,\theta_1]$.
|
||
\end{lemma}
|
||
|
||
\begin{remark}
|
||
The conditions (\ref{small_dx}) and (\ref{small_ddx}) concern a finite number of values of $k$.
|
||
In the applications of this lemma below, we can make both of these conditions trivial by ensuring that $R_1,R_2<1$, which reduces this finite number of values for $k$ to $0$.
|
||
\end{remark}
|
||
|
||
|
||
{\it Proof}
|
||
Let
|
||
$|\mathcal D_\Omega^c(x,f)|$ denote the Lebesgue measure of the complement $\Omega(x,f)\setminus\mathcal D(x,f)$.
|
||
Let
|
||
\begin{equation}
|
||
g_{l,k}(\th)=|x(\theta)+l+k \cdot f(\theta)|
|
||
\end{equation}
|
||
in terms of which
|
||
\begin{equation}
|
||
|\mathcal D_\Omega^c(x,f)|=\sum_{k,l}^* \int_{-C_1|k|^{-\tau}}^{C_1|k|^{-\tau}} \frac1{g_{l,k}'}dg_{l,k}
|
||
\end{equation}
|
||
where $\sum^*_{k,l}$ has the constraint that $\exists \theta\in[\theta_0,\theta_1]$ such that $g_{k,l}(\theta)\in[-C_1|k|^{-\tau},C_1|k|^{-\tau}]$. Therefore
|
||
\be
|
||
|\mathcal D_\Omega^c(x,f)|\le
|
||
\sum^*_{l,k} 2C_1 {|k|^{-\tau}\over \min_{\theta\in \Omega(x,f)} |x'(\th)+k\cdot f'(\theta)|}
|
||
.
|
||
\ee
|
||
In addition, the number of values of $l$ such that $g_{k,l}(\theta)\in[-C_1|k|^{-\tau},C_1|k|^{-\tau}]$ is bounded by $C_2|k|$ for some constant $C_2$ (which depends only on $\theta_0,\theta_1,x,f$), and so
|
||
\be
|
||
|\mathcal D_\Omega^c(x,f)|\le
|
||
2\sum_{k\in \mathbb Z^2\setminus\{0\}} C_2 C_1 {|k|^{1-\tau}\over \min_{\theta\in \Omega(x,f)} |x'(\th)+k\cdot f'(\theta)|}
|
||
.
|
||
\label{bound_Dctmp}\ee
|
||
In order for this bound to be useful, we must obtain a good lower bound on $|x'+k\cdot f'|$.
|
||
|
||
To do so, $\Omega$ must be chosen appropriately: we wish for $k\cdot f'$ to stay as far away from $-x'$ as possible.
|
||
Now, it cannot avoid it entirely, as $k\cdot f'$ will cover all possible values as $k$ varies in $\mathbb Z^2\setminus\{0\}$.
|
||
By choosing $\Omega$ as in (\ref{Omega}), we ensure that $k\cdot f'$ may only approach $-x'$ for large values of $k$.
|
||
In doing so, we can estimate $\mathcal D_\Omega^c$: we split the sum over $\mathbb Z^2\setminus\{0\}$ into a sum over $\zeta$ and a sum over its complement $\zeta^c\equiv\mathbb Z^2\cap\mathcal C_\xi(\frac\pi4)$, and compute a bound for each case.
|
||
|
||
If $k\in \zeta$, then, by (\ref{Omega}), for $\theta\in \Omega(x,f)$,
|
||
\begin{equation}
|
||
|x'(\theta)+k\cdot f'(\theta)|\ge C_3|f'(\theta)||k|^{-\epsilon}
|
||
.
|
||
\label{boundin}
|
||
\end{equation}
|
||
If, on the other hand, $k\in \zeta^c\equiv\mathbb Z^2\cap\mathcal C_\xi(\frac\pi4)$,
|
||
\begin{equation}
|
||
|k\cdot f'(\theta)|\ge|k||f'(\theta)|\cos(\alpha+{\textstyle\frac\pi4})
|
||
\end{equation}
|
||
so
|
||
\begin{equation}
|
||
|x'(\theta)+k\cdot f'(\theta)|\ge|k||f'(\theta)|\cos(\alpha+{\textstyle\frac\pi4})-|x'(\theta)|
|
||
.
|
||
\end{equation}
|
||
We distinguish two cases once more: either
|
||
\begin{equation}
|
||
|k|\ge \frac{C_3+\frac{|x'(\theta)|}{|f'(\theta)|}}{\cos(\alpha+\frac\pi4)}\equiv R_1
|
||
\end{equation}
|
||
(see (\ref{R1})) in which case (\ref{boundin}) holds true for these $k$'s as well, or $|k|<R_1$, in which case (\ref{boundin}) holds by virtue of (\ref{small_dx}).
|
||
All in all, whatever the value of $k$, (\ref{boundin}) holds for all $k\in \mathbb Z^2\setminus\{0\}$.
|
||
|
||
Therefore, (\ref{bound_Dctmp}) becomes
|
||
\be
|
||
|\mathcal D_\Omega^c(x,f)|\le
|
||
\frac{2C_1C_2}{C_3\min_{\theta\in [\theta_0,\theta_1]} |f'(\theta)|}\sum_{k\in \mathbb Z^2\setminus\{0\}} |k|^{1-\tau+\epsilon}
|
||
.
|
||
\label{bound_D}\ee
|
||
By (\ref{bound_df}), this sum is bounded since $\epsilon <\tau-3$.
|
||
|
||
We are left with estimating the measure of $\Omega^c(x,f):=[\theta_0,\theta_1]\setminus \Omega(x,f)$.
|
||
Proceeding in a similar way as for $|\mathcal D_\Omega^c(x,f)|$, we find that
|
||
\begin{equation}
|
||
|\Omega^c(x,f)|\le 2C_3\sum_{k\in \zeta}\frac{|k|^{-\epsilon}}{\min_{\theta\in[\theta_0,\theta_1]}|\frac{\partial}{\partial \theta}( \frac{x'(\theta)}{|f'(\theta)|})+k\cdot \frac\partial{\partial \theta}(\frac{f'(\theta)}{|f'(\theta)|})|}
|
||
.
|
||
\end{equation}
|
||
Here we see why it was necessary to introduce the set $\zeta$ in (\ref{Omega}): if $\zeta$ were taken to be $\mathbb Z^2\setminus\{0\}$, then we would run into exactly the same problem as before: the denominator in this bound would not be bounded away from 0.
|
||
However, the problem that gave rise to the necessity of introducing $\Omega$ in the first place actually only occurred for the $k$'s that are close to being orthogonal to $f'(\theta)$.
|
||
So we can restrict $\zeta$ to only include the $k$'s that are close to being orthogonal to $f'(\theta)$, which is why we define $\zeta$ as in (\ref{zeta}).
|
||
Because $\frac\partial{\partial \theta}( \frac{f'}{|f'|})$ is orthogonal to $f'$,
|
||
\begin{equation}
|
||
{\textstyle\frac\partial{\partial \theta}(\frac{f'}{|f'|})}\in \mathcal C_{\xi^\perp}(\alpha)
|
||
\end{equation}
|
||
and so, for $k\in \zeta$, because the maximal angle between $k$ and ${\textstyle\frac\partial{\partial \theta}(\frac{f'}{|f'|})}$ is $\alpha+\frac\pi4$,
|
||
\begin{equation}
|
||
|k\cdot {\textstyle\frac \partial{\partial \theta}(\frac{f'(\theta)}{|f'(\theta)|})}|>
|
||
|k||{\textstyle\frac \partial{\partial \theta}(\frac{f'(\theta)}{|f'(\theta)|})}|\cos(\alpha+{\textstyle\frac\pi4})
|
||
.
|
||
\end{equation}
|
||
Thus,
|
||
\begin{equation}
|
||
|{\textstyle\frac \partial{\partial \theta}(\frac{x'(\theta)}{|f'(\theta)|})}+k\cdot {\textstyle\frac \partial{\partial \theta}(\frac{f'(\theta)}{|f'(\theta)|})}|
|
||
>
|
||
|k||{\textstyle\frac \partial{\partial \theta}(\frac{f'(\theta)}{|f'(\theta)|})}|\cos(\alpha+{\textstyle\frac\pi4})
|
||
-|{\textstyle\frac \partial{\partial \theta}(\frac{x'(\theta)}{|f'(\theta)|})}|
|
||
.
|
||
\end{equation}
|
||
Therefore, if
|
||
\begin{equation}
|
||
|k|\ge
|
||
\eta+\frac{|{\textstyle \frac \partial{\partial \theta}(\frac{x'(\theta)}{|f'(\theta)|})}|}{|{\textstyle\frac \partial{\partial \theta}(\frac{f'(\theta)}{|f'(\theta)|})}|\cos(\alpha+{\textstyle\frac\pi4})}
|
||
\equiv R_2
|
||
\end{equation}
|
||
then
|
||
\begin{equation}
|
||
|{\textstyle\frac \partial{\partial \theta}(\frac{x'(\theta)}{|f'(\theta)|})}+k\cdot {\textstyle\frac \partial{\partial \theta}(\frac{f'(\theta)}{|f'(\theta)|})}|
|
||
>\eta|k||{\textstyle\frac \partial{\partial \theta}(\frac{f'(\theta)}{|f'(\theta)|})}|\cos(\alpha+{\textstyle\frac\pi4})
|
||
.
|
||
\label{tmpineq}
|
||
\end{equation}
|
||
If, on the other hand, $|k|<R_2$, then (\ref{tmpineq}) holds by virtue of (\ref{small_ddx}).
|
||
Thus, (\ref{tmpineq}) holds for all $k\in \zeta$.
|
||
Therefore,
|
||
\begin{equation}
|
||
|\Omega^c(x,f)|
|
||
\le
|
||
\frac{2C_3}{\eta{\displaystyle\min_{\theta\in[\theta_0,\theta_1]}}|\frac\partial{\partial \theta}(\frac{f'(\theta)}{|f'(\theta)|})|\cos(\alpha+\frac\pi4)}
|
||
\sum_{k\in \mathbb Z^2\setminus\{0\}}|k|^{-1-\epsilon}
|
||
.
|
||
\label{bound_Omega}
|
||
\end{equation}
|
||
By (\ref{bound_df}), this sum is bounded since $\epsilon>1$.
|
||
We conclude the proof by combining (\ref{bound_D}) with (\ref{bound_Omega}).
|
||
\qed
|
||
|
||
\subsection{Applying the Diophantine condition to $|p_{F,i}^\omega-p_{F,j}^{\omega'}+lb+mb'|$}
|
||
We now apply lemma \ref{lemma:diophantine} repeatedly to prove lemma \ref{lemm:dioph}.
|
||
|
||
Let us first consider the case $i=j$, $\omega=\omega'$, and $y=m$, that is, we wish to find a condition on $\theta$ such that
|
||
\begin{equation}
|
||
|p_{F,i}^\omega-p_{F,j}^{\omega'}+lb+mb'|
|
||
\equiv |lb+mb'|
|
||
\equiv |M|
|
||
\ge\frac{C_0}{|m|^\tau}
|
||
\label{cond11}
|
||
\end{equation}
|
||
(recall (\ref{cond}) and (\ref{M})).
|
||
We recall (\ref{Mineq}):
|
||
\begin{equation}
|
||
|M|\ge
|
||
\frac{2\pi}{\sqrt3}(l_\omega+m\cdot f_\omega)
|
||
\end{equation}
|
||
with $l_+\equiv l_1$ and $l_-\equiv l_2$, and
|
||
\begin{equation}
|
||
f_\omega(\theta):=({\textstyle \frac{\varphi_1-\omega\varphi_3}2},\ {\textstyle \frac{\varphi_2+\omega\varphi_4}2})
|
||
.
|
||
\end{equation}
|
||
Now, recalling the definition (\ref{diophantine}), we have that if $\theta\in \mathcal D(0,f_\omega)$, then the inequality (\ref{cond}) with $i=i'$, $\omega=\omega'$, and $y=m$ holds with $C_0:=\frac{2\pi}{\sqrt3}C_1$.
|
||
We therefore just need to use Lemma \ref{lemma:diophantine} to ensure that the measure of this set is large.
|
||
Taking $\theta_0,\theta_1$ sufficiently small, it suffices to verify the conditions at $\theta=0$, and conclude by continuity.
|
||
In particular, when $\theta_0,\theta_1$ are small, $f'(\theta)$ will take values in a small cone $\mathcal C_{f'(0)}(\alpha)$ with $\alpha=O(\theta_1)$.
|
||
Next, by a straightforward computation, we find
|
||
\begin{equation}
|
||
|f'_\omega(0)|=\sqrt{\frac53}
|
||
,\quad
|
||
\left|\frac\partial{\partial \theta}\frac{f'_\omega(0)}{|f'_\omega(0)|}\right|=\frac{2\sqrt3}5
|
||
\end{equation}
|
||
Which are both non-zero, so (\ref{bound_df}) is satisfied for small enough $\theta$.
|
||
Since $x=0$, the other assumptions trivially hold: we choose $C_3<1/\sqrt2$ and $\eta<1$ such that $R_1,R_2<1$, in which case the minima in (\ref{small_dx}) and (\ref{small_ddx}) are taken over empty sets, so (\ref{small_dx}) and (\ref{small_ddx}) hold trivially.
|
||
Thus, by Lemma \ref{lemma:diophantine}, choosing $C_1=O(\theta_1^2)$, the set $\mathcal D(0,f_\omega)$ has a large measure.
|
||
|
||
We now repeat the argument for the other values of $i,j$, $y$, and $\omega,\omega'$.
|
||
First, note that $p_F^+-p_F^-=\frac13(b_1-b_2)$ so the condition (\ref{cond}) holds for $\o\neq \o'$ whenever it holds for $\omega=\omega'$.
|
||
Next, note that
|
||
\begin{equation}
|
||
|p_{F,i}^\omega-p_{F,j}^\omega+lb+mb'|
|
||
=
|
||
|R^T(p_{F,i}^\omega-p_{F,j}^\omega+lb+mb')|
|
||
\end{equation}
|
||
which corresponds to exchanging $m$ and $l$, and flipping the sign of $\theta$.
|
||
The arguments made for $\theta$ may be adapted in a straightforward way to the case $-\theta$ so our derivation for $y=m$ also applies to $y=l$.
|
||
|
||
We are thus left with the case $i\neq j$, $\omega=\omega'$, and $y=m$.
|
||
Without loss of generality, we choose $i=1$, $j=2$, and we wish to bound
|
||
\begin{equation}
|
||
|p_{F,1}^\omega-p_{F,2}^{\omega}+lb+mb'|
|
||
\ge\frac{C_0}{|m|^\tau}
|
||
\label{cond12}
|
||
\end{equation}
|
||
Proceeding as we did above, we bound
|
||
\begin{equation}
|
||
|p_{F,1}^\omega-p_{F,2}^{\omega}+lb+mb'|
|
||
\ge
|
||
\frac{2\pi}{\sqrt3}\left(
|
||
x_\omega(\theta)
|
||
+l_1+m\cdot f_\omega(\theta)
|
||
\right)
|
||
\end{equation}
|
||
with
|
||
\begin{equation}
|
||
x_\omega(\theta):=\frac{1}3(1-c_\theta)+\omega\frac{1}{\sqrt3}s_\theta
|
||
.
|
||
\end{equation}
|
||
Therefore, if $\theta\in \mathcal D(x_\omega,f_\omega)$, then (\ref{cond12}) holds with $C_0=\frac{2\pi}{\sqrt3}C_1$.
|
||
To show that this set has a large measure, we check the assumptions of Lemma \ref{lemma:diophantine}, as we did above.
|
||
Again, we check the assumptions at $\theta=0$, and argue by continuity.
|
||
We compute
|
||
\begin{equation}
|
||
|x'_\omega(0)|=\frac1{\sqrt3}
|
||
,\quad
|
||
\left|\frac\partial{\partial \theta}\frac{x'_\omega(0)}{|f'_\omega(0)|}\right|=\frac{8}{5\sqrt{15}}
|
||
\end{equation}
|
||
We thus find that if $C_3<1/\sqrt2-1/\sqrt5$ and $\eta<1-4\sqrt2/\sqrt{45}$, then $R_1,R_2<1$, so the minima in (\ref{small_dx}) and (\ref{small_ddx}) are taken over empty sets, so (\ref{small_dx}) and (\ref{small_ddx}) hold trivially.
|
||
\bigskip
|
||
|
||
All in all, we have found that if we restrict the values of $\theta$ to an intersection of Diophantine sets:
|
||
\begin{equation}
|
||
\theta\in
|
||
\bigcap_{\omega=\pm}\bigcap_{\sigma=\pm}\mathcal D(0,f_\omega(\sigma \theta))
|
||
\cap
|
||
\bigcap_{\omega=\pm}\bigcap_{\sigma=\pm}\mathcal D(x_\omega(\sigma \theta),f_\omega(\sigma \theta))
|
||
\end{equation}
|
||
then (\ref{cond}) is satisfied for any value of $i,i'$, $\omega,\omega'$, and $y$ with a constant $C_0=O(\theta_1^2)$.
|
||
Because each set has an arbitrarily large measure (relative to $[\theta_0,\theta_1]$), their intersection also does.
|
||
|
||
|
||
|
||
|
||
|
||
|
||
\section{Naive perturbation theory} \label{app:explicit_feynman}
|
||
|
||
The Schwinger function is computed using perturbation theory: formally,
|
||
\begin{equation}
|
||
\begin{array}{>\displaystyle l}
|
||
(S_{1,1}(\mathbf k))_{\alpha',\alpha}=
|
||
\sum_{N=0}^\infty
|
||
\sum_{\alpha_0,\cdots,\alpha_{2N+1}}
|
||
(g_1(\mathbf k))_{\alpha,\alpha_0}
|
||
\left(\prod_{n=0}^N
|
||
\left(
|
||
\sum_{l_{2n}}\tau_{l_{2n},\alpha_{2n}}^{(1)}(k+m_{2n-1}b'+l_{2n}b)
|
||
(g_2(\mathbf k+l_{2n}b))_{\alpha_{2n},\alpha_{2n+1}}
|
||
\cdot\right.\right.\\\hfill\cdot\left.\left.
|
||
\sum_{m_{2n+1}}\tau_{m_{2n+1},\alpha_{2n+1}}^{(2)}(k+l_{2n}b+m_{2n+1}b')
|
||
((g_1(\mathbf k+m_{2n+1}b'))_{\alpha_{2n+1},\alpha_{2n+2}})^{\mathds 1_{n<N}}
|
||
\right)\right)
|
||
(g_1(\mathbf k))_{\alpha_{2N+1},\alpha'}
|
||
\label{linear1}
|
||
\end{array}\end{equation}
|
||
where $m_{-1}\equiv l_{-1}\equiv0$ and $\mathds 1_{n<N}\in\{0,1\}$ is equal to 1 if and only if $n<N$,
|
||
\begin{equation}\begin{array}{>\displaystyle l}
|
||
(S_{2,2}(\mathbf k))_{\alpha',\alpha}=
|
||
\sum_{N=0}^\infty
|
||
\sum_{\alpha_0,\cdots,\alpha_{2N+1}}
|
||
(g_2(\mathbf k))_{\alpha,\alpha_0}
|
||
\left(\prod_{n=0}^N
|
||
\left(
|
||
\sum_{m_{2n}}\tau_{m_{2n},\alpha_{2n}}^{(2)}(k+l_{2n-1}b+m_{2n}b')
|
||
(g_1(\mathbf k+m_{2n}b'))_{\alpha_{2n},\alpha_{2n+1}}
|
||
\cdot\right.\right.\\\hfill\cdot\left.\left.
|
||
\sum_{l_{2n+1}}\tau_{l_{2n+1},\alpha_{2n+1}}^{(1)}(k+m_{2n}b'+l_{2n+1}b)
|
||
((g_2(\mathbf k+l_{2n+1}b))_{\alpha_{2n+1},\alpha_{2n+2}})^{\mathds 1_{n<N}}
|
||
\right)\right)
|
||
(g_2(\mathbf k))_{\alpha_{2N+1},\alpha'}
|
||
\end{array}\end{equation}
|
||
\begin{equation}\begin{array}{>\displaystyle l}
|
||
(S_{2,1}(\mathbf k))_{\alpha',\alpha}=
|
||
\sum_{N=0}^\infty
|
||
\sum_{\alpha_0,\cdots,\alpha_{2N}}
|
||
(g_1(\mathbf k))_{\alpha,\alpha_0}
|
||
\left(\prod_{n=0}^N
|
||
\left(
|
||
\sum_{l_{2n}}\tau_{l_{2n},\alpha_{2n}}^{(1)}(k+m_{2n-1}b'+l_{2n}b)
|
||
((g_2(\mathbf k+l_{2n}b))_{\alpha_{2n},\alpha_{2n+1}})^{\mathds 1_{n<N}}
|
||
\cdot\right.\right.\\\hfill\cdot\left.\left.
|
||
\left(\sum_{m_{2n+1}}\tau_{m_{2n+1},\alpha_{2n+1}}^{(2)}(k+l_{2n}b+m_{2n+1}b')
|
||
(g_1(\mathbf k+m_{2n+1}b'))_{\alpha_{2n+1,2n+2}}\right)^{\mathds 1_{n<N}}
|
||
\right)\right)
|
||
(g_2(\mathbf k))_{\alpha_{2N,\alpha'}}
|
||
\end{array}\end{equation}
|
||
\begin{equation}\begin{array}{>\displaystyle l}
|
||
(S_{1,2}(\mathbf k))_{\alpha',\alpha}=
|
||
\sum_{N=0}^\infty
|
||
\sum_{\alpha_0,\cdots,\alpha_{2N}}
|
||
(g_2(\mathbf k))_{\alpha,\alpha_0}
|
||
\left(\prod_{n=0}^N
|
||
\left(
|
||
\sum_{m_{2n}}\tau_{m_{2n},\alpha_{2n}}^{(2)}(k+l_{2n-1}b+m_{2n}b')
|
||
((g_1(\mathbf k+m_{2n}b'))_{\alpha_{2n},\alpha_{2n+1}})^{\mathds 1_{n<N}}
|
||
\cdot\right.\right.\\\hfill\cdot\left.\left.
|
||
\left(\sum_{l_{2n+1}}\tau_{l_{2n+1}}^{(1)}(k+m_{2n}b'+l_{2n+1}b)
|
||
(g_2(\mathbf k+l_{2n+1}b))_{\alpha_{2n+1},\alpha_{2n+2}}\right)^{\mathds 1_{n<N}}
|
||
\right)\right)
|
||
\label{linear4}
|
||
\end{array}\end{equation}
|
||
|
||
|
||
\section {Symmetry constraints on the resonant terms}\label{sec:symm}
|
||
|
||
\subsection{Symmetries of the system}\label{sec:symmetry}
|
||
|
||
Let us state the symmetries of the model, which will play an important role in our discussion.
|
||
Note that the $C_2T$ symmetry in (c) only holds if $\xi=(0,1/2)$.
|
||
\vskip.3cm
|
||
a) {\it Complex conjugation}:
|
||
every complex constant is conjugated and
|
||
\be
|
||
\hat\psi_{1,k_0,k,\alpha}^\pm\mapsto
|
||
e^{\mp i \xi(b_1+b_2)}
|
||
\hat\psi_{1,-k_0, -k,\alpha}^\pm
|
||
,\quad
|
||
\label{sim}
|
||
\hat\psi_{2,k_0,k,\alpha}^\pm\mapsto
|
||
e^{\mp i \xi(b'_1+b'_2)}
|
||
\hat\psi_{2,-k_0,-k,\alpha}^\pm\ee
|
||
Indeed, it is straighforward to check that $H_1$ and $H_2$ (see (\ref{H1k}) and (\ref{H2k})) are left invariant by (\ref{sim}) (following from the fact that $\Omega(-k)=\Omega(k)^*$).
|
||
To check the invariance of the interlayer hopping term $V$ (see (\ref{V2112})), there is one subtelty: because $\hat{\mathcal L}_1$ and $\hat{\mathcal L}_2$ have different periodicity, we cannot simply change $k_1$ to $-k_1$ and $k_2'$ to $-k_2'$, which would not leave $\hat{\mathcal L}_i$ invariant.
|
||
Instead, we map $k_1$ to $-k_1+b_1+b_2$ and $k_2'$ to $-k_2'+b_1'+b_2'$.
|
||
It is then straightforward to check (using (\ref{V2112})) that $V$ remains invariant under (\ref{sim}), using $e^{i(1,1)bx_1}=e^{i(1,1)b'x_2'}=1$
|
||
and periodicity.
|
||
\vskip.3cm
|
||
|
||
b)
|
||
{\it Particle-hole} \be
|
||
\hat\psi_{1,k_0, k,\alpha}^\pm\mapsto
|
||
ie^{\pm i\xi(b_1+b_2)}
|
||
\hat\psi_{1,k_0,-k,\alpha}^\mp
|
||
,\quad
|
||
\label{sim1}
|
||
\hat\psi_{2,k_0, k,\alpha}^\pm\mapsto
|
||
ie^{\pm i\xi(b'_1+b'_2)}
|
||
\hat\psi_{2,k_0, -k,\alpha}^\mp\ee
|
||
The argument is substantially the same as for the conjugation symmetry (a).
|
||
\vskip.3cm
|
||
|
||
c) {\it $C_2 T$ symmetry}
|
||
\be
|
||
\hat\psi_{j,k_0,k,\alpha}^\pm\mapsto
|
||
e^{\pm i\chi_j(k)}
|
||
\hat\psi_{j,k_0,-k,\bar\alpha}^\pm
|
||
\label{C2T}
|
||
\ee
|
||
where if $\alpha=a$ then $\bar \alpha=b$ and if $\alpha=b$ then $\bar \alpha =a$, and
|
||
\begin{equation}
|
||
\chi_1(k):=
|
||
\frac{d_b}2(b_1+b_2)-kd_b-\sigma_{k,2}bd_b
|
||
,\quad
|
||
\chi_2(k):=
|
||
\frac{d_b}2(b_1'+b_2')-kRd_b-\sigma_{k,1}b'd_b
|
||
.
|
||
\end{equation}
|
||
$H_1$ and $H_2$ are invariant under (\ref{C2T}) for the same reason as the conjugation and particle-hole symmetries.
|
||
For the interlayer hopping, it is easiest to use the expression of $V$ in (\ref{11}), which involves two integrals: one over $\hat{\mathcal L}_1$ and one over $\hat{\mathcal L}_2$.
|
||
Let us discuss the invariance of the integral over $\hat{\mathcal L}_1$, as the invariance of the other follows from a similar argument.
|
||
We change variables in the integral: $k\mapsto -k+b_1+b_2$, as well as in the sum over $l$: $(l_1,l_2)\mapsto -(l_1+1,l_2+1)$, and in the sum over $\alpha$: $\alpha\mapsto\bar \alpha$.
|
||
This changes $\tau_{l,\alpha}^{(1)}(k+lb)$ to $\tau_{-l-(1,1),\bar \alpha}^{(1)}(-k-lb)$.
|
||
Now, by (\ref{tau1}),
|
||
\begin{equation}
|
||
\frac{\tau_{-l-(1,1),\bar \alpha}^{(1)}(-k-lb)}{\tau_{l,\alpha}^{(1)}(k+lb)}
|
||
=
|
||
e^{-i\xi(2l+(1,1))b}
|
||
e^{i(k+lb)(d_{\bar \alpha}+d_\alpha-Rd_{\alpha}-Rd_{\bar \alpha})}
|
||
e^{-i\xi (\sigma_{-k-lb,1}-\sigma_{k+lb,1})b'}
|
||
\frac{\hat\varsigma(k+lb)}{\hat\varsigma^*(k+lb)}
|
||
.
|
||
\end{equation}
|
||
In addition, if $k+lb-\sigma_{k+lb,1}b'\in\hat{\mathcal L}_2$, then $-k-lb+(\sigma_{k+lb,1}+(1,1))b'\in\hat{\mathcal L}_2$, so
|
||
\begin{equation}
|
||
\sigma_{-k-lb,1}=-\sigma_{k+lb,1}-(1,1)
|
||
\end{equation}
|
||
and, since $d_a=0$ and $d_b=(1,0)$,
|
||
\begin{equation}
|
||
d_{\bar \alpha}+d_\alpha-Rd_{\alpha}-Rd_{\bar \alpha}
|
||
=d_b-Rd_b
|
||
\end{equation}
|
||
and, since $\varsigma(x)=\varsigma(-x)$, $\hat\varsigma\in \mathbb R$.
|
||
Therefore,
|
||
\begin{equation}
|
||
\frac{\tau_{-l-(1,1),\bar \alpha}^{(1)}(-k-lb)}{\tau_{l,\alpha}^{(1)}(k+lb)}
|
||
=
|
||
e^{-i\xi(2l+(1,1))b}
|
||
e^{i(k+lb)(d_b-Rd_b)}
|
||
e^{i\xi (2 \sigma_{k+lb,1}+(1,1))b'}
|
||
.
|
||
\end{equation}
|
||
Since $\xi=d_b/2$,
|
||
\begin{equation}
|
||
\frac{\tau_{-l-(1,1),\bar \alpha}^{(1)}(-k-lb)}{\tau_{l,\alpha}^{(1)}(k+lb)}
|
||
=
|
||
e^{ikd_b}
|
||
e^{-i(k+lb)Rd_b}
|
||
e^{i d_b\sigma_{k+lb,1}b'}
|
||
e^{i\frac{d_b}2(b_1'+b_2'-b_1-b_2)}
|
||
.
|
||
\end{equation}
|
||
It is then straightforward to check that this extra phase gets canceled out exactly by $e^{\pm i\chi_j}$ in (\ref{C2T}) (to see this, note that if $k\in\hat{\mathcal L}_1$, then $\sigma_{k,2}=0$).
|
||
|
||
|
||
\vskip.3cm
|
||
|
||
d) {\it Inversion}
|
||
\be \hat\psi_{j,k_0,k,\alpha}^\pm\to i (-1)^\alpha (-1)^j\hat\psi_{j,-k_0,k,\alpha}^\pm\label{inversion}\ee
|
||
\vskip.3cm
|
||
It is straightforward to check that $H_1$, $H_2$, and the interlayer hopping (using (\ref{V2112})) are invariant under (\ref{inversion}).
|
||
|
||
\subsection {Constraints on the resonant terms}
|
||
|
||
The discrete symmetry properties seen above implies
|
||
severely constraint the form of the resonant terms.
|
||
In the following, we use the notation ``$=^a$'' to mean ``by using symmetry (a) from Section \ref{sec:symmetry} (that is, Complex conjugation), it is equal to'', and similarly for ``$=^b$'', ``$=^c$'', ``$=^d$''.
|
||
|
||
\begin{enumerate}
|
||
|
||
\item
|
||
Using that $W_{aa}(k_0,k)=^d-W_{aa}(-k_0,k)$
|
||
we get $W_{aa}(0,p_F^\omega)=\partial_1W_{aa}(0,p_F^\omega)=\partial_2W_{aa}(0,p_F^\omega)=0$.
|
||
Similarly,
|
||
$W_{bb}(0,p_F^\omega)=\partial_1W_{bb}(0,p_F^\omega)=\partial_2W_{bb}(0,p_F^\omega)=0$.
|
||
\item
|
||
From $W_{ab}(k_0,k)=^b W_{ba}(k_0,-k)=^a W^*_{ba}(-k_0,k)$
|
||
we get $W_{ab}(0,p_F^\omega)=W^*_{ba}(0,p_F^\omega)$,
|
||
$\partial_1W_{ab}(0,p_F^\omega)=\partial_1W^*_{ba}(0,p_F^\omega)$,
|
||
$\partial_2W_{ab}(0,p_F^\omega)=\partial_2W^*_{ba}(0,p_F^\omega)$.
|
||
Moreover $W_{ab}(k_0,k)=^d W_{ab}(-k_0,k)$ hence $\partial_0 W_{ab}(0,p_F^\omega)=0$.
|
||
|
||
\item
|
||
$\partial_0 W_{aa}(k_0,k)=^a-\partial_0 W_{aa}^*(-k_0,-k)=^b-\partial_0 W_{aa}^*(-k_0,k)$
|
||
hence is pure imaginary at $k_0=0$; moreover
|
||
$\partial_0 W_{aa}(k_0,k)=^c \partial_0 W_{bb}(k_0,-k)=^a-\partial_0 W^*_{bb}(-k_0,k)$
|
||
so that $\partial_0 W_{aa}(0,p_F^\o)=\partial W_{bb}(0,p_F^\o)=i z$ with $z$ real
|
||
|
||
\end{enumerate}
|
||
|
||
|
||
|
||
\vfill
|
||
\eject
|
||
|
||
|
||
\bibliographystyle{amsalpha}
|
||
\begin{thebibliography}{19}
|
||
|
||
|
||
\bibitem{a}
|
||
Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices.
|
||
Nature 556, 80 (2018).
|
||
|
||
\bibitem{b}
|
||
Eve Andrei \& Allan H. MacDonald. Graphene Bilayers with a Twist
|
||
Nature Materials 19, 1265 (2020)
|
||
|
||
\bibitem{1} Lopes dos Santos JMB, Peres NMR, Castro Neto AH.
|
||
Graphene bilayer with a twist: electronic structure.
|
||
Phys. Rev. Lett. 99, 256802 (2007)
|
||
|
||
|
||
\bibitem{2}
|
||
R. Bistritzer and A. H. MacDonald. Transport between twisted graphene
|
||
layers. Phys. Rev. B . 81, 24, 1.
|
||
(2010)
|
||
|
||
\bibitem{3}R. Bistritzer and A. H. MacDonald. Moir´e bands in twisted double-layer
|
||
graphene. Proceedings of the National Academy of Sciences of the United
|
||
States of America 108.30, 1223 (2011)
|
||
|
||
\bibitem{1aa1}
|
||
i Chun Po, Liujun Zou, Ashvin Vishwanath, and T. Senthil
|
||
Origin of Mott insulating behavior and superconductivity in twisted bilayer graphene.
|
||
Phys. Rev. X 8, 031089 (2018)
|
||
|
||
\bibitem{1aa2}
|
||
Liujun Zou, Hoi Chun Po, Ashvin Vishwanath, and T. Senthil. Band structure of twisted bilayer graphene: Emergent symmetries, commensurate approximants, and wannier obstructions. Phys. Rev. B, 98(8), 5435. (2018)
|
||
|
||
\bibitem{1bb} S. Shallcross, S. Sharma, E. Kandelaki, and
|
||
O. A. Pankratov. Electronic structure of turbostratic
|
||
graphene, Phys. Rev. B 81, 165105 (2010).
|
||
|
||
\bibitem{1aaa}
|
||
G. Trambly de Laissardi`ere, D. Mayou, and L. Magaud, Localization of dirac electrons in rotated
|
||
graphene bilayers. Nano Letters 10, 804–808 (2010)
|
||
|
||
|
||
\bibitem{H1}
|
||
Huaqing Huang, Yong-Shi Wu, and Feng Liu. Aperiodic topological crystalline insulators.
|
||
Phys. Rev. B 101, 041103(R). ( 2020)
|
||
|
||
\bibitem{H2}T. Cea
|
||
, Pierre A. Pantaleón, and Francisco Guine
|
||
Band structure of twisted bilayer graphene on hexagonal boron nitride
|
||
Phys. Rev. B 102, 155136 (2020)
|
||
|
||
\bibitem{H3}Jingtian Shi
|
||
, Jihang Zhu, and A. H. MacDonald
|
||
Moiré commensurability and the quantum anomalous Hall effect in twisted bilayer graphene on hexagonal boron nitride.
|
||
Phys. Rev. B 103, 075122. (2021)
|
||
|
||
\bibitem{H4} Dan Mao, T. Senthil
|
||
Quasiperiodicity, band topology, and moiré graphene
|
||
Phys. Rev. B 103, 115110 (2021)
|
||
|
||
\bibitem{H5} Michael G. Scheer
|
||
, Kaiyuan Gu
|
||
, and Biao Lian
|
||
Magic angles in twisted bilayer graphene near commensuration: Towards a hypermagic regime.
|
||
Phys. Rev. B 106, 115418 (2022)
|
||
|
||
|
||
\bibitem{P0}
|
||
Yixing Fu, Elio J. König, Justin H. Wilson, Yang-Zhi Chou \& Jedediah H. Pixley.
|
||
Magic-angle semimetals
|
||
npj Quantum Materials 5, 71. (2020)
|
||
|
||
\bibitem{P1}
|
||
Jinjing Yi, Elio J. König2,J. H. Pixley
|
||
Low energy excitation spectrum of magic-angle semimetals
|
||
Phys. Rev. B 106, 195123 (2022)
|
||
|
||
\bibitem{P2}
|
||
H Pixley, DA Huse, JH Wilson
|
||
Connecting the avoided quantum critical point to the magic-angle transition in three-dimensional Weyl semimetals
|
||
Physical Review B, 109, 165151. (2024 )
|
||
|
||
|
||
|
||
\bibitem{Au} S. Aubry and G. André, Ann. Israel Phys. Soc. 3, 133 (1980).
|
||
|
||
\bibitem{DS} E. Dinaburg, E, Y. Sinai, Funct. an. and its app. 9, 279
|
||
(1975)
|
||
|
||
\bibitem{FS}J. Fröhlich
|
||
T. Spencer, P. Wittwer
|
||
Localization for a class of one-dimensional quasi-periodic Schrödinger operators.
|
||
Comm. Math. Phys. 132(1) (1990)
|
||
|
||
|
||
\bibitem{Q0}J Vidal,
|
||
D Mouhanna,
|
||
T Giamarchi.
|
||
Interacting fermions in self-similar potentials.
|
||
Phys. Rev. B 65, 014201 (2001)
|
||
|
||
\bibitem{M10}G. Benfatto, G.Gentile, V. Mastropietro.
|
||
Electrons in a lattice with an incommensurate potential. J. Stat. Phys.
|
||
89, pages 655–708, (1997)
|
||
|
||
\bibitem{Q1}V. Mastropietro. Small Denominators and Anomalous Behaviour in the Incommensurate Hubbard–Holstein Model
|
||
Commun. Math. Phys. 201, 81 (1999);Dense gaps and scaling relations in the interacting Aubry-Andre' model Phys. Rev. B 93, 245154 (2016)
|
||
|
||
\bibitem{Q2}
|
||
V. Oganesyan and D. A. Huse. Localization of interacting fermions at high temperature.
|
||
Phys. Rev. B 75, 155111 (2007).
|
||
|
||
\bibitem{Q3}V. Mastropietro
|
||
Localization of Interacting Fermions in the Aubry-André Model
|
||
Phys. Rev. Lett. 115, 180401 (2015)
|
||
|
||
\bibitem{M11} V. Mastropietro. Localization of Interacting Fermions in the Aubry-André Model
|
||
Phys. Rev. Lett. 115, 180401 (2015); Localization in Interacting Fermionic Chains with Quasi-Random Disorder,
|
||
Comm.Math. Phys.
|
||
Volume 351, pages 283–309, (2017)
|
||
|
||
\bibitem{P4}
|
||
J. H. Pixley, Justin H. Wilson, David A. Huse, Sarang
|
||
Gopalakrishnan
|
||
Weyl Semimetal to Metal Phase Transitions Driven by Quasiperiodic Potentials Phys. Rev. Lett. 120, 207604 (2018)
|
||
|
||
\bibitem{W0}
|
||
J. H. Pixley, J. H. Wilson, D. A. Huse, and S. Gopalakrishnan,
|
||
Weyl Semimetal to Metal Phase Transitions Driven by Quasiperiodic Potentials.
|
||
Phys. Rev. Lett. 120, 207604 (2018).
|
||
|
||
\bibitem{W1}V. Mastropietro
|
||
Stability of Weyl semimetals with quasiperiodic disorder.
|
||
Phys. Rev. B 102, 045101 (2020)
|
||
|
||
|
||
|
||
\bibitem{Lu} J.M. Luck, Critical behavior of the aperiodic quantum Ising chain in a transverse magnetic field, J.
|
||
Stat. Phys., 72, 417 (1993)
|
||
|
||
\bibitem{Ca} P. Crowley, A. Chandran, and C. Laumann, Quasiperiodic quantum Ising transitions in 1d. Physical
|
||
Review Letters, 120 (2018).
|
||
|
||
\bibitem{Ga} M. Gallone, V. Mastropietro. Universality in the 2d Quasi-periodic Ising Model and Harris–Luck Irrelevance.
|
||
Commun. Math. Phys. 405, 235 (2024)
|
||
|
||
\bibitem{111}A. B. Watson, Tianyu Kong, Allan H. MacDonald , Mitchell Luskin
|
||
Bistritzer–MacDonald dynamics in twisted bilayer graphene.
|
||
J. Math. Phys. 64, 031502 (2023)
|
||
|
||
|
||
|
||
\end{thebibliography}
|
||
\end{document}
|
||
|
||
|