24hj/figs/GFc.fig/GFc_gen.py

291 lines
8.1 KiB
Python
Raw Normal View History

2024-02-05 18:44:30 +00:00
#!/usr/bin/env python3
import sys
# This script generates a configuration of 3-staircases in which there is a
# grid of particles in one phase, and the rest of space is filled with
# particles in another phase.
# size of grid
L1=100
L2=100
# grid of particles in phase 1
N11=12
N12=12
# position of lower left particle in phase 1
x01=30+N12
x02=30
# only print from here to there
l11=16
l12=16
l21=80
l22=88
# R2 of the model
R2=3
def main():
# particles in phase 1
particles1=[]
# particles in phase 2
particles2=[]
fill_particles1(particles1)
fill_particles2(particles2,particles1)
# join particles
particles=particles1+particles2
# compute which particles have a Voronoi cells containing a given site
voronoi_index=particles_in_voronoi(particles)
# compute the Voronoi cells of each particle
voronois=voronoi_of_particles(voronoi_index,particles)
# check whether the particles are in the GFc
GFc=particles_in_GFc(voronois,particles1,particles2)
# boundary of GFc
support=GFc_support(GFc,voronois)
GFc_boundary=boundary(support)
# print
print_headers()
print_particles(particles1,particles2,GFc)
print_boundary(GFc_boundary)
print_footers()
# generate grid of particles in phase 1
def fill_particles1(particles1):
for k1 in range(N11):
for k2 in range(N12):
particles1.append((x01+2*k1-k2,x02+k1+3*k2,1))
# fill the rest of space with particles in phase 2
def fill_particles2(particles2, particles1):
for x1 in range(L1):
for x2 in range(L2):
# index of particle
k1=(x1+3*x2)/7
k2=(2*x1-x2)/7
# check the indices are integers:
if k1 != int(k1) or k2 != int(k2):
continue
# check overlap with particles in phase 1
if check_overlap_1((x1,x2),particles1):
continue
particles2.append((x1,x2,2))
# check overlap with particles in phase 1
def check_overlap_1(x,particles1):
for p in particles1:
if check_overlap(x,p):
return True
return False
# check overlap between two 3-staircases
def check_overlap(x,y):
if max(abs(y[0]-x[0]),abs(y[1]-x[1]))>2:
return False
if abs((y[1]-x[1])+(y[0]-x[0]))<=2:
return True
return False
# given a site, compute the particles whose Voronoi cell the site is in
def particles_in_voronoi(particles):
out=[]
for x1 in range(L1):
for x2 in range(L2):
# minimize distance
mindist=L1+L2+1
candidate_list=[]
for p in particles:
dd=dist_support((x1,x2),p)
if dd<mindist:
# reset candidate list
candidate_list=[p]
mindist=dd
elif dd==mindist:
# append candidate
candidate_list.append(p)
# add list to output (keep x1,x2 as index)
out.append(((x1,x2),candidate_list))
return out
# distance between a point and the support of a particle
def dist_support(x,p):
# if x is in support then 0
if abs(p[0]-x[0])+abs(p[1]-x[1])<=2 and x[0]>=p[0] and x[1]>=p[1]:
return 0
# base
out=abs(x[0]-p[0])+abs(x[1]-p[1])
# correct this depending on which site in \sigma_p is actually closest
# lower left quadrant: p is the closest
if x[0]-p[0]<=0 and x[1]-p[1]<=0:
return out
# lines next to lower left quadrant: neighbor of p closest
if x[0]-p[0]==1 and x[1]-p[1]<=0 or x[1]-p[1]==1 and x[0]-p[0]<=0:
return out-1
# otherwise: second neightbor of p closest
return out-2
# from a table associating sites to voronoi cells, get particles
def voronoi_of_particles(voronoi_index,particles):
out=[]
# output is indexed in the same order as particles
for p in particles:
vois=[]
for v in voronoi_index:
if p in v[1]:
vois.append(v[0])
out.append((p,vois))
return out
# find which particles are in the GFc
def particles_in_GFc(voronois,particles1,particles2):
out=[]
# loop over particles
for v in voronois:
# check all other particles
for w in voronois:
# skip v
if v==w:
continue
# check whether the distance between the cells is <=R2
if set_dist(v[1],w[1])>R2:
continue
# check whether w is #-correct
if not ((w[0][2]==1 and sharp_correct1(w[0],particles1)) or (w[0][2]==2 and sharp_correct2(w[0],particles2))):
# in GFc
out.append(v[0])
break
return out
# distance between two sets
def set_dist(s1,s2):
if len(s1)==0 or len(s2)==0:
print("error: computing the distance between two sets, one of which is empty",file=sys.stderr)
exit(-1)
return -1
mind=abs(s1[0][0]-s2[0][0])+abs(s1[0][1]-s2[0][1])
for x in s1:
for y in s2:
if abs(x[0]-y[0])+abs(x[1]-y[1])<mind:
mind=abs(x[0]-y[0])+abs(x[1]-y[1])
return mind
# check whether a particle of type 1 is #-correct:
def sharp_correct1(x,particles1):
if (x[0]+2,x[1]+1,1) not in particles1:
return False
if (x[0]-2,x[1]-1,1) not in particles1:
return False
if (x[0]-3,x[1]+2,1) not in particles1:
return False
if (x[0]+3,x[1]-2,1) not in particles1:
return False
if (x[0]+1,x[1]-3,1) not in particles1:
return False
if (x[0]-1,x[1]+3,1) not in particles1:
return False
return True
# check whether a particle of type 2 is #-correct:
def sharp_correct2(x,particles2):
if (x[0]+1,x[1]+2,2) not in particles2:
return False
if (x[0]-1,x[1]-2,2) not in particles2:
return False
if (x[0]+2,x[1]-3,2) not in particles2:
return False
if (x[0]-2,x[1]+3,2) not in particles2:
return False
if (x[0]-3,x[1]+1,2) not in particles2:
return False
if (x[0]+3,x[1]-1,2) not in particles2:
return False
return True
# support of a GFc
def GFc_support(GFc,voronois):
out=[]
for p in GFc:
# find Voronoi cell
for v in voronois:
if p==v[0]:
out=out+v[1]
break
# remove duplicates
return list(set(out))
# boundary of a set
def boundary(S):
out=[]
for s in S:
if (s[0]+1,s[1]) not in S:
out.append(((s[0]+0.5,s[1]-0.5),(s[0]+0.5,s[1]+0.5)))
if (s[0]-1,s[1]) not in S:
out.append(((s[0]-0.5,s[1]-0.5),(s[0]-0.5,s[1]+0.5)))
if (s[0],s[1]+1) not in S:
out.append(((s[0]-0.5,s[1]+0.5),(s[0]+0.5,s[1]+0.5)))
if (s[0],s[1]-1) not in S:
out.append(((s[0]-0.5,s[1]-0.5),(s[0]+0.5,s[1]-0.5)))
return out
# print particles
def print_headers():
print(r'''\documentclass{standalone}
\usepackage{tikz}
\usepackage{shapes}
\begin{document}
\begin{tikzpicture}
''')
# print grid
print(r'\grid{'+str(l21-l11+1+3)+'}{'+str(l22-l12+1+3)+'}{('+str(l11-1)+','+str(l12-1)+')}')
def print_particles(particles1,particles2,GFc):
for p in particles1:
if p[0]>=l11 and p[0]<=l21 and p[1]>=l12 and p[1]<=l22:
if p in GFc:
print(r'\staircase{green}{('+str(p[0])+','+str(p[1])+')}')
else:
print(r'\staircase{cyan}{('+str(p[0])+','+str(p[1])+')}')
for p in particles2:
if p[0]>=l11 and p[0]<=l21 and p[1]>=l12 and p[1]<=l22:
if p in GFc:
print(r'\staircase{yellow}{('+str(p[0])+','+str(p[1])+')}')
else:
print(r'\staircase{red}{('+str(p[0])+','+str(p[1])+')}')
def print_boundary(boundary):
for seg in boundary:
if seg[0][0]>=l11 and seg[0][0]<=l21 and seg[0][1]>=l12 and seg[0][1]<=l22:
if seg[1][0]>=l11 and seg[1][0]<=l21 and seg[1][1]>=l12 and seg[1][1]<=l22:
print(r'\draw[line width=8pt]('+str(seg[0][0])+','+str(seg[0][1])+')--('+str(seg[1][0])+','+str(seg[1][1])+');')
def print_footers():
print(r'''
\end{tikzpicture}
\end{document}''')
main()