291 lines
8.1 KiB
Python
291 lines
8.1 KiB
Python
|
#!/usr/bin/env python3
|
||
|
|
||
|
import sys
|
||
|
|
||
|
# This script generates a configuration of 3-staircases in which there is a
|
||
|
# grid of particles in one phase, and the rest of space is filled with
|
||
|
# particles in another phase.
|
||
|
|
||
|
# size of grid
|
||
|
L1=100
|
||
|
L2=100
|
||
|
|
||
|
# grid of particles in phase 1
|
||
|
N11=12
|
||
|
N12=12
|
||
|
|
||
|
# position of lower left particle in phase 1
|
||
|
x01=30+N12
|
||
|
x02=30
|
||
|
|
||
|
# only print from here to there
|
||
|
l11=16
|
||
|
l12=16
|
||
|
l21=80
|
||
|
l22=88
|
||
|
|
||
|
# R2 of the model
|
||
|
R2=3
|
||
|
|
||
|
def main():
|
||
|
# particles in phase 1
|
||
|
particles1=[]
|
||
|
# particles in phase 2
|
||
|
particles2=[]
|
||
|
|
||
|
fill_particles1(particles1)
|
||
|
fill_particles2(particles2,particles1)
|
||
|
|
||
|
# join particles
|
||
|
particles=particles1+particles2
|
||
|
|
||
|
# compute which particles have a Voronoi cells containing a given site
|
||
|
voronoi_index=particles_in_voronoi(particles)
|
||
|
# compute the Voronoi cells of each particle
|
||
|
voronois=voronoi_of_particles(voronoi_index,particles)
|
||
|
|
||
|
# check whether the particles are in the GFc
|
||
|
GFc=particles_in_GFc(voronois,particles1,particles2)
|
||
|
|
||
|
# boundary of GFc
|
||
|
support=GFc_support(GFc,voronois)
|
||
|
GFc_boundary=boundary(support)
|
||
|
|
||
|
# print
|
||
|
print_headers()
|
||
|
print_particles(particles1,particles2,GFc)
|
||
|
print_boundary(GFc_boundary)
|
||
|
print_footers()
|
||
|
|
||
|
# generate grid of particles in phase 1
|
||
|
def fill_particles1(particles1):
|
||
|
for k1 in range(N11):
|
||
|
for k2 in range(N12):
|
||
|
particles1.append((x01+2*k1-k2,x02+k1+3*k2,1))
|
||
|
|
||
|
# fill the rest of space with particles in phase 2
|
||
|
def fill_particles2(particles2, particles1):
|
||
|
for x1 in range(L1):
|
||
|
for x2 in range(L2):
|
||
|
# index of particle
|
||
|
k1=(x1+3*x2)/7
|
||
|
k2=(2*x1-x2)/7
|
||
|
|
||
|
# check the indices are integers:
|
||
|
if k1 != int(k1) or k2 != int(k2):
|
||
|
continue
|
||
|
|
||
|
# check overlap with particles in phase 1
|
||
|
if check_overlap_1((x1,x2),particles1):
|
||
|
continue
|
||
|
|
||
|
particles2.append((x1,x2,2))
|
||
|
|
||
|
# check overlap with particles in phase 1
|
||
|
def check_overlap_1(x,particles1):
|
||
|
for p in particles1:
|
||
|
if check_overlap(x,p):
|
||
|
return True
|
||
|
return False
|
||
|
|
||
|
# check overlap between two 3-staircases
|
||
|
def check_overlap(x,y):
|
||
|
if max(abs(y[0]-x[0]),abs(y[1]-x[1]))>2:
|
||
|
return False
|
||
|
if abs((y[1]-x[1])+(y[0]-x[0]))<=2:
|
||
|
return True
|
||
|
return False
|
||
|
|
||
|
|
||
|
# given a site, compute the particles whose Voronoi cell the site is in
|
||
|
def particles_in_voronoi(particles):
|
||
|
out=[]
|
||
|
for x1 in range(L1):
|
||
|
for x2 in range(L2):
|
||
|
# minimize distance
|
||
|
mindist=L1+L2+1
|
||
|
candidate_list=[]
|
||
|
for p in particles:
|
||
|
dd=dist_support((x1,x2),p)
|
||
|
if dd<mindist:
|
||
|
# reset candidate list
|
||
|
candidate_list=[p]
|
||
|
mindist=dd
|
||
|
elif dd==mindist:
|
||
|
# append candidate
|
||
|
candidate_list.append(p)
|
||
|
|
||
|
# add list to output (keep x1,x2 as index)
|
||
|
out.append(((x1,x2),candidate_list))
|
||
|
return out
|
||
|
|
||
|
# distance between a point and the support of a particle
|
||
|
def dist_support(x,p):
|
||
|
# if x is in support then 0
|
||
|
if abs(p[0]-x[0])+abs(p[1]-x[1])<=2 and x[0]>=p[0] and x[1]>=p[1]:
|
||
|
return 0
|
||
|
|
||
|
# base
|
||
|
out=abs(x[0]-p[0])+abs(x[1]-p[1])
|
||
|
# correct this depending on which site in \sigma_p is actually closest
|
||
|
# lower left quadrant: p is the closest
|
||
|
if x[0]-p[0]<=0 and x[1]-p[1]<=0:
|
||
|
return out
|
||
|
# lines next to lower left quadrant: neighbor of p closest
|
||
|
if x[0]-p[0]==1 and x[1]-p[1]<=0 or x[1]-p[1]==1 and x[0]-p[0]<=0:
|
||
|
return out-1
|
||
|
# otherwise: second neightbor of p closest
|
||
|
return out-2
|
||
|
|
||
|
# from a table associating sites to voronoi cells, get particles
|
||
|
def voronoi_of_particles(voronoi_index,particles):
|
||
|
out=[]
|
||
|
# output is indexed in the same order as particles
|
||
|
for p in particles:
|
||
|
vois=[]
|
||
|
for v in voronoi_index:
|
||
|
if p in v[1]:
|
||
|
vois.append(v[0])
|
||
|
out.append((p,vois))
|
||
|
|
||
|
return out
|
||
|
|
||
|
# find which particles are in the GFc
|
||
|
def particles_in_GFc(voronois,particles1,particles2):
|
||
|
out=[]
|
||
|
# loop over particles
|
||
|
for v in voronois:
|
||
|
# check all other particles
|
||
|
for w in voronois:
|
||
|
# skip v
|
||
|
if v==w:
|
||
|
continue
|
||
|
# check whether the distance between the cells is <=R2
|
||
|
if set_dist(v[1],w[1])>R2:
|
||
|
continue
|
||
|
# check whether w is #-correct
|
||
|
if not ((w[0][2]==1 and sharp_correct1(w[0],particles1)) or (w[0][2]==2 and sharp_correct2(w[0],particles2))):
|
||
|
# in GFc
|
||
|
out.append(v[0])
|
||
|
break
|
||
|
|
||
|
return out
|
||
|
|
||
|
|
||
|
# distance between two sets
|
||
|
def set_dist(s1,s2):
|
||
|
if len(s1)==0 or len(s2)==0:
|
||
|
print("error: computing the distance between two sets, one of which is empty",file=sys.stderr)
|
||
|
exit(-1)
|
||
|
return -1
|
||
|
mind=abs(s1[0][0]-s2[0][0])+abs(s1[0][1]-s2[0][1])
|
||
|
for x in s1:
|
||
|
for y in s2:
|
||
|
if abs(x[0]-y[0])+abs(x[1]-y[1])<mind:
|
||
|
mind=abs(x[0]-y[0])+abs(x[1]-y[1])
|
||
|
return mind
|
||
|
|
||
|
# check whether a particle of type 1 is #-correct:
|
||
|
def sharp_correct1(x,particles1):
|
||
|
if (x[0]+2,x[1]+1,1) not in particles1:
|
||
|
return False
|
||
|
if (x[0]-2,x[1]-1,1) not in particles1:
|
||
|
return False
|
||
|
if (x[0]-3,x[1]+2,1) not in particles1:
|
||
|
return False
|
||
|
if (x[0]+3,x[1]-2,1) not in particles1:
|
||
|
return False
|
||
|
if (x[0]+1,x[1]-3,1) not in particles1:
|
||
|
return False
|
||
|
if (x[0]-1,x[1]+3,1) not in particles1:
|
||
|
return False
|
||
|
return True
|
||
|
|
||
|
# check whether a particle of type 2 is #-correct:
|
||
|
def sharp_correct2(x,particles2):
|
||
|
if (x[0]+1,x[1]+2,2) not in particles2:
|
||
|
return False
|
||
|
if (x[0]-1,x[1]-2,2) not in particles2:
|
||
|
return False
|
||
|
if (x[0]+2,x[1]-3,2) not in particles2:
|
||
|
return False
|
||
|
if (x[0]-2,x[1]+3,2) not in particles2:
|
||
|
return False
|
||
|
if (x[0]-3,x[1]+1,2) not in particles2:
|
||
|
return False
|
||
|
if (x[0]+3,x[1]-1,2) not in particles2:
|
||
|
return False
|
||
|
return True
|
||
|
|
||
|
|
||
|
# support of a GFc
|
||
|
def GFc_support(GFc,voronois):
|
||
|
out=[]
|
||
|
for p in GFc:
|
||
|
# find Voronoi cell
|
||
|
for v in voronois:
|
||
|
if p==v[0]:
|
||
|
out=out+v[1]
|
||
|
break
|
||
|
|
||
|
# remove duplicates
|
||
|
return list(set(out))
|
||
|
|
||
|
# boundary of a set
|
||
|
def boundary(S):
|
||
|
out=[]
|
||
|
for s in S:
|
||
|
if (s[0]+1,s[1]) not in S:
|
||
|
out.append(((s[0]+0.5,s[1]-0.5),(s[0]+0.5,s[1]+0.5)))
|
||
|
if (s[0]-1,s[1]) not in S:
|
||
|
out.append(((s[0]-0.5,s[1]-0.5),(s[0]-0.5,s[1]+0.5)))
|
||
|
if (s[0],s[1]+1) not in S:
|
||
|
out.append(((s[0]-0.5,s[1]+0.5),(s[0]+0.5,s[1]+0.5)))
|
||
|
if (s[0],s[1]-1) not in S:
|
||
|
out.append(((s[0]-0.5,s[1]-0.5),(s[0]+0.5,s[1]-0.5)))
|
||
|
return out
|
||
|
|
||
|
|
||
|
# print particles
|
||
|
def print_headers():
|
||
|
print(r'''\documentclass{standalone}
|
||
|
|
||
|
\usepackage{tikz}
|
||
|
\usepackage{shapes}
|
||
|
|
||
|
\begin{document}
|
||
|
\begin{tikzpicture}
|
||
|
|
||
|
''')
|
||
|
|
||
|
# print grid
|
||
|
print(r'\grid{'+str(l21-l11+1+3)+'}{'+str(l22-l12+1+3)+'}{('+str(l11-1)+','+str(l12-1)+')}')
|
||
|
|
||
|
def print_particles(particles1,particles2,GFc):
|
||
|
for p in particles1:
|
||
|
if p[0]>=l11 and p[0]<=l21 and p[1]>=l12 and p[1]<=l22:
|
||
|
if p in GFc:
|
||
|
print(r'\staircase{green}{('+str(p[0])+','+str(p[1])+')}')
|
||
|
else:
|
||
|
print(r'\staircase{cyan}{('+str(p[0])+','+str(p[1])+')}')
|
||
|
for p in particles2:
|
||
|
if p[0]>=l11 and p[0]<=l21 and p[1]>=l12 and p[1]<=l22:
|
||
|
if p in GFc:
|
||
|
print(r'\staircase{yellow}{('+str(p[0])+','+str(p[1])+')}')
|
||
|
else:
|
||
|
print(r'\staircase{red}{('+str(p[0])+','+str(p[1])+')}')
|
||
|
|
||
|
def print_boundary(boundary):
|
||
|
for seg in boundary:
|
||
|
if seg[0][0]>=l11 and seg[0][0]<=l21 and seg[0][1]>=l12 and seg[0][1]<=l22:
|
||
|
if seg[1][0]>=l11 and seg[1][0]<=l21 and seg[1][1]>=l12 and seg[1][1]<=l22:
|
||
|
print(r'\draw[line width=8pt]('+str(seg[0][0])+','+str(seg[0][1])+')--('+str(seg[1][0])+','+str(seg[1][1])+');')
|
||
|
|
||
|
def print_footers():
|
||
|
print(r'''
|
||
|
|
||
|
\end{tikzpicture}
|
||
|
\end{document}''')
|
||
|
|
||
|
main()
|