Update to v0.1:
Fixed: H_N is not compact, e^{-H_N} is. Fixed: Removed confusing discussion of Anyons Added: Discussion of compactness.
This commit is contained in:
parent
dfaad7aaee
commit
e76604e394
8
Changelog
Normal file
8
Changelog
Normal file
@ -0,0 +1,8 @@
|
|||||||
|
v0.1:
|
||||||
|
|
||||||
|
* Fixed: H_N is not compact, e^{-H_N} is.
|
||||||
|
|
||||||
|
* Fixed: Removed confusing discussion of Anyons
|
||||||
|
|
||||||
|
* Added: Discussion of compactness.
|
||||||
|
|
@ -296,10 +296,9 @@ and the other is that exchanging two particles leads to the wavefunction changin
|
|||||||
.
|
.
|
||||||
\end{equation}
|
\end{equation}
|
||||||
Why are these the only two possibilities (in three dimensions)?
|
Why are these the only two possibilities (in three dimensions)?
|
||||||
Mathematically, this comes from the fact that there are only two irreducible representations of the braid group in three dimensions.
|
Mathematically, this comes from the fact that there are only two irreducible representations of the permutation group in three dimensions.
|
||||||
More intuitively, if two particles are exchanged, the wavefunction should pick up a phase $e^{i\theta}$, but if I exchange the particles back, we should return to the original wavefunction, and thus pick up the phase $e^{-i\theta}$.
|
More intuitively, if two particles are exchanged, the wavefunction should pick up a phase $e^{i\theta}$, but if I exchange the particles back, we should return to the original wavefunction, and thus $e^{2i\theta}=1$ and so $\theta$ is either $0$ or $\pi$.
|
||||||
In three dimensions, there is no way of knowing which way is ``back'', so $e^{i\theta}=e^{-i\theta}$ and so $\theta$ is either $0$ or $\pi$.
|
(This is not the case in two dimensions, for reasons we will not elaborate here.)
|
||||||
(In two dimensions, one can know which way is ``back'', so there are other possible phases, but this is a discussion for another time).
|
|
||||||
\bigskip
|
\bigskip
|
||||||
|
|
||||||
\indent
|
\indent
|
||||||
@ -881,7 +880,7 @@ We will be interested in the {\it thermodynamic limit}, in which
|
|||||||
\frac NV=\rho
|
\frac NV=\rho
|
||||||
\end{equation}
|
\end{equation}
|
||||||
with $\rho$ (the density) fixed.
|
with $\rho$ (the density) fixed.
|
||||||
In this case, the Hamiltonian\-~(\ref{Ham}) has pure-point spectrum (it is a compact operator).
|
In this case, the Hamiltonian\-~(\ref{Ham}) has pure-point spectrum (by Theorem\-~\ref{theo:compact_schrodinger}, $e^{-H_N}$ is compact, so it has discrete spectrum, and therefore so does $H_N$).
|
||||||
Its lowest eigenvalue is denoted by $E_0$, and is called the {\it ground-state energy}.
|
Its lowest eigenvalue is denoted by $E_0$, and is called the {\it ground-state energy}.
|
||||||
The corresponding eigenvector is denoted by $\psi_0$:
|
The corresponding eigenvector is denoted by $\psi_0$:
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
@ -2201,7 +2200,7 @@ In this appendix we gather a few useful definitions and results from functional
|
|||||||
\endtheo
|
\endtheo
|
||||||
\bigskip
|
\bigskip
|
||||||
|
|
||||||
\theoname{Theorem}{H\"older's inequality}\label{theo:holder}
|
\theoname{Theorem}{H\"older's inequality \cite[Problem 0.26]{Te14}}\label{theo:holder}
|
||||||
If $f\in L_p(\Omega)$ and $g\in L_q(\Omega)$, then $fg\in L_r(\Omega)$ with
|
If $f\in L_p(\Omega)$ and $g\in L_q(\Omega)$, then $fg\in L_r(\Omega)$ with
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\frac1r=\frac1p+\frac 1q
|
\frac1r=\frac1p+\frac 1q
|
||||||
@ -2253,18 +2252,72 @@ In this appendix we gather a few useful definitions and results from functional
|
|||||||
\bigskip
|
\bigskip
|
||||||
|
|
||||||
\subsection{The Trotter product formula}
|
\subsection{The Trotter product formula}
|
||||||
\theoname{Theorem}{Trotter product formula}\label{theo:trotter}
|
\theoname{Theorem}{Trotter product formula \cite[Theorem 5.11]{Te14}}\label{theo:trotter}
|
||||||
Given two operators $A$ and $B$ on a Banach space,
|
Given two operators $A$ and $B$ on a Hilbert space such that $A$, $B$ and $A+B$ are self-adjoint, and bounded from below, then for $t\geqslant 0$,
|
||||||
\nopagebreakaftereq
|
\nopagebreakaftereq
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
e^{A+B}
|
e^{-t(A+B)}
|
||||||
=
|
=
|
||||||
\lim_{N\to\infty}\left(e^{\frac 1N A}e^{\frac1N B}\right)^N
|
\lim_{N\to\infty}\left(e^{-t\frac 1N A}e^{-t\frac1N B}\right)^N
|
||||||
.
|
.
|
||||||
\end{equation}
|
\end{equation}
|
||||||
\endtheo
|
\endtheo
|
||||||
\restorepagebreakaftereq
|
\restorepagebreakaftereq
|
||||||
|
|
||||||
|
\subsection{Compact and trace-class operators}\label{app:compact}
|
||||||
|
\theoname{Definition}{Trace}
|
||||||
|
Given a separable Hilbert space with an orthonormal basis $\{\varphi_i\}_{i\in\mathbb N}$, the trace of an operator $A$ is formally defined as
|
||||||
|
\begin{equation}
|
||||||
|
\mathrm{Tr}(A):=\sum_{i=0}^\infty \left<\varphi_i\right|A\left|\varphi_i\right>
|
||||||
|
.
|
||||||
|
\end{equation}
|
||||||
|
If this expression is finite, then $A$ is said to be trace-class.
|
||||||
|
\endtheo
|
||||||
|
\bigskip
|
||||||
|
|
||||||
|
\theoname{Definition}{Compact operators}
|
||||||
|
The set of compact operators on a Hilbert space is the closure of the set of finite-rank operators.
|
||||||
|
\endtheo
|
||||||
|
\bigskip
|
||||||
|
|
||||||
|
\theoname{Theorem}{\cite[Theorem 6.6]{Te14}}
|
||||||
|
If $A$ is a compact self-adjoint operator on a Hilbert space, then its spectrum consists of an at most countable set of eigenvalues.
|
||||||
|
\endtheo
|
||||||
|
\bigskip
|
||||||
|
|
||||||
|
\theo{Theorem}\label{theo:trace_compact}
|
||||||
|
Trace class operators are compact.
|
||||||
|
\endtheo
|
||||||
|
\bigskip
|
||||||
|
|
||||||
|
\theoname{Theorem}{\cite[Lemma 5.5]{Te14}}\label{theo:compact_ideal}
|
||||||
|
If $A$ is compact and $B$ is bounded, then $KA$ and $AK$ are compact.
|
||||||
|
\endtheo
|
||||||
|
\bigskip
|
||||||
|
|
||||||
|
\theo{Theorem}\label{theo:compact_schrodinger}
|
||||||
|
Let $\Delta$ be the Laplacian on $L_2(\mathbb R^d/(L\mathbb Z)^d)$ (the same result holds for Dirichlet and Neumann boundary conditions as well).
|
||||||
|
For any function $v$ on $[0,L]^d$ that is bounded below, $e^{t(-\Delta+v)}$ is compact for any $t\geqslant 0$.
|
||||||
|
\endtheo
|
||||||
|
\bigskip
|
||||||
|
|
||||||
|
\indent\underline{Proof}:
|
||||||
|
First of all, $e^{-t\Delta}$ is trace class: using the basis $e^{ikx}$ with $k\in(\frac{2\pi}L\mathbb Z)^d$
|
||||||
|
\begin{equation}
|
||||||
|
\mathrm{Tr}e^{-t\Delta}
|
||||||
|
=\sum_{k\in(\frac{2\pi}L\mathbb Z)^d}e^{-tk^2}<\infty
|
||||||
|
.
|
||||||
|
\end{equation}
|
||||||
|
By Theorem\-~\ref{theo:trace_compact}, $e^{-t\Delta}$ is compact.
|
||||||
|
By the Trotter product formula, Theorem\-~\ref{theo:trotter},
|
||||||
|
\begin{equation}
|
||||||
|
e^{-t\Delta+tv}
|
||||||
|
=\lim_{N\to\infty}(e^{-\frac tN\Delta}e^{\frac tNv})^N
|
||||||
|
\end{equation}
|
||||||
|
and by Theorem\-~\ref{theo:compact_ideal}, $(e^{-\frac tN\Delta}e^{\frac tNv})^N$ is compact.
|
||||||
|
Since the set of compact operators is closed, so is $e^{t(-\Delta+v)}$.
|
||||||
|
\qed
|
||||||
|
|
||||||
\subsection{Positivity preserving operators}\label{app:positivity_preserving}
|
\subsection{Positivity preserving operators}\label{app:positivity_preserving}
|
||||||
\theoname{Definition}{Positivity preserving operators}\label{def:positivity_preserving}
|
\theoname{Definition}{Positivity preserving operators}\label{def:positivity_preserving}
|
||||||
An operator $A$ from a Banach space of real-valued functions $\mathcal B_1$ to another $\mathcal B_2$ is said to be {\it positivity preserving} if, for any $f\in\mathcal B_1$ such that $f(x)\geqslant0$, $Af(x)\geqslant 0$.
|
An operator $A$ from a Banach space of real-valued functions $\mathcal B_1$ to another $\mathcal B_2$ is said to be {\it positivity preserving} if, for any $f\in\mathcal B_1$ such that $f(x)\geqslant0$, $Af(x)\geqslant 0$.
|
||||||
@ -2475,7 +2528,7 @@ In this appendix, we state some useful results from harmonic analysis.
|
|||||||
\restorepagebreakaftereq
|
\restorepagebreakaftereq
|
||||||
\bigskip
|
\bigskip
|
||||||
|
|
||||||
\theo{Theorem}\label{theo:harmonic}
|
\theoname{Theorem}{\cite[Theorem 9.4]{LL01}}\label{theo:harmonic}
|
||||||
A function that is subharmonic on $A$ achieves its maximum on the boundary of $A$.
|
A function that is subharmonic on $A$ achieves its maximum on the boundary of $A$.
|
||||||
A function that is superharmonic on $A$ achieves its minimum on the boundary of $A$.
|
A function that is superharmonic on $A$ achieves its minimum on the boundary of $A$.
|
||||||
\endtheo
|
\endtheo
|
||||||
@ -3078,7 +3131,7 @@ This implies\-~(\ref{sol_softcore}).
|
|||||||
|
|
||||||
\solution{perron_frobenius}
|
\solution{perron_frobenius}
|
||||||
By Theorem\-~\ref{theo:schrodinger}, $e^{-tH_N}$ is positivity preserving.
|
By Theorem\-~\ref{theo:schrodinger}, $e^{-tH_N}$ is positivity preserving.
|
||||||
In addition, $e^{-tH_N}$ is compact because $H_N$ is, and the spectrum of $e^{-tH_N}$ is $e^{-t\mathrm{spec}(H_N)}$, and the largest eigenvector of $e^{-tH_N}$ with the largest eigenvalue is the ground-state of $H_N$.
|
In addition, $e^{-tH_N}$ is compact by Theorem\-~\ref{theo:compact_schrodinger}, and the spectrum of $e^{-tH_N}$ is $e^{-t\ \mathrm{spec}(H_N)}$, and the largest eigenvector of $e^{-tH_N}$ with the largest eigenvalue is the ground-state of $H_N$.
|
||||||
Finally, since $\mathrm{spec}(H_N)\geqslant 0$ (because $-\Delta\geqslant 0$ and $v\geqslant 0$, we can apply the Perron-Frobenius theorem, which implies that $\psi_0$ is unique and $\geqslant 0$.
|
Finally, since $\mathrm{spec}(H_N)\geqslant 0$ (because $-\Delta\geqslant 0$ and $v\geqslant 0$, we can apply the Perron-Frobenius theorem, which implies that $\psi_0$ is unique and $\geqslant 0$.
|
||||||
\bigskip
|
\bigskip
|
||||||
|
|
||||||
|
@ -49,6 +49,8 @@ doi:{\tt\color{blue}\href{http://dx.doi.org/10.1103/PhysRev.130.2518}{10.1103/Ph
|
|||||||
\bibitem[LL64]{LL64}E.H. Lieb, W. Liniger - {\it Simplified Approach to the Ground-State Energy of an Imperfect Bose Gas. III. Application to the One-Dimensional Model}, Physical Review, volume\-~134, issue\-~2A, pages A312-A315, 1964,\par\penalty10000
|
\bibitem[LL64]{LL64}E.H. Lieb, W. Liniger - {\it Simplified Approach to the Ground-State Energy of an Imperfect Bose Gas. III. Application to the One-Dimensional Model}, Physical Review, volume\-~134, issue\-~2A, pages A312-A315, 1964,\par\penalty10000
|
||||||
doi:{\tt\color{blue}\href{http://dx.doi.org/10.1103/PhysRev.134.A312}{10.1103/PhysRev.134.A312}}.\par\medskip
|
doi:{\tt\color{blue}\href{http://dx.doi.org/10.1103/PhysRev.134.A312}{10.1103/PhysRev.134.A312}}.\par\medskip
|
||||||
|
|
||||||
|
\bibitem[LL01]{LL01}E.H. Lieb, M. Loss - {\it Analysis}, Second edition, Graduate studies in mathematics, Americal Mathematical Society, 2001.\par\medskip
|
||||||
|
|
||||||
\bibitem[LS64]{LS64}E.H. Lieb, A.Y. Sakakura - {\it Simplified Approach to the Ground-State Energy of an Imperfect Bose Gas. II. Charged Bose Gas at High Density}, Physical Review, volume\-~133, issue\-~4A, pages A899-A906, 1964,\par\penalty10000
|
\bibitem[LS64]{LS64}E.H. Lieb, A.Y. Sakakura - {\it Simplified Approach to the Ground-State Energy of an Imperfect Bose Gas. II. Charged Bose Gas at High Density}, Physical Review, volume\-~133, issue\-~4A, pages A899-A906, 1964,\par\penalty10000
|
||||||
doi:{\tt\color{blue}\href{http://dx.doi.org/10.1103/PhysRev.133.A899}{10.1103/PhysRev.133.A899}}.\par\medskip
|
doi:{\tt\color{blue}\href{http://dx.doi.org/10.1103/PhysRev.133.A899}{10.1103/PhysRev.133.A899}}.\par\medskip
|
||||||
|
|
||||||
@ -66,6 +68,8 @@ doi:{\tt\color{blue}\href{http://dx.doi.org/10.4171/90-2/40}{10.4171/90-2/40}},
|
|||||||
\bibitem[Se11]{Se11}R. Seiringer - {\it The Excitation Spectrum for Weakly Interacting Bosons}, Communications in Mathematical Physics, volume\-~306, issue\-~2, pages\-~565-578, 2011,\par\penalty10000
|
\bibitem[Se11]{Se11}R. Seiringer - {\it The Excitation Spectrum for Weakly Interacting Bosons}, Communications in Mathematical Physics, volume\-~306, issue\-~2, pages\-~565-578, 2011,\par\penalty10000
|
||||||
doi:{\tt\color{blue}\href{http://dx.doi.org/10.1007/s00220-011-1261-6}{10.1007/s00220-011-1261-6}}, arxiv:{\tt\color{blue}\href{http://arxiv.org/abs/1008.5349}{1008.5349}}.\par\medskip
|
doi:{\tt\color{blue}\href{http://dx.doi.org/10.1007/s00220-011-1261-6}{10.1007/s00220-011-1261-6}}, arxiv:{\tt\color{blue}\href{http://arxiv.org/abs/1008.5349}{1008.5349}}.\par\medskip
|
||||||
|
|
||||||
|
\bibitem[Te14]{Te14}G. Teschl - {\it Mathematical Methods in Quantum Mechanics With Applications to Schr\"odinger Operators}, Second Edition, Graduate Studies in Mathematics, volume\-~157, AMS, 2014.\par\medskip
|
||||||
|
|
||||||
\bibitem[YY09]{YY09}H. Yau, J. Yin - {\it The Second Order Upper Bound for the Ground Energy of a Bose Gas}, Journal of Statistical Physics, volume\-~136, issue\-~3, pages\-~453-503, 2009,\par\penalty10000
|
\bibitem[YY09]{YY09}H. Yau, J. Yin - {\it The Second Order Upper Bound for the Ground Energy of a Bose Gas}, Journal of Statistical Physics, volume\-~136, issue\-~3, pages\-~453-503, 2009,\par\penalty10000
|
||||||
doi:{\tt\color{blue}\href{http://dx.doi.org/10.1007/s10955-009-9792-3}{10.1007/s10955-009-9792-3}}, arxiv:{\tt\color{blue}\href{http://arxiv.org/abs/0903.5347}{0903.5347}}.\par\medskip
|
doi:{\tt\color{blue}\href{http://dx.doi.org/10.1007/s10955-009-9792-3}{10.1007/s10955-009-9792-3}}, arxiv:{\tt\color{blue}\href{http://arxiv.org/abs/0903.5347}{0903.5347}}.\par\medskip
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user