commit 7f0a6766b9a471796a8adcfca847a926cdbe5c97 Author: Ian Jauslin Date: Sun Feb 26 18:05:07 2023 -0500 Initial commit diff --git a/Jauslin_2023.tex b/Jauslin_2023.tex new file mode 100644 index 0000000..c813122 --- /dev/null +++ b/Jauslin_2023.tex @@ -0,0 +1,1703 @@ +\documentclass{ian} + +\usepackage{dsfont} +\usepackage{iantheo} +\usepackage{largearray} +\usepackage{point} +\usepackage{etoolbox} + +\begin{document} + +\pagestyle{empty} + +\hbox{} +\hfil{\bf\LARGE +The Simplified approach to the Bose gas\par +\medskip +\hfil without translation invariance +} +\vfill + +\hfil{\bf\large Ian Jauslin}\par +\hfil{\it Department of Mathematics, Rutgers University}\par +\hfil{\tt\color{blue}\href{mailto:ian.jauslin@rutgers.edu}{ian.jauslin@rutgers.edu}}\par +\vskip20pt + +\vfill + + +\hfil {\bf Abstract}\par +\smallskip + +The Simplified approach to the Bose gas was introduced by Lieb in 1963 to study the ground state of systems of interacting Bosons. +In a series of recent papers, it has been shown that the Simplified approach exceeds earlier expectations, and gives asymptotically accurate predictions at both low and high density. +In the intermediate density regime, the qualitative predictions of the Simplified approach have also been found to agree very well with Quantum Monte Carlo computations. +Until now, the Simplified approach had only been formulated for translation invariant systems, thus excluding external potentials, and non-periodic boundary conditions. +In this paper, we extend the formulation of the Simplified approach to a wide class of systems without translation invariance. +This also allows us to study observables in translation invariant systems whose computation requires the symmetry to be broken. +Such an observable is the momentum distribution, which counts the number of particles in excited states of the Laplacian. +In this paper, we show how to compute the momentum distribution in the Simplified approach, and show that, for the Simple Equation, our prediction matches up with Bogolyubov's prediction at low densities, for momenta extending up to the inverse healing length. + +\vfill + +\tableofcontents + +\eject + +\setcounter{page}1 +\pagestyle{plain} + +\section{Introduction} +\indent +The Bose gas is one of the simplest models in quantum statistical mechanics, and yet it has a rich and complex phenomenology. +As such, it has garnered much attention from the mathematical physics community for over half a century. +It consists in infinitely many identical Bosons and is used to model a wide range of physical systems, from photons in black body radiation to gasses of helium atoms. +Whereas photons do not directly interact with each other, helium atoms do, and such an interaction makes studying such systems very challenging. +To account for interactions between Bosons, Bogolyubov\-~\cite{Bo47} introduced a widely used approximation scheme that accurately predicts many observables\-~\cite{LHY57} {\it in the low density} regime. +Even though Bogolyubov theory is not mathematically rigorous, it has allowed mathematical physicists to develop the necessary intuition to prove a wide variety of results about the Bose gas, such as the low density expansion of the ground state energy of the Bose gas in the thermodynamic limit\-~\cite{Dy57,LY98,YY09,FS20,BCS21,FS22}, as well as many other results in scaling limits other than the thermodynamic limit (see\-~\cite{Sc22} for a review, as well as, among many others, \cite{LSY00,LS02,NRS16,BBe18,BBe19,DSY19,BBe20,DS20,NT21,BSS22,BSS22b,HST22,NNe22}). +In this note, we will focus on the ground state in the thermodynamic limit. +\bigskip + +\indent +In 1963, E.H.\-~Lieb\-~\cite{Li63,LS64,LL64} introduced a new approximation scheme to compute properties of the ground state of Bose gasses, called the {\it Simplified approach}, which has recently been found to yield surprisingly accurate results\-~\cite{CJL20,CJL21,CHe21,Ja22}. +Indeed, while Bogolyubov theory is accurate at low densities, the Simplified approach has been shown to yield asymptotically accurate results at both {\it low and high} densities\-~\cite{CJL20,CJL21} for interaction potentials that are of positive type, as well as reproduce the qualitative behavior of the Bose gas at intermediate densities\-~\cite{CHe21}. +In addition to providing a promising tool to study the Bose gas, the derivation of the Simplified approach is different enough from Bogolyubov theory that it may give novel insights into longstanding open problems about the Bose gas. +\bigskip + +\indent +The original derivation of the Simplified approach\-~\cite{Li63} is quite general, and applies to any translation invariant system (it even works for Coulomb\-~\cite{LS64} and hard-core\-~\cite{CHe21} interactions). +In the present paper, we extend this derivation to systems that break translation invariance. +This allows us to formulate the Simplified approach for systems with external potentials, and with a large class of boundary conditions. +In addition, it allows us to compute observables in systems with translation invariance, but whose computation requires breaking the translation invariance. +We will discuss an example of such an observable: the momentum distribution. +\bigskip + +\indent +The momentum distribution $\mathcal M(k)$ is the probability of finding a particle in the state $e^{ikx}$. +Bose gasses are widely expected to form a Bose-Einstein condensate, although this has still not been proven (at least for continuum interacting gasses in the thermodynamic limit). +From a mathematical point of view, Bose-Einstein condensation is defined as follows: if the Bose gas consists of $N$ particles, the average number of particles in the constant state (corresponding to $k=0$ in $e^{ikx}$) is of order $N$. +The {\it condensate fraction} is defined as the proportion of particles in the constant state. +The momentum distribution is an extension of the condensate fraction to a more general family of states. +In particular, computing $\mathcal M(k)$ for $k\neq 0$ amounts to counting particles that are {\it not} in the condensate. +This quantity has been used in the recent proof\-~\cite{FS20,FS22} of the energy asymptotics of the Bose gas at low density. +\bigskip + +\indent +The main results in this paper fall into two categories. +First, we will derive the Simplified approach without assuming translation invariance, see Theorem\-~\ref{theo:simple}. +To do so, we will make the so-called ``factorization assumption'', on the marginals of the ground state wavefunction, see Assumption\-~\ref{assum:factorization}. +This allows us to derive a Simplified approach for a wide variety of situations in which translation symmetry breaking is violated, such as in the presence of external potentials. +Second, we compute a prediction for the momentum distribution using the Simplified approach. +The Simplified approach does not allow us to compute the ground state wavefunction directly, so to compute observables, such as the momentum distribution, we use the Hellmann-Feynman technique and add an operator to the Hamiltonian. +In the case of the momentum distribution, this extra operator is a projector onto $e^{ikx}$, which breaks the translation invariance of the system. +In Theorem\-~\ref{theo:Nk}, we show how to compute the momentum distribution in the Simplified approach using the general result of Theorem\-~\ref{theo:simple}. +In addition, we check that the prediction is credible, by comparing it to the prediction of Bogolyubov theory, and find that both approaches agree at low densities and small $k$, see Theorem\-~\ref{theo:Nk_bog}. +\bigskip + +\indent +The rest of the paper is structured as follows. +In Section\-~\ref{sec:model}, we specify the model and state the main results precisely. +We then prove Theorem\-~\ref{theo:simple} in Section\-~\ref{sec:simple}, Theorem\-~\ref{theo:Nk} in Section\-~\ref{sec:Nk_proof}, and Theorem\-~\ref{theo:Nk_bog} in Section\-~\ref{sec:Nk_bog}. +The proofs are largely independent and can be read in any order. +\bigskip + +\section{The model and main results}\label{sec:model} +\indent +Consider $N$ Bosons in a box of volume $V$ denoted by $\Omega_V:=[-V^{\frac13}/2,V^{\frac13}/2]^3$, interacting with each other via a pair potential $v\in L_{1}(\Omega_V^2)$ that is symmetric under exchanges of particles: $v(x,y)\equiv v(y,x)$. +The Hamiltonian acts on $L_{2,\mathrm{sym}}(\Omega_V^N)$ as +\begin{equation} + \mathcal H:= + -\frac12\sum_{i=1}^N\Delta_i + + + \sum_{1\leqslant i\right) + +2\left(\mathcal E(x)-\left<\mathcal E(y)\right>\right) + +\frac12\left(\bar A(x)-\left<\bar A\right>-\bar C(x)\right) + \right)g_1(x) + +\Sigma_1(x) + =0 + \label{compleq_g1} + \end{equation} + and + \begin{equation} + \begin{largearray} + \left(-\frac12(\Delta_x+\Delta_y)+v(x,y)-2\rho \bar K(x,y)+\rho^2\bar L(x,y)+\bar R_2(x,y)\right) + g_1(x)g_1(y)(1-u_2(x,y)) + +\\\hfill+ + \Sigma_2(x,y)=0 + \label{compleq_g2} + \end{largearray} + \end{equation} + where + \begin{equation} + \left:=\int\frac{dy}V\ g_1(y)f(y) + ,\quad + \left<\varpi\right>\equiv \int\frac{dy}V\ \varpi g_1(y) + \label{avgdef} + \end{equation} + \begin{equation} + \bar S(x,y):=v(x,y)(1-u_2(x,y)) + ,\quad + f_1\bar\ast f_2(x,y):=\int dz\ g_1(z)f_1(x,z)f_2(z,y) + \end{equation} + \begin{equation} + \mathcal E(x):= + \frac\rho2\int dy\ g_1(y)\bar S(x,y) + ,\quad + \bar A(x):= + \rho^2\bar S\bar\ast u_2\bar\ast u_2(x,x) + \label{EA} + \end{equation} + \begin{equation} + \bar C(x):= + 2\rho^2\int dz\ g_1(z)u_2\bar\ast\bar S(x,z) + +2\rho\int dy\ \varpi_y(g_1(y)u_2(x,y)) + . + \label{C} + \end{equation} + \begin{equation} + \bar K(x,y) + := + \bar S\bar\ast u_2(x,y) + \end{equation} + \begin{equation} + \begin{largearray} + \bar L(x,y) + := + \bar S\bar\ast u_2\bar\ast u_2(x,y) + -2u_2\bar\ast(u_2(u_2\bar\ast\bar S))(x,y) + +\\\hfill+ + \frac12\int dzdt\ g_1(z)g_1(t)\bar S(z,t) u_2(x,z)u_2(x,t)u_2(y,z)u_2(y,t) + \end{largearray} + \end{equation} + \begin{equation} + \begin{array}{r@{\ }>\displaystyle l} + \bar R_2(x,y) + =& + 2\left(\mathcal E(x)+\mathcal E(y)-2\left<\mathcal E\right>\right) + +\left(\varpi_x+\varpi_y-2\left<\varpi\right>\right) + +\\[0.3cm]&+ + \frac12\left(\bar A(x)+\bar A(y)-2\left<\bar A\right>-\bar C(x)-\bar C(y)\right) + +2\rho u_2\bar\ast\left(u_2(\mathcal E-\left<\mathcal E\right>)\right) + +\\[0.3cm]&+ + \rho\int dz\ \varpi_z(g_1(z)u_2(x,z)u_2(y,z)) + - + \rho u_2\bar\ast u_2\left<\varpi\right> + \label{R} + \end{array} + \end{equation} + in which $\varpi_x$ is the action of $\varpi$ on the $x$-variable, and similarly for $\varpi_y$ + and + \begin{equation} + \Sigma_i\mathop{\longrightarrow}_{V\to\infty}0 + \end{equation} + pointwise. + Furthermore, the prediction for the energy per particle is + \begin{equation} + e:=\left<\mathcal E\right>+\left<\varpi\right>+\Sigma_0 + \label{simplen} + \end{equation} + where $\Sigma_0\to0$ as $V\to\infty$. +\endtheo +\bigskip + +This theorem is proved in Section\-~\ref{sec:simple}. +\bigskip + +\indent +Let us compare this to the equation for $u$ in the Simplified approach in the translation invariant case\-~\cite[(5)]{CHe21}, \cite[(3.15)]{Ja22}: +\begin{equation} + -\Delta u(x) + = + (1-u(x))\left(v(x)-2\rho K(x)+\rho^2 L(x)\right) + \label{compleq} +\end{equation} +\begin{equation} + K:= + u\ast S + ,\quad + S(y):=(1-u(y))v(y) + \label{K} +\end{equation} +\nopagebreakaftereq +\begin{equation} + L:= + u\ast u\ast S + -2u\ast(u(u\ast S)) + +\frac12 + \int dydz\ u(y)u(z-x)u(z)u(y-x)S(z-y) + . + \label{L} +\end{equation} +We will prove that these follow from Theorem\-~\ref{theo:simple}: +\bigskip + +\theoname{Corollary}{Translation invariant case}\label{cor:check} + In the translation invariant case $v(x,y)\equiv v(x-y)$ and $\varpi=0$ with periodic boundary conditions, if\-~(\ref{compleq_g1})-(\ref{compleq_g1}) has a unique translation invariant solution, then (\ref{compleq_g2}) reduces to\-~(\ref{compleq}) in the thermodynamic limit. +\endtheo +\bigskip + +\indent +The idea of the proof is quite straightforward. +Equation\-~(\ref{compleq_g2}) is very similar to\-~(\ref{compleq}), but for the addition of the extra term $\bar R_2$. +An inspection of\-~(\ref{R}) shows that the terms in $\bar R_2$ are mostly of the form $f-\left$, which vanish in the translation invariant case, and terms involving $\varpi$, which is set to 0 in the translation invariant case. +The only remaining extra term is $\bar C(x)+\bar C(y)$, which we will show vanishes in the translation invariant case due to the identity\-~(\ref{g2g1}). +\bigskip + +\indent +Theorem\-~\ref{theo:simple} is quite general, and can be used to study a trapped Bose gas, in which there is an external potential $v_0$. +In this case, $\varpi$ is a multiplication operator by $v_0$. +A natural approach is to scale $v_0$ with the volume: $v_0(x)=\bar v_0(V^{-1/3}x)$ in such a way that the size of the trap grows as $V\to\infty$, thus ensuring a finite local density in the thermodynamic limit. +Following the ideas of Gross and Pitaevskii\-~\cite{Gr61,Pi61}, we would then expect to find that\-~(\ref{compleq_g1}) and\-~(\ref{compleq_g2}) decouple, and that (\ref{compleq_g2}) reduces to the translation invariant equation\-~(\ref{compleq}), with a density that is modulated over the trap. +However, the presence of $\bar R_2$ in\-~(\ref{compleq_g2}) and $\bar C$ in\-~(\ref{compleq_g1}) breaks this picture. +Further investigation of this question is warranted. + + +\subsection{The momentum distribution}\label{sec:Nk} +\indent +The momentum distribution for the Bose gas is defined as +\begin{equation} + \mathcal M^{(\mathrm{Exact})}(k):=\frac1N\sum_{i=1}^N\left<\psi_0\right|P_i\left|\psi_0\right> + \label{Mdef} +\end{equation} +where +\begin{equation} + \varpi f:=\epsilon| e^{ikx}\big>\big< e^{ikx}|f + \equiv + \epsilon e^{ikx}\int dy\ e^{-iky}f(y) + \label{varpiNk} +\end{equation} +and $P_i$ is defined as in\-~(\ref{Ppi}): +\begin{equation} + P_i\psi(x_1,\cdots,x_N)= \epsilon e^{ikx_i}\int dy_y\ e^{iky_i}\psi(x_1,\cdots,x_{i-1},y_i,x_{i+1},\cdots,x_N) +\end{equation} +Equivalently, +\begin{equation} + \mathcal M^{(\mathrm{Exact})}(k)=\frac\partial{\partial\epsilon}\left. \frac{E_0}N\right|_{\epsilon=0} +\end{equation} +where $E_0$ is the energy in\-~(\ref{eigval}) for the Hamiltonian\-~(\ref{ham}). +Using the Simplified approach, we do not have access to the ground state wavefunction, so we cannot compute $\mathcal M$ using\-~(\ref{Mdef}). +Instead, we use the Hellmann-Feynman theorem, which consists in adding $\sum_iP_i$ to the Hamiltonian. +However, doing so breaks the translational symmetry. +This is why Theorem\-~\ref{theo:simple} is needed to compute the momentum distribution. +(A similar computation was done in\-~\cite{CHe21}, but, there, the derivation of the momentum distribution for the Simplified approach was taken for granted.) +\bigskip + +\indent +By Theorem\-~\ref{theo:simple}, and, in particular, (\ref{simplen}), we obtain a natural definition of the prediction of the Simplified approach for the momentum distribution: +\begin{equation} + \mathcal M(k):=\frac{\partial}{\partial\epsilon}\left.\left(\left<\mathcal E\right>+\left<\varpi\right>\right)\right|_{\epsilon=0} + . +\end{equation} +\bigskip + +\theoname{Theorem}{Momentum distribution}\label{theo:Nk} + Under the assumptions of Theorem\-~\ref{theo:simple}, using periodic boundary conditions, if $v$ is translation invariant and $\varpi=0$, then, if $k\neq 0$, in the thermodynamic limit, + \begin{equation} + \mathcal M(k)=\frac{\partial}{\partial\epsilon}\left.\frac\rho2\int dx\ (1-u(x))v(x)\right|_{\epsilon=0} + \end{equation} + where + \begin{equation} + -\Delta u(x)=(1-u(x))v(x)-2\rho K(x)+\rho^2L(x)+\epsilon F(x) + \end{equation} + where $K$ and $L$ are those of the translation invariant Simplified approach\-~(\ref{K})-(\ref{L}) and + \begin{equation} + F(x):=-2\hat u(-k)\cos(kx) + . + \label{F} + \end{equation} +\endtheo +\bigskip + +\indent +We thus compute the momentum distribution. +To check that our prediction is plausible, we compare it to the Bogolyubov prediction, which can easily be derived from\-~\cite[Appendix\-~A]{LSe05}: +\begin{equation} + \mathcal M^{(\mathrm{Bogolyubov})}(k)=-\frac1{2\rho}\left(1-\frac{k^2+2\rho\hat v(k)}{\sqrt{k^4+4k^2\rho\hat v(k)}}\right) +\end{equation} +(this can be obtained by differentiating\-~\cite[(A.26)]{LSe05} with respect to $\epsilon(k)$, which returns the number of particles in the state $e^{ikx}$, which we divide by $\rho$ to obtain the momentum distribution). +Actually, following the ideas of\-~\cite{LHY57}, we replace $\hat v$ by a so-called ``pseudopotential'', which consists in replacing $v$ by a Dirac delta function, while preserving the scattering length: +\begin{equation} + \hat v(k)=4\pi a +\end{equation} +where the scattering length $a$ is defined in\-~\cite[Appendix\-~C]{LSe05}. +Thus, +\begin{equation} + \mathcal M^{(\mathrm{Bogolyubov})}(k)=-\frac1{2\rho}\left(1-\frac{k^2+8\pi\rho a}{\sqrt{k^4+16\pi k^2\rho a}}\right) + . + \label{Mbog} +\end{equation} +\bigskip + +\indent +We prove that, for the Simple Equation, as $\rho\to0$, the prediction for the momentum distribution coincides with Bogolyubov's, for $|k|\lesssim\sqrt{\rho a}$. +The length scale $1/\sqrt{\rho a}$ is called the {\it healing length}, and is the distance at which pairs of particles correlate\-~\cite{FS20}. +It is reasonable to expect the Bogolyubov approximation to break down beyond this length scale. +\bigskip + +\indent +The momentum distribution for the Simple equation, following the prescription detailed in\-~\cite{CJL20,CJL21,CHe21,Ja22}, is defined as +\begin{equation} + \mathcal M^{(\mathrm{simpleq})}(k)=\frac{\partial}{\partial\epsilon}\left.\frac\rho2\int dx\ (1-u(x))v(x)\right|_{\epsilon=0} + \label{M_simpleq} +\end{equation} +where\-~\cite[(1.1)-(1.2)]{CJL20} +\begin{equation} + -\Delta u(x)=(1-u(x))v(x)-4eu+2\rho e u\ast u+\epsilon F(x) + ,\quad + e:=\frac\rho2\int dx\ (1-u(x))v(x) + \label{simpleq} +\end{equation} +where $F$ was defined in\-~(\ref{F}). +\bigskip + +\theo{Theorem}\label{theo:Nk_bog} + Assume that $v$ is translation and rotation invariant ($v(x,y)\equiv v(|x-y|)$), and consider periodic boundary conditions. + We rescale $k$: + \begin{equation} + \kappa:=\frac{k}{2\sqrt e} + \end{equation} + we have, for all $\kappa\in\mathbb R^3$, + \begin{equation} + \lim_{e\to0}\rho\mathcal M^{(\mathrm{simpleq})}(2\sqrt e\kappa) + =\lim_{e\to0}\rho\mathcal M^{(\mathrm{Bogolyubov})}(2\sqrt e\kappa) + =-\frac12\left(1-\frac{\kappa^2+1}{\sqrt{(\kappa^2+1)^2-1}}\right) + . + \label{Msimpleqbog} + \end{equation} +\endtheo +\bigskip + +\indent +The rotation invariance of $v$ is presumably not necessary. +However, the proof of this theorem is based on\-~\cite{CJL21}, where rotational symmetry was assumed for convenience. + + +\section{The Simplified approach without translation invariance, proof of Theorem \expandonce{\ref{theo:simple}}}\label{sec:simple} + +\subsection{Factorization} +\indent +We will first compute $f_i$ and $u_i$ in Assumption\-~\ref{assum:factorization}. +\bigskip + +\subsubsection{Factorization of $g_2$} +\indent +We start by considering $g_2$. +\bigskip + +\theo{Lemma}\label{lemma:g2} + Assumption\-~\ref{assum:factorization} with $i=2$ and\-~(\ref{g11})-(\ref{g2g1}) imply that + \begin{equation} + g_2(x,y)=g_1(x)g_1(y)(1-u(x,y))(1+O(V^{-2})) + . + \end{equation} +\endtheo + +\indent\underline{Proof}: + Assumption\-~\ref{assum:factorization} implies + \begin{equation} + g_2(x,y)=f_2(x)f_2(y)(1-u_2(x,y)) + . + \end{equation} + and by\-~(\ref{g2g1}), + \begin{equation} + g_1(x)=f_2(x)\int \frac{dy}V f_2(y)(1-u_2(x,y)) + . + \label{g1_fact} + \end{equation} + \bigskip + + \point + Let us first take an expansion to order $V^{-1}$. + By~\-(\ref{assum_bound}) + \begin{equation} + \int\frac{dy}V\ f_2(y)u_2(x,y)=O(V^{-1}) + \end{equation} + and so + \begin{equation} + g_1(x)=f_2(x)\left(\int\frac{dy}V f_2(y)+O(V^{-1})\right) + . + \label{g1f2} + \end{equation} + Applying $\int\frac{dx}V\cdot$ to both sides of\-~(\ref{g1f2}), we find that + \begin{equation} + \int\frac{dy}Vf_2(y)=1+O(V^{-1}) + \end{equation} + so\-~(\ref{g1f2}) yields + \begin{equation} + f_2(x)=g_1(x)(1+O(V^{-1})) + . + \label{f1V1} + \end{equation} + \bigskip + + \point + We now push the expansion to order $V^{-2}$. + Inserting\-~(\ref{f1V1}) into\-~(\ref{g1_fact}), + \begin{equation} + g_1(x)=f_2(x)\int\frac{dy}V\ f_2(y)-g_1(x)\left(\int\frac{dy}V\ g_1(y)u_2(x,y)+O(V^{-2})\right) + . + \end{equation} + However, by\-~(\ref{g2g1}), + \begin{equation} + g_1(x)\int\frac{dy}V\ g_1(y)(1-u_2(x,y))=g_1(x) + \end{equation} + so, by\-~(\ref{g11}), + \begin{equation} + \int dy\ g_1(y)u_2(x,y)=0 + \label{intu0} + \end{equation} + and + \begin{equation} + g_1(x)(1+O(V^{-2}))=f_2(x)\int\frac{dy}V\ f_2(y) + . + \end{equation} + Taking $\int\frac{dx}V\cdot$ on both sides, we find that + \begin{equation} + f_2(x)=g_1(x)(1+O(V^{-2})) + . + \end{equation} +\qed +\bigskip + +{\bf Remark}: +Note that this proof can easily be generalized to show that $f_2=g_1(1+O(V^{-n}))$ for any $n$. + +\subsubsection{Factorization of $g_3$} +\indent +We now turn to $g_3$. +\bigskip + +\theo{Lemma}\label{lemma:g3} + Assumption\-~\ref{assum:factorization} with $i=2,3$ and\-~(\ref{g11})-(\ref{g3g2}) imply that + \begin{equation} + g_3(x,y,z)=g_1(x)g_1(y)g_1(z)(1-u_3(x,y))(1-u_3(x,z))(1-u_3(y,z))(1+O(V^{-2})) + \end{equation} + with + \begin{equation} + u_3(x,y):=u_2(x,y)+\frac{w_3(x,y)}V + \label{u3} + \end{equation} + \begin{equation} + w_3(x,y):=(1-u_2(x,y))\int dz\ g_1(z)u_2(x,z)u_2(y,z) + . + \label{w3} + \end{equation} +\endtheo +\bigskip + +\indent\underline{Proof}: + Using\-~(\ref{g3g2}) in\-~(\ref{g_factorized}), + \begin{equation} + g_2(x_1,x_2)=W_3(x_1,x_2) + \int \frac{dx_3}V\ W_3(x_1,x_3)W_3(x_2,x_3) + . + \label{g2_factor_inproof} + \end{equation} + \bigskip + + \point + We first expand to order $V^{-1}$. + By\-~(\ref{assum_bound}), + \begin{equation} + \int\frac{dz}Vf_3^2(z)u_3(x,z)=O(V^{-1}) + \label{f3V1} + \end{equation} + so, by\-~(\ref{W_fact}), + \begin{equation} + g_2(x,y)=f_3^2(x)f_3^2(y)(1-u_3(x,y)) + \left(\int \frac{dz}V\ f_3^2(z) + +O(V^{-1})\right) + . + \end{equation} + By Lemma~\-\ref{lemma:g2}, + \begin{equation} + g_1(x)g_1(y)(1-u_2(x,y))=f_3^2(x)f_3^2(y)(1-u_3(x,y))\left(\int\frac{dz}V\ f_3^2(z)+O(V^{-1})\right) + . + \end{equation} + We take $\int\frac{dy}V\cdot$ on both sides of this equation. + By\-~(\ref{intu0}) and\-~(\ref{f3V1}), + \begin{equation} + g_1(x)=f_3^2(x)\left(\left(\int\frac{dy}Vf_3^2(y))\right)^2+O(V^{-1})\right) + \end{equation} + and, integrating once more implies that $\int\frac{dy}Vf_3^2(y)=1+O(V^{-1})$. + Therefore, + \begin{equation} + f_3^2(x)=g_1(x)(1+O(V^{-1})) + \label{3fV} + \end{equation} + and + \begin{equation} + u_3(x,y)=u_2(x,y)(1+O(V^{-1})) + . + \label{3V} + \end{equation} + \bigskip + + \point + We push the expansion to order $V^{-2}$: (\ref{g2_factor_inproof}) is + \begin{equation} + g_2(x,y)=f_3^2(x)f_3^2(y)(1-u_3(x,y))\int\frac{dz}{V}f_3^2(z) + \left( + 1 + -u_3(x,z)-u_3(y,z) + +u_3(x,z)u_3(y,z) + \right) + . + \end{equation} + By\-~(\ref{3fV})-(\ref{3V}) and Lemma\-~\ref{lemma:g2}, + \begin{equation} + \begin{largearray} + f_3^2(x)f_3^2(y)(1-u_3(x,y))\int\frac{dz}{V}f_3^2(z) + =g_1(x)g_1(y)(1-u_2(x,y)) + \cdot\\[0.3cm]\hfill\cdot + \left(1+\int\frac{dz}{V}\ (g_1(z)(u_2(x,z)+u_2(y,z)-u_2(x,z)u_2(y,z)))+O(V^{-2})\right) + . + \end{largearray} + \end{equation} + Therefore, by\-~(\ref{intu0}), + \begin{equation} + \begin{largearray} + f_3^2(x)f_3^2(y)(1-u_3(x,y))\int\frac{dz}{V}f_3^2(z)=g_1(x)g_1(y)(1-u_2(x,y)) + \cdot\\\hfill\cdot + \left(1-\int\frac{dz}{V}g_1(z)u_2(x,z)u_2(y,z)+O(V^{-2})\right) + . + \end{largearray} + \end{equation} + Now, let us apply $\int\frac{dy}V\cdot$ to both sides of the equation. + Note that, by\-~(\ref{assum_bound}), + \begin{equation} + \int\frac{dy}V\ g_1(y)u_2(x,y)\int\frac{dz}Vg_1(z)u_2(x,z)u_2(y,z)=O(V^{-2}) + . + \label{tech1} + \end{equation} + Furthermore, by\-~(\ref{intu0}), + \begin{equation} + \int \frac{dy}V\ g_1(y)u_2(x,y)=0 + ,\quad + \int\frac{dy}V\ g_1(y)\int\frac{dz}V\ g_1(z)u_2(x,z)u_2(y,z)=0 + \end{equation} + and by\-~(\ref{3fV}) and\-~(\ref{3V}), + \begin{equation} + \int\frac{dy}V\ f_3^2(y)u_3(x,y)=\int\frac{dy}V\ g_1(y)u_2(x,y)+O(V^{-2})=O(V^{-2}) + . + \label{tech2} + \end{equation} + We are thus left with + \begin{equation} + f_3^2(x)\left(\int\frac{dy}V\ f_3^2(y)\right)^2 + = + g_1(x)(1+O(V^{-2})) + . + \end{equation} + Taking $\int\frac{dx}V\cdot$, we thus find that + \begin{equation} + \left(\int\frac{dx}V f_3^2(x)\right)^3=1+O(V^{-2}) + \end{equation} + and + \begin{equation} + f_3^2(x)=g_1(x)(1+O(V^{-2})) + . + \end{equation} + Therefore, + \begin{equation} + 1-u_3(x,y)=(1-u_2(x,y))\left(1-\frac1V\int dz\ g_1(z)u_2(x,z)u_2(y,z)+O(V^{-2})\right) + . + \end{equation} +\qed + +\subsubsection{Factorization of $g_4$} + +\theo{Lemma}\label{lemma:g4} + Assumption\-~\ref{assum:factorization} and\-~(\ref{g11})-(\ref{g4g2}) imply that + \begin{equation} + g_4(x_1,x_2,x_3,x_2)= + g_1(x_1)g_1(x_2)g_1(x_3)g_1(x_4) + \left(\prod_{i\displaystyle l} + \bar G_2^{(4)}(x,y) + :=& + -\frac\rho2\left(5+2\rho \int dr\ g_1(r)u_2(x,r)u_2(y,r)\right)\int \frac{dzdt}V\ v(z,t)g_1(z)g_1(t)(1-u_2(z,t)) + -\\[0.3cm]&- + \rho^2\int \frac{dzdt}V\ v(z,t)g_1(z)g_1(t)(1-u_2(z,t))\int dr\ g_1(r)u_2(z,r)u_2(t,r) + +\\&+ + \frac{\rho^2}2\int dzdt\ v(z,t)g_1(z)g_1(t)(1-u_2(z,t)) + \left(\Pi(x,y,z,t)-1\right) + \end{array} +\end{equation} +\begin{equation} + \begin{largearray} + \bar F^{(3)}_2(x,y):= + \rho\int dz\ \varpi_z(g_1(z)(-u_2(x,z)-u_2(y,z)+u_2(x,z)u_2(y,z))) + -\\\hfill- + \left(2+\rho\int dr\ g_1(r)u_2(x,r)u_2(y,r)\right)\int \frac{dz}V\ \varpi g_1(z) + \end{largearray} +\end{equation} +\begin{equation} + \bar E_0= + \frac\rho2\int \frac{dxdy}V\ v(x,y)g_1(x)g_1(y)(1-u_2(x,y)) + . +\end{equation} +\bigskip + +\subpoint +Expanding out $\Pi$, see\-~(\ref{Pi}), we find\-~(\ref{compleq_g2}) with +\begin{equation} + \begin{array}{r@{\ }>\displaystyle l} + \bar R_2(x,y) + :=& + \rho\int dz\ g_1(z)\left( + \bar S(x,z)+\bar S(y,z) + -2\int \frac{dt}V\ g_1(t)\bar S(t,z) + \right) + +\\[0.3cm]&+ + \frac{\rho^2}2\left( + \bar S\bar\ast u_2\bar\ast u_2(x,x)+\bar S\bar\ast u_2\bar\ast u_2(y,y) + -2\int \frac{dt}V\ g_1(t)\bar S\bar\ast u_2\bar\ast u_2(t,t) + \right) + +\\[0.3cm]&+ + \rho^2\int dzdt\ g_1(z)g_1(t)u_2(x,z)u_2(y,z)\left( + \bar S(z,t) + -\int\frac{dr}V\ g_1(r)\bar S(z,r) + \right) + -\\[0.3cm]&- + \rho^2\int dt\ g_1(t)(\bar S\bar\ast u_2(x,t)+\bar S\bar\ast u_2(y,t)) + +\bar F_2^{(3)}(x,y) + +\varpi_x+\varpi_y + \end{array} + \label{R1} +\end{equation} +and +\begin{equation} + \Sigma_2(x,y):=B_2(x,y)-B_0g_1(x)g_1(y)(1-u_2(x,y))+O(V^{-1}) + . +\end{equation} +Using\-~(\ref{EA}) and\-~(\ref{C}), (\ref{R1}) becomes\-~(\ref{R}). +\bigskip + +\point +Finally, (\ref{simplen}) follows from\-~(\ref{E0}) with +\begin{equation} + \Sigma_0:=B_0+O(V^{-1}) + . +\end{equation} + +\qed + +\subsection{Sanity check, proof of Corollary \expandonce{\ref{cor:check}}}\label{sec:trsl_inv} +\indent +Assuming the translation invariance of the solution, $g_1(x)$ is constant. +By\-~(\ref{g11}), +\begin{equation} + g_1(x)=1 + . + \label{g1const} +\end{equation} +Furthermore, $\varpi\equiv 0$. +We then have +\begin{equation} + \bar S(x,y)=S(x-y) + ,\quad + \bar K(x,y)=K(x-y) + ,\quad + \bar L(x,y)=L(x-y) +\end{equation} +(see\-~(\ref{K})-(\ref{L})). +Furthermore, +\begin{equation} + \mathcal E(x)\equiv \mathcal E(y)\equiv\left<\mathcal E\right>=\frac\rho2\int dy\ S(y) +\end{equation} +\begin{equation} + \bar A(x)\equiv\bar A(y)\equiv\left<\bar A\right>=\rho^2 S\ast u\ast u(0) +\end{equation} +\begin{equation} + \bar C(x)\equiv \bar C_2(y) + =2\rho^2\int dz\ u(z)\int dt\ S(t) +\end{equation} +which vanishes by\-~(\ref{g2g1}). +Thus, +\begin{equation} + \bar R_2(x,y)\equiv0 + . +\end{equation} +We conclude by taking the thermodynamic limit. +\qed + + + +\section{The momentum distribution} + +\subsection{Computation of the momentum distribution, proof of Theorem \expandonce{\ref{theo:Nk}}}\label{sec:Nk_proof} +\indent +We use Theorem\-~\ref{theo:simple} with $\varpi$ as in\-~(\ref{varpiNk}). +Note that, by\-~(\ref{varpiNk}), +\begin{equation} + \int dx\ \varpi f(x)=0 +\end{equation} +which trivially satisfies\-~(\ref{bound_varpi}). +\bigskip + +\point +We change variables in\-~(\ref{compleq_g2}) to +\begin{equation} + \xi=\frac{x+y}2 + ,\quad + \zeta=x-y +\end{equation} +and find +\begin{equation} + \begin{largearray} + \left( + -\frac14\Delta_\xi-\Delta_\zeta+v(\zeta) + -2\rho\bar K(\xi+{\textstyle\frac\zeta 2},\xi-{\textstyle\frac\zeta 2}) + +\rho^2\bar L(\xi+{\textstyle\frac\zeta 2},\xi-{\textstyle\frac\zeta 2}) + +\bar R_2(\xi+{\textstyle\frac\zeta 2},\xi-{\textstyle\frac\zeta 2}) + \right) + \cdot\\\hfill\cdot + g_1(\xi+{\textstyle\frac\zeta 2})g_1(\xi-{\textstyle\frac\zeta 2}) + (1-u_2(\xi+{\textstyle\frac\zeta 2},\xi-{\textstyle\frac\zeta 2})) + =-\Sigma_2 + . + \label{g2_xi} + \end{largearray} +\end{equation} +In addition, by\-~(\ref{simplen}), +\begin{equation} + e=\frac\rho2\int \frac{d\xi d\zeta}V\ g_1(\xi+{\textstyle\frac\zeta 2})g_1(\xi-{\textstyle\frac\zeta 2})v(\zeta)(1-u_2(\xi+{\textstyle\frac\zeta 2},\xi-{\textstyle\frac\zeta 2})) + +\int\frac{dx}V\ \varpi g_1(x) + +\Sigma_1 + . + \label{Nken} +\end{equation} +We expand in powers of $\epsilon$: +\begin{equation} + g_1(x)=1+\epsilon g_1^{(1)}(x)+O(\epsilon^2) + ,\quad + u_2(\xi+{\textstyle\frac\zeta2},\xi-{\textstyle\frac\zeta 2})=u_2^{(0)}(\zeta)+\epsilon u_2^{(1)}(\xi+{\textstyle\frac\zeta2},\xi-{\textstyle\frac\zeta 2})+O(\epsilon^2) +\end{equation} +in which we used the fact that, at $\epsilon=0$, $g_1(x)|_{\epsilon=0}=1$, see\-~(\ref{g1const}). +In particular, the terms of order $0$ in $\epsilon$ are independent of $\xi$. +Note, in addition, that, by\-~(\ref{g11}), +\begin{equation} + \int\frac{dx}V\ g_1^{(1)}(x)=0 + . + \label{intg11} +\end{equation} +\bigskip + +\point +The trick of this proof is to take the average with respect to $\xi$ on both sides of\-~(\ref{g2_xi}). +Since we take periodic boundary conditions, the $\Delta_\xi$ term drops out. +We will only focus on the first order contribution in $\epsilon$, and, as was mentioned above, terms of order $0$ are independent of $\xi$. +Thus, the average over $\xi$ will always apply to a single term, either $g_1^{(1)}$ or $u_2^{(1)}$. +By\-~(\ref{g11}), the terms involving $g_1^{(1)}$ have zero average. +We can therefore replace $g_1^{(1)}$ by 1. +(The previous argument does not apply to the terms in which $\Delta_\zeta$ acts on $g_1$, but these terms have a vanishing average as well because of the periodic boundary conditions.) +In particular, by\-~(\ref{g2g1}) and Lemma\-~\ref{lemma:g2}, +\begin{equation} + \int\frac{d\xi}V\ (1-u_2^{(1)}(\xi+{\textstyle\frac\zeta2},\xi-{\textstyle\frac\zeta 2})) + =1 +\end{equation} +so +\begin{equation} + \int\frac{d\xi}V\ u_2^{(1)}(\xi+{\textstyle\frac\zeta2},\xi-{\textstyle\frac\zeta 2}) + =0 +\end{equation} +and thus, we can replace $u_2$ with $u_2^{(0)}$. +Thus, using the translation invariant computation detailed in Section\-~\ref{sec:trsl_inv}, we find that the average of\-~(\ref{g2_xi}) is +\begin{equation} + (-\Delta+v(\zeta)-2\rho K(\zeta)+\rho^2 L(\zeta))(1-u_2^{(0)}(\zeta))+\epsilon F(\zeta)+O(\epsilon^2)+\Sigma_2=0 + \label{eqNk_inproof} +\end{equation} +where $K$ and $L$ are defined in\-~(\ref{K}) and\-~(\ref{L}) and $F$ comes from the contribution to $\bar R_2$ of $\varpi$, see\-~(\ref{R}): +\begin{equation} + \begin{largearray} + F(\zeta):=\epsilon^{-1}\int \frac{d\xi}V\ + \left( + \varpi_x+\varpi_y-2\left<\varpi\right> + +\rho\int dz\ \varpi_z(u_2^{(0)}(\xi+{\textstyle\frac\zeta2}-z)u_2^{(0)}(\xi-{\textstyle\frac\zeta 2}-z)) + -\right.\\\hfill\left.- + \rho\int dz\ \varpi_zu_2^{(0)}(\xi+{\textstyle\frac\zeta2}-z) + -\rho\int dz\ \varpi_zu_2^{(0)}(\xi-{\textstyle\frac\zeta 2}-z) + \right)(1-u_2^{(0)}(\zeta)) + . + \end{largearray} +\end{equation} +Similarly, (\ref{Nken}) is +\begin{equation} + e=\frac\rho2\int d\zeta\ v(\zeta)(1-u_2^{(0)}(\zeta)) + +\int\frac{dx}V\ \varpi g_1(x) + +\Sigma_1 + +O(\epsilon^2) + . +\end{equation} +\bigskip + +\point +Furthermore, by\-~(\ref{varpiNk}), +\begin{equation} + \int dz\ \varpi_z f(z)=0 +\end{equation} +for any integrable $f$, so +\begin{equation} + F(\zeta)=\epsilon^{-1}\int \frac{d\xi}V\ + \left(\varpi_x+\varpi_y\right)(1-u_2^{(0)}(\zeta)) +\end{equation} +and +\begin{equation} + e=\frac\rho2\int d\zeta\ v(\zeta)(1-u_2^{(0)}(\zeta)) + +\Sigma_1 + +O(\epsilon^2) + . + \label{Nken_inproof} +\end{equation} +Now, +\begin{equation} + \varpi_x f(x-y) + = + e^{ikx} + \int dz\ + e^{-ikz}f(z-y) +\end{equation} +so +\begin{equation} + \varpi_x f(\zeta) + = + \epsilon e^{ik(\xi+{\textstyle\frac\zeta2})} + \int dz\ + e^{-ik(z+(\xi-{\textstyle\frac\zeta 2}))}f(z) + = + \epsilon e^{ik\zeta} + \int dz\ + e^{-ikz}f(z) + =\epsilon e^{ik\zeta}\hat f(-k) + . +\end{equation} +Similarly, +\begin{equation} + \varpi_y f(\zeta) + =\epsilon e^{-ik\zeta}\hat f(-k) + . +\end{equation} +Thus +\begin{equation} + F(\zeta)=2\cos(k\zeta)(\delta(k)-\hat u_2^{(0)}(-k)) + . + \label{F_inproof} +\end{equation} +Since $k\neq 0$, the $\delta$ function drops out. +We conclude the proof by combining\-~(\ref{eqNk_inproof}), (\ref{Nken_inproof}) and\-~(\ref{F_inproof}) and taking the thermodynamic limit. +\qed + +\subsection{The simple equation and Bogolyubov theory, proof of Theorem \expandonce{\ref{theo:Nk_bog}}}\label{sec:Nk_bog} + +\point +We differentiate\-~(\ref{simpleq}) with respect to $\epsilon$ and take $\epsilon=0$: +\begin{equation} + (-\Delta+v+4e+4e\rho u\ast)\partial_\epsilon u=-4\partial_\epsilon eu+2\partial_\epsilon e\rho u\ast u+F + . +\end{equation} +Let +\begin{equation} + \mathfrak K_e:=(-\Delta+v+4e(1-\rho u\ast))^{-1} +\end{equation} +(this operator was introduced and studied in detail in\-~\cite{CJL21}). +We apply $\mathfrak K_e$ to both sides and take a scalar product with $-\rho v/2$ and find +\begin{equation} + \partial_\epsilon e=\rho\partial_\epsilon e\int dx\ v(x)\mathfrak K_e(2u(x)-\rho u\ast u(x))-\frac\rho2\int dx\ v(x)\mathfrak K_eF(x) +\end{equation} +and so, using\-~(\ref{M_simpleq}), +\begin{equation} + \mathcal M^{(\mathrm{simpleq})}(k)=\partial_\epsilon e + =-\frac{\frac\rho2\int dx\ v(x)\mathfrak K_eF(x)}{1-\rho\int dx\ v(x)\mathfrak K_e(2u(x)-\rho u\ast u(x))} +\end{equation} +and, by\-~(\ref{F}), +\begin{equation} + \mathcal M^{(\mathrm{simpleq})}(k) + =\rho\frac{\hat u(k)\int dx\ v(x)\mathfrak K_e\cos(kx)}{1-\rho\int dx\ v(x)\mathfrak K_e(2u(x)-\rho u\ast u(x))} + . +\end{equation} +Note that +\begin{equation} + \int\frac{dk}{(2\pi)^3}\mathcal M^{(\mathrm{simpleq})}(k) + = + \frac{\rho\int dx\ v(x)\mathfrak K_e u(x)}{1-\rho\int dx\ v(x)\mathfrak K_e(2u(x)-\rho u\ast u(x))} +\end{equation} +which is the expression for the uncondensed fraction for the simple equation\-~\cite[(38)]{CHe21}. +\bigskip + +\point +By\-~\cite[(5.8),(5.27)]{CJL21}, +\begin{equation} + \mathcal M^{(\mathrm{simpleq})}(k)=\rho + \left(\hat u(k)\int dx\ v(x)\mathfrak K_e\cos(k(x))\right) + (1+O(\rho e^{-\frac12})) + . +\end{equation} +Furthermore, by the resolvent identity, +\begin{equation} + \mathfrak K_e\cos(kx) + = + \xi-\mathfrak K_e(v\xi) + ,\quad + \xi:=\mathfrak Y_e(\cos(kx)) + :=(-\Delta+4e(1-\rho u\ast))^{-1}\cos(kx) +\end{equation} +in terms of which, using the self-adjointness of $\mathfrak K_e$, +\begin{equation} + \mathcal M^{(\mathrm{simpleq})}(k)=\rho\hat u(k)\left( + \int dx\ v(x)\xi(x) + - + \int dx\ \mathfrak K_ev(x)(v(x)\xi(x)) + \right) + . + \label{pde} +\end{equation} +\bigskip + +\point +Now, taking the Fourier transform, +\begin{equation} + \hat\xi(q)\equiv\int dx\ e^{ikx}\xi(x)=\frac{(2\pi)^3}2\frac{\delta(k-q)+\delta(k+q)}{q^2+4e(1-\rho\hat u(q))} +\end{equation} +and so +\begin{equation} + \int dx\ v(x)\xi(x) + = + \int\frac{dq}{(2\pi)^3}\hat v(q)\hat\xi(q) + = + \frac{\hat v(k)}{k^2+4e(1-\rho\hat u(k))} +\end{equation} +and thus +\begin{equation} + \rho\hat u(k)\int dx\ v(x)\xi + = + \rho\hat v(k)\frac{\hat u(k)}{k^2+4e(1-\rho\hat u(k))} + . +\end{equation} +We recall\-~\cite[(4.25)]{CJL20}: +\begin{equation} + \rho\hat u(k)=\frac{k^2}{4e}+1-\sqrt{\left(\frac{k^2}{4e}+1\right)^2-\hat S(k)} + \label{rhou} +\end{equation} +and, by\-~\cite[(4.24)]{CJL20}, +\begin{equation} + \hat S(0)=1 + . + \label{S1} +\end{equation} +Therefore, if we rescale +\begin{equation} + k=2\sqrt{e}\kappa +\end{equation} +we find +\begin{equation} + \rho\hat u(k)\int dx\ v(x)\xi + = + \frac{\hat v(0)}{4e}\frac{\kappa^2+1-\sqrt{(\kappa^2+1)^2-1}}{\sqrt{(\kappa^2+1)^2-1}} + +o(e^{-1}) + . + \label{pde1} +\end{equation} +\bigskip + +\point +Now, +\begin{equation} + \int dx\ e^{iqx}v(x)\xi(x) + = + \frac12\frac1{k^2+4e(1-\rho\hat u(k))} + \int dp\ \hat v(q-p)(\delta(k-p)+\delta(k+p)) +\end{equation} +so +\begin{equation} + \int dx\ e^{iqx}v(x)\xi(x) + = + \frac12\frac{\hat v(q-k)+\hat v(q+k)}{k^2+4e(1-\rho\hat u(k))} + . +\end{equation} +Therefore, +\begin{equation} + \int dx\ \mathfrak K_ev(x)(v\xi) + = + \frac12\frac1{k^2+4e(1-\rho\hat u(k))} + \int\frac{dq}{(2\pi)^3}\ + \widehat{\mathfrak K_e v}(q) + (\hat v(k-q)+\hat v(k+q)) +\end{equation} +which, using the $q\mapsto-q$ symmetry, is +\begin{equation} + \int dx\ \mathfrak K_ev(x)(v\xi) + = + \frac1{k^2+4e(1-\rho\hat u(k))} + \int\frac{dq}{(2\pi)^3}\ + \widehat{\mathfrak K_e v}(q) + \hat v(k+q) +\end{equation} +that is, +\begin{equation} + \rho\hat u(k)\int dx\ \mathfrak K_ev(x)(v\xi) + = + \frac{\rho\hat u(k)}{k^2+4e(1-\rho\hat u(k))} + \int dx\ + e^{-ikx} + \mathfrak K_e v(x) + v(x) +\end{equation} +in which we rescale +\begin{equation} + k=2\sqrt e\kappa +\end{equation} +so, by\-~(\ref{rhou})-(\ref{S1}), +\begin{equation} + \rho\hat u(k)\int dx\ \mathfrak K_ev(x)(v\xi) + = + \frac{\kappa^2+1-\sqrt{(\kappa^2+1)^2-1}}{4e\sqrt{(\kappa^2+1)^2-1}} + (1+o(1))\int dx\ + e^{-i2\sqrt e\kappa x} + v(x)\mathfrak K_e v(x) + . +\end{equation} +Therefore, by dominated convergence (using the argument above\-~\cite[(5.23)]{CJL21} and the fact that $\mathfrak K_e$ is positivity preserving), and by\-~\cite[(5.23)-(5.24)]{CJL21}, +\begin{equation} + \rho\hat u(k)\int dx\ \mathfrak K_ev(x)(v\xi) + = + \frac{\kappa^2+1-\sqrt{(\kappa^2+1)^2-1}}{4e\sqrt{(\kappa^2+1)^2-1}} + (-4\pi a+\hat v(0))+o(e^{-1}) + . + \label{pde2} +\end{equation} +\bigskip + +\point +Inserting\-~(\ref{pde1}) and\-~(\ref{pde2}) into\-~(\ref{pde}), we find +\begin{equation} + \mathcal M^{(\mathrm{simpleq})}(k) + = + \frac{\pi a}{e}\frac{\kappa^2+1-\sqrt{(\kappa^2+1)^2-1}}{\sqrt{(\kappa^2+1)^2-1}} + +o(e^{-1}) + . +\end{equation} +Finally, we recall\-~\cite[(1.23)]{CJL20}: +\begin{equation} + e=2\pi\rho a(1+O(\sqrt\rho)) + \label{erho} +\end{equation} +so +\begin{equation} + \mathcal M^{(\mathrm{simpleq})}(k) + = + \frac{1}{2}\frac{\kappa^2+1-\sqrt{(\kappa^2+1)^2-1}}{\sqrt{(\kappa^2+1)^2-1}} + +o(e^{-1}) + . + \label{final1} +\end{equation} +\bigskip + +\point +Finally, by\-~(\ref{Mbog}) +\begin{equation} + \mathcal M^{(\mathrm{Bogolyubov})}(2\sqrt e\kappa)=-\frac1{2\rho}\left(1-\frac{\frac{4e}{8\pi\rho a}\kappa^2+1}{\sqrt{\frac{e^2}{4\pi^2\rho^2a^2}\kappa^4+\frac{e}{\pi\rho a} \kappa^2}}\right) +\end{equation} +so by\-~(\ref{erho}), +\begin{equation} + \mathcal M^{(\mathrm{Bogolyubov})}(2\sqrt e\kappa)=-\frac1{2\rho}\left(1-\frac{\kappa^2+1}{\sqrt{\kappa^4+2\kappa^2}}\right) + . +\end{equation} +This, together with\-~(\ref{final1}), implies\-~(\ref{Msimpleqbog}). +\qed + + +\vfill +\eject + +\begin{thebibliography}{WWW99} +\small +\IfFileExists{bibliography/bibliography.tex}{\input bibliography/bibliography.tex}{} +\end{thebibliography} + + +\end{document} diff --git a/Makefile b/Makefile new file mode 100644 index 0000000..9175c78 --- /dev/null +++ b/Makefile @@ -0,0 +1,46 @@ +PROJECTNAME=$(basename $(wildcard *.tex)) +LIBS=$(notdir $(wildcard libs/*)) + +PDFS=$(addsuffix .pdf, $(PROJECTNAME)) +SYNCTEXS=$(addsuffix .synctex.gz, $(PROJECTNAME)) + +all: $(PROJECTNAME) + +$(PROJECTNAME): $(LIBS) + pdflatex -file-line-error $@.tex + pdflatex -file-line-error $@.tex + pdflatex -synctex=1 $@.tex + +$(PROJECTNAME).aux: $(LIBS) + pdflatex -file-line-error -draftmode $(PROJECTNAME).tex + + +$(SYNCTEXS): $(LIBS) + pdflatex -synctex=1 $(patsubst %.synctex.gz, %.tex, $@) + + +libs: $(LIBS) + +$(LIBS): + ln -fs libs/$@ ./ + +bibliography/bibliography.tex: $(PROJECTNAME).aux + BBlog -c bibliography/conf.BBlog -d $(BIBLIOGRAPHY) -b bibliography/bibliography.tex + + +clean-aux: + rm -f $(addsuffix .aux, $(PROJECTNAME)) + rm -f $(addsuffix .log, $(PROJECTNAME)) + rm -f $(addsuffix .out, $(PROJECTNAME)) + rm -f $(addsuffix .toc, $(PROJECTNAME)) + +clean-libs: + rm -f $(LIBS) + +clean-tex: + rm -f $(PDFS) $(SYNCTEXS) + +clean-bibliography: + rm -f bibliography/bibliography.tex + +clean: clean-aux clean-tex clean-libs diff --git a/README b/README new file mode 100644 index 0000000..2d6841d --- /dev/null +++ b/README @@ -0,0 +1,33 @@ +This directory contains the source files to typeset the article, and generate +the figures. This can be accomplished by running + make + +This document uses a custom class file, located in the 'libs' directory, which +defines a number of commands. Most of these are drop-in replacements for those +defined in the 'article' class. + +Some extra functionality is provided in custom style files, located in the +'libs' directory. + + +* Dependencies: + + pdflatex + TeXlive packages: + amsfonts + color + doublestroke + etoolbox + hyperref + latex + marginnote + GNU make + +* Files: + + Jauslin_2023.tex: + main LaTeX file + + libs: + custom LaTeX class file + diff --git a/bibliography/bibliography.tex b/bibliography/bibliography.tex new file mode 100644 index 0000000..2419e95 --- /dev/null +++ b/bibliography/bibliography.tex @@ -0,0 +1,93 @@ +\bibitem[BCS21]{BCS21}G. Basti, S. Cenatiempo, B. Schlein - {\it A new second-order upper bound for the ground state energy of dilute Bose gases}, Forum of Mathematics, Sigma, volume\-~9, number e74, 2021,\par\penalty10000 +doi:{\tt\color{blue}\href{http://dx.doi.org/10.1017/fms.2021.66}{10.1017/fms.2021.66}}, arxiv:{\tt\color{blue}\href{http://arxiv.org/abs/2101.06222}{2101.06222}}.\par\medskip + +\bibitem[BBe18]{BBe18}C. Boccato, C. Brennecke, S. Cenatiempo, B. Schlein - {\it Complete Bose–Einstein Condensation in the Gross–Pitaevskii Regime}, Communications in Mathematical Physics, volume\-~359, issue\-~3, pages\-~975-1026, 2018,\par\penalty10000 +doi:{\tt\color{blue}\href{http://dx.doi.org/10.1007/s00220-017-3016-5}{10.1007/s00220-017-3016-5}}.\par\medskip + +\bibitem[BBe19]{BBe19}C. Boccato, C. Brennecke, S. Cenatiempo, B. Schlein - {\it Bogoliubov theory in the Gross–Pitaevskii limit}, Acta Mathematica, volume\-~222, issue\-~2, pages\-~219-335, 2019,\par\penalty10000 +doi:{\tt\color{blue}\href{http://dx.doi.org/10.4310/ACTA.2019.v222.n2.a1}{10.4310/ACTA.2019.v222.n2.a1}}, arxiv:{\tt\color{blue}\href{http://arxiv.org/abs/1801.01389}{1801.01389}}.\par\medskip + +\bibitem[BBe20]{BBe20}C. Boccato, C. Brennecke, S. Cenatiempo, B. Schlein - {\it Optimal Rate for Bose-Einstein Condensation in the Gross-Pitaevskii Regime}, Communications in Mathematical Physics, volume\-~376, issue\-~2, pages\-~1311-1395, 2020,\par\penalty10000 +doi:{\tt\color{blue}\href{http://dx.doi.org/10.1007/s00220-019-03555-9}{10.1007/s00220-019-03555-9}}, arxiv:{\tt\color{blue}\href{http://arxiv.org/abs/1812.03086}{1812.03086}}.\par\medskip + +\bibitem[Bo47]{Bo47}N. Bogolubov - {\it On the theory of superfluidity}, Journal of Physics (USSR), volume\-~11, number\-~1, pages\-~23-32 (translated from the Russian Izv.Akad.Nauk Ser.Fiz, volume\-~11, pages\-~77-90), 1947.\par\medskip + +\bibitem[BSS22]{BSS22}C. Brennecke, B. Schlein, S. Schraven - {\it Bose-Einstein Condensation with Optimal Rate for Trapped Bosons in the Gross-Pitaevskii Regime}, Mathematical Physics, Analysis and Geometry, volume\-~25, issue\-~2, pages\-~1-71, 2022,\par\penalty10000 +doi:{\tt\color{blue}\href{http://dx.doi.org/10.1007/s11040-022-09424-7}{10.1007/s11040-022-09424-7}}, arxiv:{\tt\color{blue}\href{http://arxiv.org/abs/2102.11052}{2102.11052}}.\par\medskip + +\bibitem[BSS22b]{BSS22b}C. Brennecke, B. Schlein, S. Schraven - {\it Bogoliubov Theory for Trapped Bosons in the Gross-Pitaevskii Regime}, Annales Henri Poincaré, volume\-~23, issue\-~5, pages\-~1583-1658, 2022,\par\penalty10000 +doi:{\tt\color{blue}\href{http://dx.doi.org/10.1007/s00023-021-01151-z}{10.1007/s00023-021-01151-z}}, arxiv:{\tt\color{blue}\href{http://arxiv.org/abs/2108.11129}{2108.11129}}.\par\medskip + +\bibitem[CHe21]{CHe21}E.A. Carlen, M. Holzmann, I. Jauslin, E.H. Lieb - {\it Simplified approach to the repulsive Bose gas from low to high densities and its numerical accuracy}, Physical Review A, volume\-~103, issue\-~5, number\-~053309, 2021,\par\penalty10000 +doi:{\tt\color{blue}\href{http://dx.doi.org/10.1103/PhysRevA.103.053309}{10.1103/PhysRevA.103.053309}}, arxiv:{\tt\color{blue}\href{http://arxiv.org/abs/2011.10869}{2011.10869}}.\par\medskip + +\bibitem[CJL20]{CJL20}E.A. Carlen, I. Jauslin, E.H. Lieb - {\it Analysis of a simple equation for the ground state energy of the Bose gas}, Pure and Applied Analysis, volume\-~2, issue\-~3, pages\-~659-684, 2020,\par\penalty10000 +doi:{\tt\color{blue}\href{http://dx.doi.org/10.2140/paa.2020.2.659}{10.2140/paa.2020.2.659}}, arxiv:{\tt\color{blue}\href{http://arxiv.org/abs/1912.04987}{1912.04987}}.\par\medskip + +\bibitem[CJL21]{CJL21}E.A. Carlen, I. Jauslin, E.H. Lieb - {\it Analysis of a Simple Equation for the Ground State of the Bose Gas II: Monotonicity, Convexity, and Condensate Fraction}, SIAM Journal on Mathematical Analysis, volume\-~53, number\-~5, pages\-~5322-5360, 2021,\par\penalty10000 +doi:{\tt\color{blue}\href{http://dx.doi.org/10.1137/20M1376820}{10.1137/20M1376820}}, arxiv:{\tt\color{blue}\href{http://arxiv.org/abs/2010.13882}{2010.13882}}.\par\medskip + +\bibitem[DS20]{DS20}A. Deuchert, R. Seiringer - {\it Gross-Pitaevskii Limit of a Homogeneous Bose Gas at Positive Temperature}, Archive for Rational Mechanics and Analysis, volume\-~236, issue\-~3, pages\-~1217-1271, 2020,\par\penalty10000 +doi:{\tt\color{blue}\href{http://dx.doi.org/10.1007/s00205-020-01489-4}{10.1007/s00205-020-01489-4}}, arxiv:{\tt\color{blue}\href{http://arxiv.org/abs/1901.11363}{1901.11363}}.\par\medskip + +\bibitem[DSY19]{DSY19}A. Deuchert, R. Seiringer, J. Yngvason - {\it Bose-Einstein Condensation in a Dilute, Trapped Gas at Positive Temperature}, Communications in Mathematical Physics, volume\-~368, issue\-~2, pages\-~723-776, 2019,\par\penalty10000 +doi:{\tt\color{blue}\href{http://dx.doi.org/10.1007/s00220-018-3239-0}{10.1007/s00220-018-3239-0}}, arxiv:{\tt\color{blue}\href{http://arxiv.org/abs/1803.05180}{1803.05180}}.\par\medskip + +\bibitem[Dy57]{Dy57}F.J. Dyson - {\it Ground-State Energy of a Hard-Sphere Gas}, Physical Review, volume\-~106, issue\-~1, pages\-~20-26, 1957,\par\penalty10000 +doi:{\tt\color{blue}\href{http://dx.doi.org/10.1103/PhysRev.106.20}{10.1103/PhysRev.106.20}}.\par\medskip + +\bibitem[FS20]{FS20}S. Fournais, J.P. Solovej - {\it The energy of dilute Bose gases}, Annals of Mathematics, volume\-~192, issue\-~3, pages\-~893-976, 2020,\par\penalty10000 +doi:{\tt\color{blue}\href{http://dx.doi.org/10.4007/annals.2020.192.3.5}{10.4007/annals.2020.192.3.5}}, arxiv:{\tt\color{blue}\href{http://arxiv.org/abs/1904.06164}{1904.06164}}.\par\medskip + +\bibitem[FS22]{FS22}S. Fournais, J.P. Solovej - {\it The energy of dilute Bose gases II: the general case}, Inventiones mathematicae, volume , issue , pages\-~1-132, 2022,\par\penalty10000 +doi:{\tt\color{blue}\href{http://dx.doi.org/10.1007/s00222-022-01175-0}{10.1007/s00222-022-01175-0}}, arxiv:{\tt\color{blue}\href{http://arxiv.org/abs/2108.12022}{2108.12022}}.\par\medskip + +\bibitem[Gr61]{Gr61}E.P. Gross - {\it Structure of a quantized vortex in boson systems}, Il Nuovo Cimento (1955-1965), volume\-~20, issue\-~3, pages\-~454-477, 1961,\par\penalty10000 +doi:{\tt\color{blue}\href{http://dx.doi.org/10.1007/BF02731494}{10.1007/BF02731494}}.\par\medskip + +\bibitem[HST22]{HST22}C.\-~Hainzl, B.\-~Schlein, A.\-~Triay - {\it Bogoliubov theory in the Gross-Pitaevskii limit}, arXiv preprint, 2022\par\penalty10000 +arxiv:{\tt\color{blue}\href{https://arxiv.org/abs/2203.03440}{2203.03440}}.\par\medskip + +\bibitem[Ja22]{Ja22}I. Jauslin - {\it Review of a Simplified Approach to study the Bose gas at all densities}, The Physics and Mathematics of Elliott Lieb, The\-~90th Anniversary Volume I, chapter\-~25, pages\-~609-635, ed. Rupert L. Frank, Ari Laptev, Mathieu Lewin, Robert Seiringer, EMS Press, 2022,\par\penalty10000 +doi:{\tt\color{blue}\href{http://dx.doi.org/10.4171/90-1/25}{10.4171/90-1/25}}, arxiv:{\tt\color{blue}\href{http://arxiv.org/abs/2202.07637}{2202.07637}}.\par\medskip + +\bibitem[LHY57]{LHY57}T.D. Lee, K. Huang, C.N. Yang - {\it Eigenvalues and Eigenfunctions of a Bose System of Hard Spheres and Its Low-Temperature Properties}, Physical Review, volume\-~106, issue\-~6, pages\-~1135-1145, 1957,\par\penalty10000 +doi:{\tt\color{blue}\href{http://dx.doi.org/10.1103/PhysRev.106.1135}{10.1103/PhysRev.106.1135}}.\par\medskip + +\bibitem[Li63]{Li63}E.H. Lieb - {\it Simplified Approach to the Ground-State Energy of an Imperfect Bose Gas}, Physical Review, volume\-~130, issue\-~6, pages\-~2518-2528, 1963,\par\penalty10000 +doi:{\tt\color{blue}\href{http://dx.doi.org/10.1103/PhysRev.130.2518}{10.1103/PhysRev.130.2518}}.\par\medskip + +\bibitem[LL64]{LL64}E.H. Lieb, W. Liniger - {\it Simplified Approach to the Ground-State Energy of an Imperfect Bose Gas. III. Application to the One-Dimensional Model}, Physical Review, volume\-~134, issue\-~2A, pages A312-A315, 1964,\par\penalty10000 +doi:{\tt\color{blue}\href{http://dx.doi.org/10.1103/PhysRev.134.A312}{10.1103/PhysRev.134.A312}}.\par\medskip + +\bibitem[LS64]{LS64}E.H. Lieb, A.Y. Sakakura - {\it Simplified Approach to the Ground-State Energy of an Imperfect Bose Gas. II. Charged Bose Gas at High Density}, Physical Review, volume\-~133, issue\-~4A, pages A899-A906, 1964,\par\penalty10000 +doi:{\tt\color{blue}\href{http://dx.doi.org/10.1103/PhysRev.133.A899}{10.1103/PhysRev.133.A899}}.\par\medskip + +\bibitem[LS02]{LS02}E.H. Lieb, R. Seiringer - {\it Proof of Bose-Einstein Condensation for Dilute Trapped Gases}, Physical Review Letters, volume\-~88, issue\-~17, number\-~170409, 2002,\par\penalty10000 +doi:{\tt\color{blue}\href{http://dx.doi.org/10.1103/PhysRevLett.88.170409}{10.1103/PhysRevLett.88.170409}}, arxiv:{\tt\color{blue}\href{http://arxiv.org/abs/math-ph/0112032}{math-ph/0112032}}.\par\medskip + +\bibitem[LSe05]{LSe05}E.H. Lieb, R. Seiringer, J.P. Solovej, J. Yngvason - {\it The Mathematics of the Bose Gas and its Condensation}, Oberwolfach Seminars, volume\-~34, Birkha\"user, 2005, arxiv:{\tt\color{blue}\href{http://arxiv.org/abs/cond-mat/0610117}{cond-mat/0610117}}.\par\medskip + +\bibitem[LSY00]{LSY00}E.H. Lieb, R. Seiringer, J. Yngvason - {\it Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional}, Physical Review A, volume\-~61, issue\-~4, number\-~043602, 2000,\par\penalty10000 +doi:{\tt\color{blue}\href{http://dx.doi.org/10.1103/PhysRevA.61.043602}{10.1103/PhysRevA.61.043602}}, arxiv:{\tt\color{blue}\href{http://arxiv.org/abs/math-ph/9908027}{math-ph/9908027}}.\par\medskip + +\bibitem[LY98]{LY98}E.H. Lieb, J. Yngvason - {\it Ground State Energy of the Low Density Bose Gas}, Physical Review Letters, volume\-~80, issue\-~12, pages\-~2504-2507, 1998,\par\penalty10000 +doi:{\tt\color{blue}\href{http://dx.doi.org/10.1103/PhysRevLett.80.2504}{10.1103/PhysRevLett.80.2504}}, arxiv:{\tt\color{blue}\href{http://arxiv.org/abs/cond-mat/9712138}{cond-mat/9712138}}.\par\medskip + +\bibitem[NNe22]{NNe22}P.T. Nam, M. Napi\'orkowski, J. Ricaud, A. Triay - {\it Optimal rate of condensation for trapped bosons in the Gross–Pitaevskii regime}, Analysis and PDE, volume\-~15, issue\-~6, pages\-~1585-1616, 2022,\par\penalty10000 +doi:{\tt\color{blue}\href{http://dx.doi.org/10.2140/apde.2022.15.1585}{10.2140/apde.2022.15.1585}}, arxiv:{\tt\color{blue}\href{http://arxiv.org/abs/2001.04364}{2001.04364}}.\par\medskip + +\bibitem[NRS16]{NRS16}P.T. Nam, N. Rougerie, R. Seiringer - {\it Ground states of large bosonic systems : the Gross–Pitaevskii limit revisited}, Analysis and PDE, volume\-~9, issue\-~2, pages\-~459-485, 2016,\par\penalty10000 +doi:{\tt\color{blue}\href{http://dx.doi.org/10.2140/apde.2016.9.459}{10.2140/apde.2016.9.459}}, arxiv:{\tt\color{blue}\href{http://arxiv.org/abs/1503.07061}{1503.07061}}.\par\medskip + +\bibitem[NT21]{NT21}P.T.\-~Nam, A.\-~Triay - {\it Bogoliubov excitation spectrum of trapped Bose gases in the Gross-Pitaevskii regime}, arXiv preprint, 2021\par\penalty10000 +arxiv:{\tt\color{blue}\href{https://arxiv.org/abs/2106.11949}{2106.11949}}.\par\medskip + +\bibitem[Pi61]{Pi61}L.P. Pitaevskii - {\it Vortex lines in an imperfect Bose gas}, Soviet Physics JETP, volume\-~13, number\-~2, pages\-~451-454, 1961.\par\medskip + +\bibitem[Sc22]{Sc22}B. Schlein - {\it Bose gases in the Gross-Pitaevskii limit: A survey of some rigorous results}, The Physics and Mathematics of Elliott Lieb, The\-~90th anniversary volume II, eds R.L. Frank, A. Laptev, M. Lewin, R. Seiringer, pages\-~277-305, 2022,\par\penalty10000 +doi:{\tt\color{blue}\href{http://dx.doi.org/10.4171/90-2/40}{10.4171/90-2/40}}, arxiv:{\tt\color{blue}\href{http://arxiv.org/abs/2203.10855}{2203.10855}}.\par\medskip + +\bibitem[YY09]{YY09}H. Yau, J. Yin - {\it The Second Order Upper Bound for the Ground Energy of a Bose Gas}, Journal of Statistical Physics, volume\-~136, issue\-~3, pages\-~453-503, 2009,\par\penalty10000 +doi:{\tt\color{blue}\href{http://dx.doi.org/10.1007/s10955-009-9792-3}{10.1007/s10955-009-9792-3}}, arxiv:{\tt\color{blue}\href{http://arxiv.org/abs/0903.5347}{0903.5347}}.\par\medskip + diff --git a/libs/ian.cls b/libs/ian.cls new file mode 100644 index 0000000..a907fd0 --- /dev/null +++ b/libs/ian.cls @@ -0,0 +1,667 @@ +%% +%% Ian's class file +%% + +%% TeX format +\NeedsTeXFormat{LaTeX2e}[1995/12/01] + +%% class name +\ProvidesClass{ian}[2017/09/29] + +%% boolean to signal that this class is being used +\newif\ifianclass +\ianclasstrue + +%% options +% no section numbering in equations +\DeclareOption{section_in_eq}{\sectionsineqtrue} +\DeclareOption{section_in_fig}{\sectionsinfigtrue} +\DeclareOption{section_in_all}{\sectionsineqtrue\sectionsinfigtrue} +\DeclareOption{subsection_in_eq}{\subsectionsineqtrue} +\DeclareOption{subsection_in_fig}{\subsectionsinfigtrue} +\DeclareOption{subsection_in_all}{\subsectionsineqtrue\subsectionsinfigtrue} +\DeclareOption{no_section_in_eq}{\sectionsineqfalse} +\DeclareOption{no_section_in_fig}{\sectionsinfigfalse} +\DeclareOption{no_section_in_all}{\sectionsineqfalse\sectionsinfigfalse} +\DeclareOption{no_subsection_in_eq}{\subsectionsineqfalse} +\DeclareOption{no_subsection_in_fig}{\subsectionsinfigfalse} +\DeclareOption{no_subsection_in_all}{\subsectionsineqfalse\subsectionsinfigfalse} + +\def\ian@defaultoptions{ + \ExecuteOptions{section_in_all, no_subsection_in_all} + \ProcessOptions + + %% required packages + \RequirePackage{color} + \RequirePackage{marginnote} + \RequirePackage{amssymb} + \PassOptionsToPackage{hidelinks}{hyperref} + \RequirePackage{hyperref} + + \pagestyle{plain} +} + +%% paper dimensions +\setlength\paperheight{297mm} +\setlength\paperwidth{210mm} + +%% fonts +\input{size11.clo} +\DeclareOldFontCommand{\rm}{\normalfont\rmfamily}{\mathrm} +\DeclareOldFontCommand{\sf}{\normalfont\sffamily}{\mathsf} +\DeclareOldFontCommand{\tt}{\normalfont\ttfamily}{\mathtt} +\DeclareOldFontCommand{\bf}{\normalfont\bfseries}{\mathbf} +\DeclareOldFontCommand{\it}{\normalfont\itshape}{\mathit} + +%% text dimensions +\hoffset=-50pt +\voffset=-72pt +\textwidth=460pt +\textheight=704pt + + +%% remove default indentation +\parindent=0pt +%% indent command +\def\indent{\hskip20pt} + +%% something is wrong with \thepage, redefine it +\gdef\thepage{\the\c@page} + +%% array lines (to use the array environment) +\setlength\arraycolsep{5\p@} +\setlength\arrayrulewidth{.4\p@} + + +%% correct vertical alignment at the end of a document +\AtEndDocument{ + \vfill + \eject +} + + +%% hyperlinks +% hyperlinkcounter +\newcounter{lncount} +% hyperref anchor +\def\hrefanchor{% +\stepcounter{lncount}% +\hypertarget{ln.\thelncount}{}% +} + +%% define a command and write it to aux file +\def\outdef#1#2{% + % define command% + \expandafter\xdef\csname #1\endcsname{#2}% + % hyperlink number% + \expandafter\xdef\csname #1@hl\endcsname{\thelncount}% + % write command to aux% + \immediate\write\@auxout{\noexpand\expandafter\noexpand\gdef\noexpand\csname #1\endcsname{\csname #1\endcsname}}% + \immediate\write\@auxout{\noexpand\expandafter\noexpand\gdef\noexpand\csname #1@hl\endcsname{\thelncount}}% +} + +%% can call commands even when they are not defined +\def\safe#1{% + \ifdefined#1% + #1% + \else% + {\color{red}\bf?}% + \fi% +} + +%% define a label for the latest tag +%% label defines a command containing the string stored in \tag +\def\deflabel{ + \def\label##1{\expandafter\outdef{label@##1}{\safe\tag}} + + \def\ref##1{% + % check whether the label is defined (hyperlink runs into errors if this check is omitted) + \ifcsname label@##1@hl\endcsname% + \hyperlink{ln.\csname label@##1@hl\endcsname}{{\color{blue}\safe\csname label@##1\endcsname}}% + \else% + \ifcsname label@##1\endcsname% + {\color{blue}\csname ##1\endcsname}% + \else% + {\bf ??}% + \fi% + \fi% + } +} + + +%% make a custom link at any given location in the document +\def\makelink#1#2{% + \hrefanchor% + \outdef{label@#1}{#2}% +} + + +%% section command +% counter +\newcounter{sectioncount} +% space before section +\newlength\secskip +\setlength\secskip{40pt} +% a prefix to put before the section number, e.g. A for appendices +\def\sectionprefix{} +% define some lengths +\newlength\secnumwidth +\newlength\sectitlewidth +\def\section#1{ + % reset counters + \stepcounter{sectioncount} + \setcounter{subsectioncount}{0} + \ifsectionsineq + \setcounter{seqcount}0 + \fi + \ifsectionsinfig + \setcounter{figcount}0 + \fi + + % space before section (if not first) + \ifnum\thesectioncount>1 + \vskip\secskip + \penalty-1000 + \fi + + % hyperref anchor + \hrefanchor + % define tag (for \label) + \xdef\tag{\sectionprefix\thesectioncount} + + % get widths + \def\@secnum{{\bf\Large\sectionprefix\thesectioncount.\hskip10pt}} + \settowidth\secnumwidth{\@secnum} + \setlength\sectitlewidth\textwidth + \addtolength\sectitlewidth{-\secnumwidth} + + % print name + \parbox{\textwidth}{ + \@secnum + \parbox[t]{\sectitlewidth}{\Large\bf #1}} + + % write to table of contents + \iftoc + % save lncount in aux variable which is written to toc + \immediate\write\tocoutput{\noexpand\expandafter\noexpand\edef\noexpand\csname toc@sec.\thesectioncount\endcsname{\thelncount}} + \write\tocoutput{\noexpand\tocsection{#1}{\thepage}} + \fi + + %space + \par\penalty10000 + \bigskip\penalty10000 +} + +%% subsection +% counter +\newcounter{subsectioncount} +% space before subsection +\newlength\subsecskip +\setlength\subsecskip{30pt} +\def\subsection#1{ + % counters + \stepcounter{subsectioncount} + \setcounter{subsubsectioncount}{0} + \ifsubsectionsineq + \setcounter{seqcount}0 + \fi + \ifsubsectionsinfig + \setcounter{figcount}0 + \fi + + % space before subsection (if not first) + \ifnum\thesubsectioncount>1 + \vskip\subsecskip + \penalty-500 + \fi + + % hyperref anchor + \hrefanchor + % define tag (for \label) + \xdef\tag{\sectionprefix\thesectioncount.\thesubsectioncount} + + % get widths + \def\@secnum{{\bf\large\hskip.5cm\sectionprefix\thesectioncount.\thesubsectioncount.\hskip5pt}} + \settowidth\secnumwidth{\@secnum} + \setlength\sectitlewidth\textwidth + \addtolength\sectitlewidth{-\secnumwidth} + % print name + \parbox{\textwidth}{ + \@secnum + \parbox[t]{\sectitlewidth}{\large\bf #1}} + + % write to table of contents + \iftoc + % save lncount in aux variable which is written to toc + \immediate\write\tocoutput{\noexpand\expandafter\noexpand\edef\noexpand\csname toc@subsec.\thesectioncount.\thesubsectioncount\endcsname{\thelncount}} + \write\tocoutput{\noexpand\tocsubsection{#1}{\thepage}} + \fi + + % space + \par\penalty10000 + \medskip\penalty10000 +} + +%% subsubsection +% counter +\newcounter{subsubsectioncount} +% space before subsubsection +\newlength\subsubsecskip +\setlength\subsubsecskip{20pt} +\def\subsubsection#1{ + % counters + \stepcounter{subsubsectioncount} + + % space before subsubsection (if not first) + \ifnum\thesubsubsectioncount>1 + \vskip\subsubsecskip + \penalty-500 + \fi + + % hyperref anchor + \hrefanchor + % define tag (for \label) + \xdef\tag{\sectionprefix\thesectioncount.\thesubsectioncount.\thesubsubsectioncount} + + % get widths + \def\@secnum{{\bf\hskip1.cm\sectionprefix\thesectioncount.\thesubsectioncount.\thesubsubsectioncount.\hskip5pt}} + \settowidth\secnumwidth{\@secnum} + \setlength\sectitlewidth\textwidth + \addtolength\sectitlewidth{-\secnumwidth} + % print name + \parbox{\textwidth}{ + \@secnum + \parbox[t]{\sectitlewidth}{\large\bf #1}} + + % write to table of contents + \iftoc + % save lncount in aux variable which is written to toc + \immediate\write\tocoutput{\noexpand\expandafter\noexpand\edef\noexpand\csname toc@subsubsec.\thesectioncount.\thesubsectioncount.\thesubsubsectioncount\endcsname{\thelncount}} + \write\tocoutput{\noexpand\tocsubsubsection{#1}{\thepage}} + \fi + + % space + \par\penalty10000 + \medskip\penalty10000 +} + +%% itemize +\newlength\itemizeskip +% left margin for items +\setlength\itemizeskip{20pt} +\newlength\itemizeseparator +% space between the item symbol and the text +\setlength\itemizeseparator{5pt} +% penalty preceding an itemize +\newcount\itemizepenalty +\itemizepenalty=0 +% counter counting the itemize level +\newcounter{itemizecount} + +% item symbol +\def\itemizept#1{ + \ifnum#1=1 + \textbullet + \else + $\scriptstyle\blacktriangleright$ + \fi +} + + +\newlength\current@itemizeskip +\setlength\current@itemizeskip{0pt} +\def\itemize{% + \par\expandafter\penalty\the\itemizepenalty\medskip\expandafter\penalty\the\itemizepenalty% + \addtocounter{itemizecount}{1}% + \addtolength\current@itemizeskip{\itemizeskip}% + \leftskip\current@itemizeskip% +} +\def\enditemize{% + \addtocounter{itemizecount}{-1}% + \addtolength\current@itemizeskip{-\itemizeskip}% + \par\expandafter\penalty\the\itemizepenalty\leftskip\current@itemizeskip% + \medskip\expandafter\penalty\the\itemizepenalty% +} + +% item, with optional argument to specify the item point +% @itemarg is set to true when there is an optional argument +\newif\if@itemarg +\def\item{% + % check whether there is an optional argument (if there is none, add on empty '[]') + \@ifnextchar [{\@itemargtrue\@itemx}{\@itemargfalse\@itemx[]}% +} +\newlength\itempt@total +\def\@itemx[#1]{ + \if@itemarg + \settowidth\itempt@total{#1} + \else + \settowidth\itempt@total{\itemizept\theitemizecount} + \fi + \addtolength\itempt@total{\itemizeseparator} + \par + \medskip + \if@itemarg + \hskip-\itempt@total#1\hskip\itemizeseparator + \else + \hskip-\itempt@total\itemizept\theitemizecount\hskip\itemizeseparator + \fi +} + +%% prevent page breaks after itemize +\newcount\previtemizepenalty +\def\nopagebreakafteritemize{ + \previtemizepenalty=\itemizepenalty + \itemizepenalty=10000 +} +%% back to previous value +\def\restorepagebreakafteritemize{ + \itemizepenalty=\previtemizepenalty +} + +%% enumerate +\newcounter{enumerate@count} +\def\enumerate{ + \setcounter{enumerate@count}0 + \let\olditem\item + \let\olditemizept\itemizept + \def\item{ + % counter + \stepcounter{enumerate@count} + % set header + \def\itemizept{\theenumerate@count.} + % hyperref anchor + \hrefanchor + % define tag (for \label) + \xdef\tag{\theenumerate@count} + \olditem + } + \itemize +} +\def\endenumerate{ + \enditemize + \let\item\olditem + \let\itemizept\olditemizept +} + + +%% equation numbering +% counter +\newcounter{seqcount} +% define possible prefix to equation +\def\eqprefix{} +% booleans (write section or subsection in equation number) +\newif\ifsectionsineq +\newif\ifsubsectionsineq +\def\seqcount{ + \stepcounter{seqcount} + % the output + \edef\seqformat{\eqprefix\theseqcount} + % add subsection number + \ifsubsectionsineq + \let\tmp\seqformat + \edef\seqformat{\thesubsectioncount.\tmp} + \fi + % add section number + \ifsectionsineq + \let\tmp\seqformat + \edef\seqformat{\sectionprefix\thesectioncount.\tmp} + \fi + % define tag (for \label) + \xdef\tag{\seqformat} + % write number + \marginnote{\hfill(\seqformat)} +} +%% equation environment compatibility +\def\equation{\hrefanchor$$\seqcount} +\def\endequation{$$\@ignoretrue} + + +%% figures +% counter +\newcounter{figcount} +% booleans (write section or subsection in equation number) +\newif\ifsectionsinfig +\newif\ifsubsectionsinfig +% width of figures +\newlength\figwidth +\setlength\figwidth\textwidth +\addtolength\figwidth{-2.5cm} +% caption +\def\defcaption{ + \long\def\caption##1{% + \stepcounter{figcount}% +% + % hyperref anchor% + \hrefanchor% +% + % the number of the figure% + \edef\figformat{\thefigcount}% + % add subsection number% + \ifsubsectionsinfig% + \let\tmp\figformat% + \edef\figformat{\thesubsectioncount.\tmp}% + \fi% + % add section number% + \ifsectionsinfig% + \let\tmp\figformat% + \edef\figformat{\sectionprefix\thesectioncount.\tmp}% + \fi% +% + % define tag (for \label)% + \xdef\tag{\figformat}% +% + % write% + \par\penalty10000\hfil fig \figformat: \parbox[t]{\figwidth}{\small##1}%% +% + % space% + \par\bigskip% + } +} +%% short caption: centered +\def\captionshort#1{ + \stepcounter{figcount}% +% + % hyperref anchor% + \hrefanchor% +% + % the number of the figure% + \edef\figformat{\thefigcount}% + % add section number% + \ifsectionsinfig% + \let\tmp\figformat% + \edef\figformat{\sectionprefix\thesectioncount.\tmp}% + \fi% +% + % define tag (for \label)% + \xdef\tag{\figformat}% +% + % write% + \par\penalty10000\hfil fig \figformat: {\small#1}% +% + %space% + \par\bigskip% +} + +%% environment +\def\figure{ + \par + \vfil\penalty100\vfilneg + \bigskip +} +\def\endfigure{ + \par + \bigskip +} + + +%% start appendices +\def\appendix{ + \vfill + \pagebreak + + % counter + \setcounter{sectioncount}0 + + % prefix + \def\sectionprefix{A} + + % write + {\bf \LARGE Appendices}\par\penalty10000\bigskip\penalty10000 + + % add a mention in the table of contents + \iftoc + \immediate\write\tocoutput{\noexpand\tocappendices}\penalty10000 + \fi + + %% uncomment for new page for each appendix + %\def\seqskip{\vfill\pagebreak} +} + + +%% bibliography +% size of header +\newlength\bibheader +\def\thebibliography#1{ + \hrefanchor + + % add a mention in the table of contents + \iftoc + % save lncount in aux variable which is written to toc + \immediate\write\tocoutput{\noexpand\expandafter\noexpand\edef\noexpand\csname toc@references\endcsname{\thelncount}} + \write\tocoutput{\noexpand\tocreferences{\thepage}}\penalty10000 + \fi + + % write + {\bf \LARGE References}\par\penalty10000\bigskip\penalty10000 + % width of header + \settowidth\bibheader{[#1]} + \leftskip\bibheader +} +% end environment +\def\endthebibliography{ + \par\leftskip0pt +} + +%% bibitem command +\def\bibitem[#1]#2{% + \hrefanchor% + \outdef{label@cite#2}{#1}% + \hskip-\bibheader% + \makebox[\bibheader]{\cite{#2}\hfill}% +} + +%% cite command +% @tempswa is set to true when there is an optional argument +\newif\@tempswa +\def\cite{% + % check whether there is an optional argument (if there is none, add on empty '[]') + \@ifnextchar [{\@tempswatrue\@citex}{\@tempswafalse\@citex[]}% +} +% command with optional argument +\def\@citex[#1]#2{\leavevmode% + % initialize loop + \let\@cite@separator\@empty% + % format + \@cite{% + % loop over ',' separated list + \@for\@cite@:=#2\do{% + % text to add at each iteration of the loop (separator between citations) + \@cite@separator\def\@cite@separator{,\ }% + % add entry to citelist + \@writecitation{\@cite@}% + \ref{cite\@cite@}% + }% + }% + % add optional argument text (as an argument to '\@cite') + {#1}% +} +\def\@cite#1#2{% + [#1\if@tempswa , #2\fi]% +} +%% add entry to citelist after checking it has not already been added +\def\@writecitation#1{% + \ifcsname if#1cited\endcsname% + \else% + \expandafter\newif\csname if#1cited\endcsname% + \immediate\write\@auxout{\string\citation{#1}}% + \fi% +} + +%% table of contents +% boolean +\newif\iftoc +\def\tableofcontents{ + {\bf \large Table of contents:}\par\penalty10000\smallskip\penalty10000 + + % copy content from file + \IfFileExists{\jobname.toc}{\input{\jobname.toc}}{{\tt error: table of contents missing}} + + % open new toc + \newwrite\tocoutput + \immediate\openout\tocoutput=\jobname.toc + + \toctrue +} +%% close file +\AtEndDocument{ + % close toc + \iftoc + \immediate\closeout\tocoutput + \fi +} + + +%% fill line with dots +\def\leaderfill{\leaders\hbox to 1em {\hss. \hss}\hfill} + +%% same as sectionprefix +\def\tocsectionprefix{} + +%% toc formats +\newcounter{tocsectioncount} +\def\tocsection #1#2{ + \stepcounter{tocsectioncount} + \setcounter{tocsubsectioncount}{0} + \setcounter{tocsubsubsectioncount}{0} + % write + \smallskip\hyperlink{ln.\csname toc@sec.\thetocsectioncount\endcsname}{{\bf \tocsectionprefix\thetocsectioncount}.\hskip5pt {\color{blue}#1}\leaderfill#2}\par +} +\newcounter{tocsubsectioncount} +\def\tocsubsection #1#2{ + \stepcounter{tocsubsectioncount} + \setcounter{tocsubsubsectioncount}{0} + % write + {\hskip10pt\hyperlink{ln.\csname toc@subsec.\thetocsectioncount.\thetocsubsectioncount\endcsname}{{\bf \thetocsectioncount.\thetocsubsectioncount}.\hskip5pt {\color{blue}\small #1}\leaderfill#2}}\par +} +\newcounter{tocsubsubsectioncount} +\def\tocsubsubsection #1#2{ + \stepcounter{tocsubsubsectioncount} + % write + {\hskip20pt\hyperlink{ln.\csname toc@subsubsec.\thetocsectioncount.\thetocsubsectioncount.\thetocsubsubsectioncount\endcsname}{{\bf \thetocsectioncount.\thetocsubsectioncount.\thetocsubsubsectioncount}.\hskip5pt {\color{blue}\small #1}\leaderfill#2}}\par +} +\def\tocappendices{ + \medskip + \setcounter{tocsectioncount}0 + {\bf Appendices}\par + \smallskip + \def\tocsectionprefix{A} +} +\def\tocreferences#1{ + \medskip + {\hyperlink{ln.\csname toc@references\endcsname}{{\color{blue}\bf References}\leaderfill#1}}\par + \smallskip +} + + +%% definitions that must be loaded at begin document +\let\ian@olddocument\document +\def\document{ + \ian@olddocument + + \deflabel + \defcaption +} + +%% end +\ian@defaultoptions +\endinput diff --git a/libs/iantheo.sty b/libs/iantheo.sty new file mode 100644 index 0000000..d33a93d --- /dev/null +++ b/libs/iantheo.sty @@ -0,0 +1,162 @@ +%% +%% iantheorem package: +%% Ian's customized theorem command +%% + +%% boolean to signal that this package was loaded +\newif\ifiantheo + +%% TeX format +\NeedsTeXFormat{LaTeX2e}[1995/12/01] + +%% package name +\ProvidesPackage{iantheo}[2016/11/10] + +%% options +\newif\ifsectionintheo +\DeclareOption{section_in_theo}{\sectionintheotrue} +\DeclareOption{no_section_in_theo}{\sectionintheofalse} +\newif\ifsubsectionintheo +\DeclareOption{subsection_in_theo}{\subsectionintheotrue} +\DeclareOption{no_subsection_in_theo}{\subsectionintheofalse} + +\def\iantheo@defaultoptions{ + \ExecuteOptions{section_in_theo, no_subsection_in_theo} + \ProcessOptions + + %%% reset at every new section + \ifsectionintheo + \let\iantheo@oldsection\section + \gdef\section{\setcounter{theocount}{0}\iantheo@oldsection} + \fi + + %% reset at every new subsection + \ifsubsectionintheo + \let\iantheo@oldsubsection\subsection + \gdef\subsection{\setcounter{theocount}{0}\iantheo@oldsubsection} + \fi +} + + +%% delimiters +\def\delimtitle#1{ + \par% + \leavevmode% + \raise.3em\hbox to\hsize{% + \lower0.3em\hbox{\vrule height0.3em}% + \hrulefill% + \ \lower.3em\hbox{#1}\ % + \hrulefill% + \lower0.3em\hbox{\vrule height0.3em}% + }% + \par\penalty10000% +} + +%% callable by ref +\def\delimtitleref#1{ + \par% +% + \ifdefined\ianclass% + % hyperref anchor% + \hrefanchor% + % define tag (for \label)% + \xdef\tag{#1}% + \fi% +% + \leavevmode% + \raise.3em\hbox to\hsize{% + \lower0.3em\hbox{\vrule height0.3em}% + \hrulefill% + \ \lower.3em\hbox{\bf #1}\ % + \hrulefill% + \lower0.3em\hbox{\vrule height0.3em}% + }% + \par\penalty10000% +} + +%% no title +\def\delim{ + \par% + \leavevmode\raise.3em\hbox to\hsize{% + \lower0.3em\hbox{\vrule height0.3em}% + \hrulefill% + \lower0.3em\hbox{\vrule height0.3em}% + }% + \par\penalty10000% +} + +%% end delim +\def\enddelim{ + \par\penalty10000% + \leavevmode% + \raise.3em\hbox to\hsize{% + \vrule height0.3em\hrulefill\vrule height0.3em% + }% + \par% +} + + +%% theorem +% counter +\newcounter{theocount} +% booleans (write section or subsection in equation number) +\def\theo#1{ + \stepcounter{theocount} + \ifdefined\ianclass + % hyperref anchor + \hrefanchor + \fi + % the number + \def\formattheo{\thetheocount} + % add subsection number + \ifsubsectionintheo + \let\tmp\formattheo + \edef\formattheo{\thesubsectioncount.\tmp} + \fi + % add section number + \ifsectionintheo + \let\tmp\formattheo + \edef\formattheo{\sectionprefix\thesectioncount.\tmp} + \fi + % define tag (for \label) + \xdef\tag{\formattheo} + % write + \delimtitle{\bf #1 \formattheo} +} +\let\endtheo\enddelim +%% theorem headers with name +\def\theoname#1#2{ + \theo{#1}\hfil({\it #2})\par\penalty10000\medskip% +} + + +%% qed symbol +\def\qedsymbol{$\square$} +\def\qed{\penalty10000\hfill\penalty10000\qedsymbol} + + +%% compatibility with article class +\ifdefined\ianclasstrue + \relax +\else + \def\thesectioncount{\thesection} + \def\thesubsectioncount{\thesubsection} + \def\sectionprefix{} +\fi + + +%% prevent page breaks after displayed equations +\newcount\prevpostdisplaypenalty +\def\nopagebreakaftereq{ + \prevpostdisplaypenalty=\postdisplaypenalty + \postdisplaypenalty=10000 +} +%% back to previous value +\def\restorepagebreakaftereq{ + \postdisplaypenalty=\prevpostdisplaypenalty +} + + +%% end +\iantheo@defaultoptions +\endinput diff --git a/libs/largearray.sty b/libs/largearray.sty new file mode 100644 index 0000000..ad5753b --- /dev/null +++ b/libs/largearray.sty @@ -0,0 +1,19 @@ +%% +%% largearray package: +%% Array spanning the entire line +%% + +%% TeX format +\NeedsTeXFormat{LaTeX2e}[1995/12/01] + +%% package name +\ProvidesPackage{largearray}[2016/11/10] + +\RequirePackage{array} + +%% array spanning the entire line +\newlength\largearray@width +\setlength\largearray@width\textwidth +\addtolength\largearray@width{-10pt} +\def\largearray{\begin{array}{@{}>{\displaystyle}l@{}}\hphantom{\hspace{\largearray@width}}\\[-.5cm]} +\def\endlargearray{\end{array}} diff --git a/libs/point.sty b/libs/point.sty new file mode 100644 index 0000000..4a761b7 --- /dev/null +++ b/libs/point.sty @@ -0,0 +1,114 @@ +%% +%% Points package: +%% \point commands +%% + +%% TeX format +\NeedsTeXFormat{LaTeX2e}[1995/12/01] + +%% package name +\ProvidesPackage{point}[2017/06/13] + +%% options +\newif\ifresetatsection +\DeclareOption{reset_at_section}{\resetatsectiontrue} +\DeclareOption{no_reset_at_section}{\resetatsectionfalse} +\newif\ifresetatsubsection +\DeclareOption{reset_at_subsection}{\resetatsubsectiontrue} +\DeclareOption{no_reset_at_subsection}{\resetatsubsectionfalse} +\newif\ifresetatsubsubsection +\DeclareOption{reset_at_subsubsection}{\resetatsubsubsectiontrue} +\DeclareOption{no_reset_at_subsubsection}{\resetatsubsubsectionfalse} +\newif\ifresetattheo +\DeclareOption{reset_at_theo}{\resetattheotrue} +\DeclareOption{no_reset_at_theo}{\resetattheofalse} + +\def\point@defaultoptions{ + \ExecuteOptions{reset_at_section, reset_at_subsection, reset_at_subsubsection, no_reset_at_theo} + \ProcessOptions + + %% reset at every new section + \ifresetatsection + \let\point@oldsection\section + \gdef\section{\resetpointcounter\point@oldsection} + \fi + %% reset at every new subsection + \ifresetatsubsection + \let\point@oldsubsection\subsection + \gdef\subsection{\resetpointcounter\point@oldsubsection} + \fi + %% reset at every new subsubsection + \ifresetatsubsubsection + \let\point@oldsubsubsection\subsubsection + \gdef\subsubsection{\resetpointcounter\point@oldsubsubsection} + \fi + + %% reset at every new theorem + \ifresetattheo + \ifdefined\iantheotrue + \let\point@oldtheo\theo + \gdef\theo{\resetpointcounter\point@oldtheo} + \fi + \fi +} + + +%% point +% counter +\newcounter{pointcount} +\def\point{ + \stepcounter{pointcount} + \setcounter{subpointcount}{0} + % hyperref anchor (only if the class is 'ian') + \ifdefined\ifianclass + \hrefanchor + % define tag (for \label) + \xdef\tag{\thepointcount} + \fi + % header + \indent{\bf \thepointcount\ - } +} + +%% subpoint +% counter +\newcounter{subpointcount} +\def\subpoint{ + \stepcounter{subpointcount} + \setcounter{subsubpointcount}0 + % hyperref anchor (only if the class is 'ian') + \ifdefined\ifianclass + \hrefanchor + % define tag (for \label) + \xdef\tag{\thepointcount-\thesubpointcount} + \fi + % header + \indent\hskip.5cm{\bf \thepointcount-\thesubpointcount\ - } +} + +%% subsubpoint +% counter +\newcounter{subsubpointcount} +\def\subsubpoint{ + \stepcounter{subsubpointcount} + % hyperref anchor (only if the class is 'ian') + \ifdefined\ifianclass + \hrefanchor + % define tag (for \label) + \xdef\tag{\thepointcount-\thesubpointcount-\thesubsubpointcount} + \fi + \indent\hskip1cm{\bf \thepointcount-\thesubpointcount-\thesubsubpointcount\ - } +} + + +%% reset point counters +\def\resetpointcounter{ + \setcounter{pointcount}{0} + \setcounter{subpointcount}{0} + \setcounter{subsubpointcount}{0} +} + + + +%% end +\point@defaultoptions +\endinput