2 Commits
v1.0 ... master

Author SHA1 Message Date
8d1562d39c Update to v1.1:
Add: Detailed discussion of the use of the Trotter product formula in the
       Dyson expansion.

  Minor fixes
2023-03-21 18:42:51 -04:00
fddcf91b6a Fix notations and typos, and shorten proof of lemma A1.1 2022-06-15 22:55:45 +02:00
4 changed files with 170 additions and 98 deletions

6
Changelog Normal file
View File

@ -0,0 +1,6 @@
v1.1:
* Add: Detailed discussion of the use of the Trotter product formula in the
Dyson expansion.
* Minor fixes

View File

@ -255,8 +255,8 @@ We define the Fourier transform of the annihilation operators as
\hat a_{k,\sigma}:=\frac1{\sqrt{|\Lambda|}}\sum_{x\in\Lambda}e^{ikx}a_{x,\sigma} \hat a_{k,\sigma}:=\frac1{\sqrt{|\Lambda|}}\sum_{x\in\Lambda}e^{ikx}a_{x,\sigma}
,\quad ,\quad
\hat b_{k,\sigma}:=\frac1{\sqrt{|\Lambda|}}\sum_{x\in\Lambda}e^{ikx}b_{x+\delta_1,\sigma} \hat b_{k,\sigma}:=\frac1{\sqrt{|\Lambda|}}\sum_{x\in\Lambda}e^{ikx}b_{x+\delta_1,\sigma}
.
\end{equation} \end{equation}
where $|\Lambda|=L^2$.
Note that, with this choice of normalization, $\hat a_{k,\sigma}$ and $\hat b_{k,\sigma}$ satisfy the canonical anticommutation relations: Note that, with this choice of normalization, $\hat a_{k,\sigma}$ and $\hat b_{k,\sigma}$ satisfy the canonical anticommutation relations:
\begin{equation} \begin{equation}
\{a_{k,\sigma},a_{k',\sigma'}^\dagger\} \{a_{k,\sigma},a_{k',\sigma'}^\dagger\}
@ -276,7 +276,7 @@ We express $\mathcal H_0$ in terms of $\hat a$ and $\hat b$:
\mathcal H_0=-\sum_{\sigma\in\{\uparrow,\downarrow\}}\sum_{ k\in\hat\Lambda}\hat A_{k,\sigma}^\dagger H_0(k)\hat A_{k,\sigma} \mathcal H_0=-\sum_{\sigma\in\{\uparrow,\downarrow\}}\sum_{ k\in\hat\Lambda}\hat A_{k,\sigma}^\dagger H_0(k)\hat A_{k,\sigma}
\label{hamk} \label{hamk}
\end{equation} \end{equation}
where $|\Lambda|=L^2$, $\hat A_{k,\sigma}$ is a column vector whose transpose is $\hat A_{k,\sigma}^T=(\hat a_{k,\sigma},\hat{b}_{k,\sigma})$, $\hat A_{k,\sigma}$ is a column vector whose transpose is $\hat A_{k,\sigma}^T=(\hat a_{k,\sigma},\hat{b}_{k,\sigma})$,
\begin{equation} \begin{equation}
H_0( k):= H_0( k):=
\left(\begin{array}{*{2}{c}} \left(\begin{array}{*{2}{c}}
@ -336,7 +336,7 @@ We now define the interaction Hamiltonian which we take to be of {\it Hubbard} f
\label{hamintx}\end{equation} \label{hamintx}\end{equation}
where the $d_\alpha$ are the vectors that give the position of each atom type with respect to the centers of the lattice $\Lambda$: $d_a:=0$, $d_b:=\delta_1$. where the $d_\alpha$ are the vectors that give the position of each atom type with respect to the centers of the lattice $\Lambda$: $d_a:=0$, $d_b:=\delta_1$.
\subsection{Grassmann integral representation} \subsection{Dyson series}
\indent \indent
The {\it specific free energy} on the lattice $\Lambda$ is defined by The {\it specific free energy} on the lattice $\Lambda$ is defined by
\begin{equation} \begin{equation}
@ -344,17 +344,118 @@ The {\it specific free energy} on the lattice $\Lambda$ is defined by
\label{freeen} \label{freeen}
\end{equation} \end{equation}
where $\beta$ is the inverse temperature. where $\beta$ is the inverse temperature.
We define these at finite $\beta$ and $L$, but will take $\beta,L\to\infty$. \bigskip
A straightforward application of the Trotter product formula implies that (see\-~\cite[(4.1)]{Gi10})
\indent
The exponential of $\mathcal H$ is difficult to compute, due to the presence of both the kinetic term $\mathcal H_0$ and the interacting Hamiltonian $\mathcal H_I$.
We can split these from each other using the Trotter product formula:
\begin{equation}
e^{-\beta\mathcal H}=
\lim_{p\to\infty}
\left(
e^{-\frac\beta p\mathcal H_0}
e^{-\frac\beta p\mathcal H_I}
\right)^p
\end{equation}
(which follows from the Baker-Campbell-Hausdorff formula).
Taking the limit $p\to\infty$, we can expand the exponential of $\mathcal H_I$:
\begin{equation}
e^{-\beta\mathcal H}=
\lim_{p\to\infty}
\left(
e^{-\frac\beta p\mathcal H_0}
\left(1-\frac\beta p\mathcal H_I\right)
\right)^p
.
\end{equation}
We can expand the power by noting that, in each factor, either the term $1$ or $-\frac\beta p\mathcal H_I$ can be selected.
Thus,
\begin{equation}
e^{-\beta\mathcal H}=
e^{-\beta\mathcal H_0}
+
\lim_{p\to\infty}
\sum_{N=1}^p
\left(\frac{-\beta}p\right)^{N}
\sum_{i_{N+1}=0}^p
\sum_{\displaystyle\mathop{\scriptstyle i_1,\cdots,i_N\in\{1,\cdots,p\}}_{i_1+\cdots+i_{N+1}=p}}
\left(\prod_{\alpha=1}^{N}e^{-\beta\frac{i_\alpha}p\mathcal H_0}\mathcal H_I\right)
e^{-\beta\frac{i_{N+1}}p\mathcal H_I}
.
\end{equation}
Defining
\begin{equation}
\mathcal H_I(t):=e^{t\mathcal H_0}\mathcal H_Ie^{-t\mathcal H_0}
\end{equation}
and, for $j=1,\cdots,N$,
\begin{equation}
\tau_j:=\frac1p\sum_{\alpha=j+1}^{N+1}i_\alpha
\end{equation}
we prove by induction that
\begin{equation}
\left(\prod_{\alpha=k}^{N}e^{-\beta\frac{i_\alpha}N\mathcal H_0}\mathcal H_I\right)
e^{-\beta\frac{i_{N+1}}N\mathcal H_I}
=
e^{-\tau_{k-1}\mathcal H_0}
\prod_{j=k}^{N}\mathcal H_I(\tau_j)
.
\end{equation}
Indeed, for $k=N$,
\begin{equation}
e^{-\beta\frac{i_N}N\mathcal H_0}\mathcal H_I
e^{-\beta\frac{i_{N+1}}N\mathcal H_I}
=
e^{-\beta\frac{i_\alpha-i_{N+1}}N\mathcal H_0}\mathcal H_I(\tau_N)
\end{equation}
and
\begin{equation}
\left(\prod_{\alpha=k}^{N}e^{-\beta\frac{i_\alpha}N\mathcal H_0}\mathcal H_I\right)
e^{-\beta\frac{i_{N+1}}N\mathcal H_I}
=
e^{-\beta\frac{i_k}N\mathcal H_0}\mathcal H_I
e^{-\tau_{k}\mathcal H_0}
\prod_{j=k+1}^{N}\mathcal H_I(\tau_j)
=
e^{-\beta(\frac{i_k}N+\tau_k)\mathcal H_0}\mathcal H_I
\prod_{j=k}^{N}\mathcal H_I(\tau_j)
.
\end{equation}
Therefore,
\begin{equation}
e^{-\beta\mathcal H}=
e^{-\beta\mathcal H_0}
+
\lim_{p\to\infty}
e^{-\beta\mathcal H_0}
\sum_{N=1}^p
\left(\frac{-\beta}p\right)^{N}
\sum_{i_{N+1}=0}^p
\sum_{\displaystyle\mathop{\scriptstyle i_1,\cdots,i_N\in\{1,\cdots,p\}}_{i_1+\cdots+i_{N+1}=p}}
\prod_{j=1}^{N}\mathcal H_I(\tau_j)
.
\end{equation}
This is a Riemann sum, which converges to
\begin{equation}
e^{-\beta\mathcal H}=
e^{-\beta\mathcal H_0}
+
e^{-\beta\mathcal H_0}
\sum_{N=1}^\infty
(-\beta)^{N}
\int_{\beta\geqslant t_1\geqslant\cdots\geqslant t_N\geqslant 0} dt_1\cdots dt_N
\prod_{j=1}^{N}\mathcal H_I(t_j)
.
\label{trotter}
\end{equation}
\subsection{Grassmann integral representation}
\indent
To compute the free energy\-~(\ref{freeen}), we use\-~(\ref{trotter}):
\begin{equation} \begin{equation}
\mathrm{Tr}( e^{-\beta\mathcal H}) \mathrm{Tr}( e^{-\beta\mathcal H})
= =
\mathrm{Tr}(e^{-\beta\mathcal H_0}) \mathrm{Tr}(e^{-\beta\mathcal H_0})
+\sum_{N=1}^\infty\frac{(-\beta)^N}{N!}\int_{\beta\geqslant t_1\geqslant\cdots\geqslant t_N\geqslant0}\mathrm{Tr}\left(e^{-\beta\mathcal H_0}\mathcal H_I(t_1)\cdots\mathcal H_I(t_N)\right) +\sum_{N=1}^\infty(-\beta)^N\int_{\beta\geqslant t_1\geqslant\cdots\geqslant t_N\geqslant0}\mathrm{Tr}\left(e^{-\beta\mathcal H_0}\mathcal H_I(t_1)\cdots\mathcal H_I(t_N)\right)
\end{equation}
where
\begin{equation}
\mathcal H_I(t):=e^{t\mathcal H_0}\mathcal H_Ie^{-t\mathcal H_0}
. .
\end{equation} \end{equation}
To compute this trace, we will use the {\it Wick rule}, which we will now descibe. To compute this trace, we will use the {\it Wick rule}, which we will now descibe.
@ -393,7 +494,7 @@ The Wick rule can be proved by a direct computation, and follows from the fact t
\bigskip \bigskip
\indent \indent
Fermionic creation and annihilation operators do not anticommute: $\{a_i,a_i\dagger\}=1$. Fermionic creation and annihilation operators do not anticommute: $\{a_i,a_i^\dagger\}=1$.
However, the time-ordering operator effectively makes them anticommute. However, the time-ordering operator effectively makes them anticommute.
We can make this more precise be re-expressing the problem in terms of {\it Grassmann variables}. We can make this more precise be re-expressing the problem in terms of {\it Grassmann variables}.
\bigskip \bigskip
@ -440,7 +541,7 @@ The Gaussian Grassmann measure is specified by a {\it propagator}, which is a $2
\begin{largearray} \begin{largearray}
P_{\hat g}(d\psi) := \left( P_{\hat g}(d\psi) := \left(
\prod_{\mathbf k\in\mathcal B_{\beta,L}^*} \prod_{\mathbf k\in\mathcal B_{\beta,L}^*}
(\beta\det\hat g(\mathbf k))^4 (\beta^2\det\hat g(\mathbf k))^2
\left(\prod_{\sigma\in\{\uparrow,\downarrow\}}\prod_{\alpha\in\{a,b\}}d\hat\psi_{\mathbf k,\alpha}^+d\hat\psi_{\mathbf k,\alpha}^-\right) \left(\prod_{\sigma\in\{\uparrow,\downarrow\}}\prod_{\alpha\in\{a,b\}}d\hat\psi_{\mathbf k,\alpha}^+d\hat\psi_{\mathbf k,\alpha}^-\right)
\right) \right)
\cdot\\[0.5cm]\hfill\cdot \cdot\\[0.5cm]\hfill\cdot
@ -512,7 +613,7 @@ Thus, we define the Gaussian Grassmann integration measure $P_{\leqslant M}(d\ps
\end{equation} \end{equation}
where $f_{0,\Lambda}$ is the free energy in the $U=0$ case and where $f_{0,\Lambda}$ is the free energy in the $U=0$ case and
\begin{equation} \begin{equation}
\mathcal V(\psi)=U\sum_{\alpha\in\{a,b\}}\frac1{|\Lambda|}\int_{0}^\beta dt \sum_{x\in \Lambda}\psi^+_{\mathbf x,\alpha,\uparrow}\psi^{-}_{\mathbf x,\alpha,\uparrow} \mathcal V(\psi)=U\sum_{\alpha\in\{a,b\}}\int_{0}^\beta dt \sum_{x\in \Lambda}\psi^+_{\mathbf x,\alpha,\uparrow}\psi^{-}_{\mathbf x,\alpha,\uparrow}
\psi^+_{\mathbf x,\alpha,\downarrow}\psi^{-}_{\mathbf x,\alpha,\downarrow} \psi^+_{\mathbf x,\alpha,\downarrow}\psi^{-}_{\mathbf x,\alpha,\downarrow}
\label{V_grassmann} \label{V_grassmann}
\end{equation} \end{equation}
@ -549,7 +650,7 @@ The idea is to approach the singularities $p_F^{(\omega)}$ slowly, by defining s
\Phi_{h}(\mathbf k-\mathbf p_F^{(\omega)}):=(\chi_0(2^{-h}|\mathbf k-\mathbf p_F^{(\omega)}|)-\chi_0(2^{-h+1}|\mathbf k-\mathbf p_F^{(\omega)}|)) \Phi_{h}(\mathbf k-\mathbf p_F^{(\omega)}):=(\chi_0(2^{-h}|\mathbf k-\mathbf p_F^{(\omega)}|)-\chi_0(2^{-h+1}|\mathbf k-\mathbf p_F^{(\omega)}|))
\label{fh} \label{fh}
\end{equation} \end{equation}
which is a smooth function that is supported in $|\mathbf k-\mathbf p_F^{(\omega)}|\in[2^h\frac16,2^h\frac23]$, in other words, if localizes $\mathbf k$ to be at a distance from $\mathbf p_F^{(\omega)}$ that is of order $2^h$, see figure\-~\ref{fig:scale}. which is a smooth function that is supported in $|\mathbf k-\mathbf p_F^{(\omega)}|\in[2^h\frac16,2^h\frac23]$, in other words, it localizes $\mathbf k$ to be at a distance from $\mathbf p_F^{(\omega)}$ that is of order $2^h$, see figure\-~\ref{fig:scale}.
Since $|k_0|\geqslant\frac\pi\beta$, we only need to consider Since $|k_0|\geqslant\frac\pi\beta$, we only need to consider
\begin{equation} \begin{equation}
h\geqslant -N_\beta:=\log_2\frac\pi\beta h\geqslant -N_\beta:=\log_2\frac\pi\beta
@ -615,10 +716,12 @@ These boxes are obtained by doubling the size of the elementary cell of the hexa
We also have a time dimension, which we split into boxes of size $2^{|h|}$. We also have a time dimension, which we split into boxes of size $2^{|h|}$.
We thus define the set of boxes on scale $h\in\{-N_\beta,\cdots,0\}$ by We thus define the set of boxes on scale $h\in\{-N_\beta,\cdots,0\}$ by
\begin{equation} \begin{equation}
\mathcal Q_h:=\left\{ \begin{largearray}
\mathcal Q_h:=\Big\{\left\{
[i2^{|h|},(i+1)2^{|h|})\times(\Lambda\cap\{2^{|h|}(n_1+x_1)l_1+2^{|h|}(n_2+x_2)l_2,\ x_1,x_2\in[0,1)\}) [i2^{|h|},(i+1)2^{|h|})\times(\Lambda\cap\{2^{|h|}(n_1+x_1)l_1+2^{|h|}(n_2+x_2)l_2,\ x_1,x_2\in[0,1)\})
\right\}_{i,n_1,n_2\in\mathbb Z} \right\},\\\hfill,i,n_1,n_2\in\mathbb Z\Big\}
\label{boxes} \label{boxes}
\end{largearray}
\end{equation} \end{equation}
($\mathcal Q_h$ is a set of sets). ($\mathcal Q_h$ is a set of sets).
For every $(t,x)\in[0,\beta)\times\Lambda$ and $h\in\{-N_\beta,\cdots,0\}$, there exists a unique box $\Delta^{(h)}(t,x)\in\mathcal Q_m$ such that $(t,x)\in\Delta^{(m)}(t,x)$. For every $(t,x)\in[0,\beta)\times\Lambda$ and $h\in\{-N_\beta,\cdots,0\}$, there exists a unique box $\Delta^{(h)}(t,x)\in\mathcal Q_m$ such that $(t,x)\in\Delta^{(m)}(t,x)$.
@ -679,7 +782,6 @@ We will take the propagators to be
\end{equation} \end{equation}
\begin{equation} \begin{equation}
\int P^{[h]}(d\psi^{[h]})\ \psi_{b,\sigma}^{[h]-}(\Delta)\psi_{a,\sigma'}^{[h]+}(\Delta')=\delta_{\sigma,\sigma'}\delta_{\Delta,\Delta'} \int P^{[h]}(d\psi^{[h]})\ \psi_{b,\sigma}^{[h]-}(\Delta)\psi_{a,\sigma'}^{[h]+}(\Delta')=\delta_{\sigma,\sigma'}\delta_{\Delta,\Delta'}
.
\end{equation} \end{equation}
and all other propagators will be set to 0. and all other propagators will be set to 0.
We can now evaluate how well these propagators approximate the non-hierarchical ones. We can now evaluate how well these propagators approximate the non-hierarchical ones.
@ -719,7 +821,7 @@ Note that\-~(\ref{psi_hierarchical}) is then
\psi_{\alpha,\sigma}^\pm(t,x)\equiv\psi_{\alpha,\sigma}^{[\le0]\pm}(\Delta^{(1)}(t,x)) \psi_{\alpha,\sigma}^\pm(t,x)\equiv\psi_{\alpha,\sigma}^{[\le0]\pm}(\Delta^{(1)}(t,x))
. .
\end{equation} \end{equation}
We then define, for $h\in\{-N_\beta,\cdots0\}$, We then define, for $h\in\{-N_\beta,\cdots,0\}$,
\begin{equation} \begin{equation}
e^{\beta|\Lambda| c^{[h]}-\mathcal V^{[h-1]}(\psi^{\leqslant h-1]})} e^{\beta|\Lambda| c^{[h]}-\mathcal V^{[h-1]}(\psi^{\leqslant h-1]})}
:=\int P^{[h]}(d\psi^{[h]})\ e^{-\mathcal V^{[h]}(\psi^{[\leqslant h]})} :=\int P^{[h]}(d\psi^{[h]})\ e^{-\mathcal V^{[h]}(\psi^{[\leqslant h]})}
@ -754,7 +856,7 @@ Because there are only four Grassmann fields and their conjugates per cell, $v_h
In fact, by symmetry considerations, we find that $v_h$ must be of the form In fact, by symmetry considerations, we find that $v_h$ must be of the form
\begin{equation} \begin{equation}
v_h(\psi)= v_h(\psi)=
\sum_{i=0}^6\alpha_i^{(h)}O_i(\psi) \sum_{i=0}^6\ell_i^{(h)}O_i(\psi)
\label{vh_rcc} \label{vh_rcc}
\end{equation} \end{equation}
with with
@ -868,7 +970,7 @@ We have thus introduced a strategy to compute $\mathcal V^{[h]}$ inductively: st
e^{\beta|\Lambda|c^{[h]}-\mathcal V^{[h-1]}(\psi^{[\leqslant h-1]})}=\int P(d\psi^{[h]})\ e^{-\mathcal V^{[h]}(\psi^{[h]}+2^{-\gamma}\psi^{[\leqslant h-1]})} e^{\beta|\Lambda|c^{[h]}-\mathcal V^{[h-1]}(\psi^{[\leqslant h-1]})}=\int P(d\psi^{[h]})\ e^{-\mathcal V^{[h]}(\psi^{[h]}+2^{-\gamma}\psi^{[\leqslant h-1]})}
\end{equation} \end{equation}
where $\gamma\equiv1$ is the scaling dimension of $\psi$ in\-~(\ref{scaling_psi}). where $\gamma\equiv1$ is the scaling dimension of $\psi$ in\-~(\ref{scaling_psi}).
Now, by\-~(\ref{box_dcmp}), is Now, by\-~(\ref{box_dcmp}), this is
\begin{equation} \begin{equation}
e^{\beta|\Lambda|c^{[h]}+\sum_{\bar\Delta\in\mathcal Q_{h-1}}v_{h-1}(\psi^{[\leqslant h-1]}(\bar\Delta))}= e^{\beta|\Lambda|c^{[h]}+\sum_{\bar\Delta\in\mathcal Q_{h-1}}v_{h-1}(\psi^{[\leqslant h-1]}(\bar\Delta))}=
\prod_{\Delta\in\mathcal Q_h}\int P(d\psi^{[h]}(\Delta))\ e^{v_h(\psi^{[h]}(\Delta)+2^{-\gamma}\psi^{[\leqslant h-1]}(\bar\Delta))} \prod_{\Delta\in\mathcal Q_h}\int P(d\psi^{[h]}(\Delta))\ e^{v_h(\psi^{[h]}(\Delta)+2^{-\gamma}\psi^{[\leqslant h-1]}(\bar\Delta))}
@ -894,19 +996,19 @@ We expand the exponential and use\-~(\ref{vh_rcc}):
\begin{largearray} \begin{largearray}
\beta|\Lambda|c^{[h]} \beta|\Lambda|c^{[h]}
+ +
\sum_{i=0}^6\alpha_i^{(h-1)}O_i(\psi^{[\leqslant h-1]}(\bar\Delta)) \sum_{i=0}^6\ell_i^{(h-1)}O_i(\psi^{[\leqslant h-1]}(\bar\Delta))
=\\\hfill= =\\\hfill=
2^{d+1}\log 2^{d+1}\log
\int P(d\psi^{[h]}(\Delta)) \int P(d\psi^{[h]}(\Delta))
\sum_{n=0}^\infty \sum_{n=0}^\infty
\frac1{n!} \frac1{n!}
\left(\sum_{i=0}^6\alpha_i^{(h)}O_i\left(\psi^{[h]}(\Delta)+2^{-\gamma}\psi^{[\leqslant h-1]}(\bar\Delta)\right)\right)^n \left(\sum_{i=0}^6\ell_i^{(h)}O_i\left(\psi^{[h]}(\Delta)+2^{-\gamma}\psi^{[\leqslant h-1]}(\bar\Delta)\right)\right)^n
. .
\end{largearray} \end{largearray}
\label{betadef} \label{betadef}
\end{equation} \end{equation}
The computation is thus reduced to computing the map $\alpha^{(h)}\mapsto\alpha^{(h-1)}$ using\-~(\ref{betadef}). The computation is thus reduced to computing the map $\ell^{(h)}\mapsto\ell^{(h-1)}$ using\-~(\ref{betadef}).
The coefficients $\alpha_i^{(h)}$ are called {\it running coupling constants}, and the map $\alpha^{(h)}\mapsto\alpha^{(h-1)}$ is called the {\it beta function} of the model. The coefficients $\ell_i^{(h)}$ are called {\it running coupling constants}, and the map $\ell^{(h)}\mapsto\ell^{(h-1)}$ is called the {\it beta function} of the model.
The running coupling constants play a very important role, as they specify the effective potential on scale $h$, and thereby the physical properties of the system at distances $\sim2^{-h}$. The running coupling constants play a very important role, as they specify the effective potential on scale $h$, and thereby the physical properties of the system at distances $\sim2^{-h}$.
\bigskip \bigskip
@ -914,7 +1016,7 @@ The running coupling constants play a very important role, as they specify the e
Having defined the hierarchical model as we have, the infinite sum in\-~(\ref{betadef}) is actually finite ($n\leqslant 4$), so to compute the beta function, it suffices to compute Gaussian Grassmann integrals of a finite number of Grassmann monomials. Having defined the hierarchical model as we have, the infinite sum in\-~(\ref{betadef}) is actually finite ($n\leqslant 4$), so to compute the beta function, it suffices to compute Gaussian Grassmann integrals of a finite number of Grassmann monomials.
A convenient way to carry out this computation is to represent each term graphically, using {\it Feynman diagrams}. A convenient way to carry out this computation is to represent each term graphically, using {\it Feynman diagrams}.
First, let us expand the power $n$ and graphically represent the terms that must be integrated. First, let us expand the power $n$ and graphically represent the terms that must be integrated.
For each $n$, we have $n$ possible choices of $\alpha_iO_i$. For each $n$, we have $n$ possible choices of $\ell_iO_i$.
Now, $O_i$ can be quadratic in $\psi$ ($O_0$), quartic ($O_1$, $O_2$, $O_3$, $O_4$), sextic ($O_5$) or octic ($O_6$). Now, $O_i$ can be quadratic in $\psi$ ($O_0$), quartic ($O_1$, $O_2$, $O_3$, $O_4$), sextic ($O_5$) or octic ($O_6$).
We will represent $O_i$ by a vertex with the label $i$, from which two, four, six or eight edges emanate, depending on the degree of $O_i$. We will represent $O_i$ by a vertex with the label $i$, from which two, four, six or eight edges emanate, depending on the degree of $O_i$.
Each edge corresponds to a factor $\psi^{[h]}+2^{-\gamma}\psi^{[\leqslant h-1]}$. Each edge corresponds to a factor $\psi^{[h]}+2^{-\gamma}\psi^{[\leqslant h-1]}$.
@ -964,13 +1066,13 @@ In other words, no integrating is taking place.
Let us denote the number of external edges by $2l$, which can either be 2, 4, 6 or 8. Let us denote the number of external edges by $2l$, which can either be 2, 4, 6 or 8.
The contribution of this graph is (keeping track of the $2^{d+1}$ factor in\-~(\ref{betadef})) The contribution of this graph is (keeping track of the $2^{d+1}$ factor in\-~(\ref{betadef}))
\begin{equation} \begin{equation}
2^{d+1-2l\gamma}\alpha_i^{(h)} 2^{d+1-2l\gamma}\ell_i^{(h)}
. .
\end{equation} \end{equation}
Furthermore, this graph will contribute to the running coupling constant $\alpha_i$, and so, on scale $h-1$, we will have Furthermore, this graph will contribute to the running coupling constant $\ell_i$, and so, on scale $h-1$, we will have
\begin{equation} \begin{equation}
\alpha_i^{(h-1)}= \ell_i^{(h-1)}=
2^{d+1-2l\gamma}\alpha_i^{(h)} 2^{d+1-2l\gamma}\ell_i^{(h)}
+ +
\cdots \cdots
\end{equation} \end{equation}
@ -1004,7 +1106,7 @@ For a more general treatment of power counting in Fermionic models with point-si
\indent \indent
In the case of graphene, we have one relevant coupling: $O_0$, which is quadratic in the Grassmann fields. In the case of graphene, we have one relevant coupling: $O_0$, which is quadratic in the Grassmann fields.
This is the only relevant coupling, and all others stay small. This is the only relevant coupling, and all others stay small.
However, since the relevant coupling is quadratic, it merely shifts the non-interacting system (whose Hamiltonian is quadratic in the Grassmann fields) to another system with a quadratic (that is non-interacting) Hamiltonian. However, since the relevant coupling is quadratic, it merely shifts the non-interacting system (whose Hamiltonian is quadratic in the Grassmann fields) to another system with a quadratic (that is, non-interacting) Hamiltonian.
Thus the relevant coupling does {\it not} imply that the interactions are preponderant, but rather that the interaction terms shifts the system from one non-interacting system to another. Thus the relevant coupling does {\it not} imply that the interactions are preponderant, but rather that the interaction terms shifts the system from one non-interacting system to another.
Since graphene only has one relevant coupling, and that one is quadratic, graphene is called {\it super-renormalizable}. Since graphene only has one relevant coupling, and that one is quadratic, graphene is called {\it super-renormalizable}.
\bigskip \bigskip
@ -1013,20 +1115,20 @@ Since graphene only has one relevant coupling, and that one is quadratic, graphe
As was mentioned above, the beta function can be computed {\it explicitly} for the hierarchical model, so the claims in the previous paragraph can be verified rather easily. As was mentioned above, the beta function can be computed {\it explicitly} for the hierarchical model, so the claims in the previous paragraph can be verified rather easily.
The exact computation involves many terms, but it can be done easily using the {\tt meankondo} software package\-~\cite{mk}. The exact computation involves many terms, but it can be done easily using the {\tt meankondo} software package\-~\cite{mk}.
The resulting beta function contains 888 terms, and will not be written out here. The resulting beta function contains 888 terms, and will not be written out here.
A careful analysis of the beta function shows that there is an equilibrium point at $\alpha_i=0$ for $i=1,2,3,4,5,6$ and A careful analysis of the beta function shows that there is an equilibrium point at $\ell_i=0$ for $i=1,2,3,4,5,6$ and
\begin{equation} \begin{equation}
\alpha_0\in\{0,1\} \ell_0\in\{0,1\}
. .
\end{equation} \end{equation}
The point with $\alpha_0=0$ is unstable, whereas $\alpha_0=1$ is stable. The point with $\ell_0=0$ is unstable, whereas $\ell_0=1$ is stable.
\bigskip \bigskip
\begin{figure} \begin{figure}
\hfil\includegraphics[width=12cm]{graphene_vector_field.pdf} \hfil\includegraphics[width=12cm]{graphene_vector_field.pdf}
\caption{ \caption{
The projection of the directional vector field of the beta function for hierarchical graphene onto the $(\alpha_0,\alpha_1)$ plane. The projection of the directional vector field of the beta function for hierarchical graphene onto the $(\ell_0,\ell_1)$ plane.
(Each arrow shows the direction of the vector field, the color corresponds to the logarithm of the amplitude, with red being larger and blue smaller.) (Each arrow shows the direction of the vector field, the color corresponds to the logarithm of the amplitude, with red being larger and blue smaller.)
The stable equilibrium point at $\alpha_0=1$ and $\alpha_i=0$ is clearly visible. The stable equilibrium point at $\ell_0=1$ and $\ell_i=0$ is clearly visible.
} }
\label{fig:vector_field} \label{fig:vector_field}
\end{figure} \end{figure}
@ -1496,7 +1598,7 @@ Let us first prove a technical lemma.
\bigskip \bigskip
\indent\underline{Proof}: \indent\underline{Proof}:
To prove\-~(\ref{fock1}), we write $e^{-t\sum_i\lambda_ia_i^\dagger a_i}=\prod_ie^{-t\lambda_ia_i^\dagger a_i}$ and expand the exponential, using the fact that $(a_i^\dagger a_i)^n=a_i^\dagger a_i$ for any $n\geqslant 1$. The proof of\-~(\ref{fock1}) proceeds as follows: we write $e^{-t\sum_i\lambda_ia_i^\dagger a_i}=\prod_ie^{-t\lambda_ia_i^\dagger a_i}$ and expand the exponential, using the fact that $(a_i^\dagger a_i)^n=a_i^\dagger a_i$ for any $n\geqslant 1$.
By\-~(\ref{fock1}), By\-~(\ref{fock1}),
\begin{equation} \begin{equation}
e^{-t\sum_{i=1}^N\lambda_ia_i^\dagger a_i}a_j^\dagger e^{-t\sum_{i=1}^N\lambda_ia_i^\dagger a_i}a_j^\dagger
@ -1509,69 +1611,30 @@ Let us first prove a technical lemma.
= =
e^{-t\lambda_j}a_j^\dagger\prod_{i\neq j} e^{-t\lambda_j}a_j^\dagger\prod_{i\neq j}
(1+(e^{-t\lambda_i}-1)a_i^\dagger a_i) (1+(e^{-t\lambda_i}-1)a_i^\dagger a_i)
\end{equation}
and since $(a_j^\dagger)^2=0$,
\begin{equation}
e^{-t\sum_{i=1}^N\lambda_ia_i^\dagger a_i}a_j^\dagger
=
e^{-t\lambda_j}a_j^\dagger\prod_{i}
(1+(e^{-t\lambda_i}-1)a_i^\dagger a_i)
=
e^{-t\lambda_j}a_j^\dagger
e^{-t\sum_{i=1}^N\lambda_ia_i^\dagger a_i}
. .
\label{fock2} \label{fock2}
\end{equation} \end{equation}
Similarly, Taking the $\dagger$ of\-~(\ref{fock2}), we find
\begin{equation} \begin{equation}
e^{-t\sum_{i=1}^N\lambda_ia_i^\dagger a_i}a_j a_je^{-t\sum_{i=1}^N\lambda_ia_i^\dagger a_i}
=
\left(\prod_{i=1}^n(1+(e^{-t\lambda_i}-1)a_i^\dagger a_i)\right)a_j
\end{equation}
and so, using $a_i^2=0$, we find
\begin{equation}
e^{-t\sum_{i=1}^N\lambda_ia_i^\dagger a_i}a_j
= =
e^{-t\lambda_j}
e^{-t\sum_{i=1}^N\lambda_ia_i^\dagger a_i}
a_j a_j
\prod_{i\neq j}
(1+(e^{-t\lambda_i}-1)a_i^\dagger a_i)
. .
\label{fock3} \label{fock3}
\end{equation} \end{equation}
Furthermore, taking the $\dagger$ of\-~(\ref{fock3}), we find Combining\-~(\ref{fock2}) and\-~(\ref{fock3}), we find\-~(\ref{fock4}).
\begin{equation}
a_j^\dagger e^{-t\sum_{i=1}^N\lambda_ia_i^\dagger a_i}
=
\left(
\prod_{i\neq j}
(1+(e^{-t\lambda_i}-1)a_i^\dagger a_i)
\right)
a_j^\dagger
\end{equation}
and since
\begin{equation}
(1+(e^{-t\lambda_j}-1)a_j^\dagger a_j)a_j^\dagger
=
e^{-t\lambda_j}a_j^\dagger
\end{equation}
we have
\begin{equation}
a_j^\dagger e^{-t\sum_{i=1}^N\lambda_ia_i^\dagger a_i}
=
e^{t\lambda_j}e^{-t\sum_{i=1}^N\lambda_ia_i^\dagger a_i}a_j^\dagger
.
\label{fock2'}
\end{equation}
This implies the first of\-~(\ref{fock4}).
Taking the $\dagger$ of\-~(\ref{fock2}) yields
\begin{equation}
a_je^{-t\sum_{i=1}^N\lambda_ia_i^\dagger a_i}
=e^{-t\lambda_j}\prod_{i\neq j}
(1+(e^{-t\lambda_i}-1)a_i^\dagger a_i)a_j
\end{equation}
and since
\begin{equation}
(1+(e^{-t\lambda_i}-1)a_j^\dagger a_k)a_j
=a_j
\end{equation}
we have
\begin{equation}
a_je^{-t\sum_{i=1}^N\lambda_ia_i^\dagger a_i}
=e^{-t\lambda_j}e^{-t\sum_{i=1}^N\lambda_ia_i^\dagger a_i}a_j
.
\label{fock3'}
\end{equation}
This implies the second of\-~(\ref{fock4}).
\qed \qed
\bigskip \bigskip
@ -1756,14 +1819,15 @@ We now compute the two-point correlation function of $\left<\cdot\right>$.
\frac1{-ik_0+\lambda_k} \frac1{-ik_0+\lambda_k}
. .
\end{equation} \end{equation}
Thus, if the Fourier transform can be inverted, then we have Thus, wherever the Fourier transform can be inverted, we have
\begin{equation} \begin{equation}
s_{i,j}(t-t') s_{i,j}(t-t')
= =
\frac1\beta\sum_{k_0\in\frac{2\pi}\beta(\mathbb Z+\frac12)} \frac1\beta\sum_{k_0\in\frac{2\pi}\beta(\mathbb Z+\frac12)}
e^{-ik_0(t-t')}(-ik_0\mathds 1+\mu)^{-1}_{i,j} e^{-ik_0(t-t')}(-ik_0\mathds 1+\mu)^{-1}_{i,j}
.
\end{equation} \end{equation}
and this is the case where $s_{i,j}(t-t')$ is continuous. The Fourier transform can be inverted where $s_{i,j}(t-t')$ is continuous.
\bigskip \bigskip
\point \point
@ -2315,7 +2379,7 @@ Finally, let us prove the addition property of Gaussiann Grassmann integrals.
\bigskip \bigskip
\indent\underline{Proof}: \indent\underline{Proof}:
It is sufficient to prove the lemma when $f$ is a monomial of the form Using the linearity of the integration, it suffices to prove the lemma when $f$ is a monomial of the form
\begin{equation} \begin{equation}
f(\psi)= f(\psi)=
\prod_{i=1}^{n} \prod_{i=1}^{n}
@ -2330,7 +2394,7 @@ Finally, let us prove the addition property of Gaussiann Grassmann integrals.
\int P_{\nu_1}(d\varphi_1)\int P_{\nu_2}(d\varphi_2)\ f(\varphi_1) \int P_{\nu_1}(d\varphi_1)\int P_{\nu_2}(d\varphi_2)\ f(\varphi_1)
\end{equation} \end{equation}
where $\nu_1$ and $\nu_2$ can be computed from the change of variables, but this is not necessary here. where $\nu_1$ and $\nu_2$ can be computed from the change of variables, but this is not necessary here.
Since $f$ is a monomial, it can be computed using the Wick rule\-~\ref{lemma:wick_grassmann}, and thus, changing variables back to $\psi$, Since $f$ is a monomial, it can be computed using the Wick rule, see lemma\-~\ref{lemma:wick_grassmann}, and thus, changing variables back to $\psi$,
\begin{equation} \begin{equation}
\begin{largearray} \begin{largearray}
\int P_{\mu_1}(d\psi_1)\int P_{\mu_2}(d\psi_2)\ f(\psi) \int P_{\mu_1}(d\psi_1)\int P_{\mu_2}(d\psi_2)\ f(\psi)

2
README
View File

@ -28,6 +28,8 @@ Some extra functionality is provided in custom style files, located in the
gnuplot gnuplot
meankondo v1.5 meankondo v1.5
meankondo is available from http://ian.jauslin.org/software/meankondo
* Files: * Files:

View File

@ -1,5 +1,5 @@
set ylabel "$\\alpha_1$" norotate set ylabel "$\\ell_1$" norotate
set xlabel "$\\alpha_0$" set xlabel "$\\ell_0$"
# default output canvas size: 12.5cm x 8.75cm # default output canvas size: 12.5cm x 8.75cm
set term lua tikz size 8,6 standalone set term lua tikz size 8,6 standalone