Fix notations and typos, and shorten proof of lemma A1.1
This commit is contained in:
		
							
								
								
									
										112
									
								
								Jauslin_2022.tex
									
									
									
									
									
								
							
							
						
						
									
										112
									
								
								Jauslin_2022.tex
									
									
									
									
									
								
							@@ -255,8 +255,8 @@ We define the Fourier transform of the annihilation operators as
 | 
				
			|||||||
  \hat a_{k,\sigma}:=\frac1{\sqrt{|\Lambda|}}\sum_{x\in\Lambda}e^{ikx}a_{x,\sigma}
 | 
					  \hat a_{k,\sigma}:=\frac1{\sqrt{|\Lambda|}}\sum_{x\in\Lambda}e^{ikx}a_{x,\sigma}
 | 
				
			||||||
  ,\quad 
 | 
					  ,\quad 
 | 
				
			||||||
  \hat b_{k,\sigma}:=\frac1{\sqrt{|\Lambda|}}\sum_{x\in\Lambda}e^{ikx}b_{x+\delta_1,\sigma}
 | 
					  \hat b_{k,\sigma}:=\frac1{\sqrt{|\Lambda|}}\sum_{x\in\Lambda}e^{ikx}b_{x+\delta_1,\sigma}
 | 
				
			||||||
  .
 | 
					 | 
				
			||||||
\end{equation} 
 | 
					\end{equation} 
 | 
				
			||||||
 | 
					where $|\Lambda|=L^2$.
 | 
				
			||||||
Note that, with this choice of normalization, $\hat a_{k,\sigma}$ and $\hat b_{k,\sigma}$ satisfy the canonical anticommutation relations:
 | 
					Note that, with this choice of normalization, $\hat a_{k,\sigma}$ and $\hat b_{k,\sigma}$ satisfy the canonical anticommutation relations:
 | 
				
			||||||
\begin{equation}
 | 
					\begin{equation}
 | 
				
			||||||
  \{a_{k,\sigma},a_{k',\sigma'}^\dagger\}
 | 
					  \{a_{k,\sigma},a_{k',\sigma'}^\dagger\}
 | 
				
			||||||
@@ -276,7 +276,7 @@ We express $\mathcal H_0$ in terms of $\hat a$ and $\hat b$:
 | 
				
			|||||||
  \mathcal H_0=-\sum_{\sigma\in\{\uparrow,\downarrow\}}\sum_{ k\in\hat\Lambda}\hat A_{k,\sigma}^\dagger H_0(k)\hat A_{k,\sigma}
 | 
					  \mathcal H_0=-\sum_{\sigma\in\{\uparrow,\downarrow\}}\sum_{ k\in\hat\Lambda}\hat A_{k,\sigma}^\dagger H_0(k)\hat A_{k,\sigma}
 | 
				
			||||||
  \label{hamk}
 | 
					  \label{hamk}
 | 
				
			||||||
\end{equation}
 | 
					\end{equation}
 | 
				
			||||||
where $|\Lambda|=L^2$, $\hat A_{k,\sigma}$ is a column vector whose transpose is $\hat A_{k,\sigma}^T=(\hat a_{k,\sigma},\hat{b}_{k,\sigma})$, 
 | 
					$\hat A_{k,\sigma}$ is a column vector whose transpose is $\hat A_{k,\sigma}^T=(\hat a_{k,\sigma},\hat{b}_{k,\sigma})$, 
 | 
				
			||||||
\begin{equation}
 | 
					\begin{equation}
 | 
				
			||||||
  H_0( k):=
 | 
					  H_0( k):=
 | 
				
			||||||
  \left(\begin{array}{*{2}{c}}
 | 
					  \left(\begin{array}{*{2}{c}}
 | 
				
			||||||
@@ -440,7 +440,7 @@ The Gaussian Grassmann measure is specified by a {\it propagator}, which is a $2
 | 
				
			|||||||
  \begin{largearray}
 | 
					  \begin{largearray}
 | 
				
			||||||
    P_{\hat g}(d\psi) := \left(
 | 
					    P_{\hat g}(d\psi) := \left(
 | 
				
			||||||
      \prod_{\mathbf k\in\mathcal B_{\beta,L}^*}
 | 
					      \prod_{\mathbf k\in\mathcal B_{\beta,L}^*}
 | 
				
			||||||
      (\beta\det\hat g(\mathbf k))^4
 | 
					      (\beta^2\det\hat g(\mathbf k))^2
 | 
				
			||||||
      \left(\prod_{\sigma\in\{\uparrow,\downarrow\}}\prod_{\alpha\in\{a,b\}}d\hat\psi_{\mathbf k,\alpha}^+d\hat\psi_{\mathbf k,\alpha}^-\right)
 | 
					      \left(\prod_{\sigma\in\{\uparrow,\downarrow\}}\prod_{\alpha\in\{a,b\}}d\hat\psi_{\mathbf k,\alpha}^+d\hat\psi_{\mathbf k,\alpha}^-\right)
 | 
				
			||||||
    \right)
 | 
					    \right)
 | 
				
			||||||
    \cdot\\[0.5cm]\hfill\cdot
 | 
					    \cdot\\[0.5cm]\hfill\cdot
 | 
				
			||||||
@@ -512,7 +512,7 @@ Thus, we define the Gaussian Grassmann integration measure $P_{\leqslant M}(d\ps
 | 
				
			|||||||
\end{equation}
 | 
					\end{equation}
 | 
				
			||||||
where $f_{0,\Lambda}$ is the free energy in the $U=0$ case and
 | 
					where $f_{0,\Lambda}$ is the free energy in the $U=0$ case and
 | 
				
			||||||
\begin{equation}
 | 
					\begin{equation}
 | 
				
			||||||
  \mathcal V(\psi)=U\sum_{\alpha\in\{a,b\}}\frac1{|\Lambda|}\int_{0}^\beta dt \sum_{x\in \Lambda}\psi^+_{\mathbf x,\alpha,\uparrow}\psi^{-}_{\mathbf x,\alpha,\uparrow}
 | 
					  \mathcal V(\psi)=U\sum_{\alpha\in\{a,b\}}\int_{0}^\beta dt \sum_{x\in \Lambda}\psi^+_{\mathbf x,\alpha,\uparrow}\psi^{-}_{\mathbf x,\alpha,\uparrow}
 | 
				
			||||||
  \psi^+_{\mathbf x,\alpha,\downarrow}\psi^{-}_{\mathbf x,\alpha,\downarrow}
 | 
					  \psi^+_{\mathbf x,\alpha,\downarrow}\psi^{-}_{\mathbf x,\alpha,\downarrow}
 | 
				
			||||||
  \label{V_grassmann}
 | 
					  \label{V_grassmann}
 | 
				
			||||||
\end{equation}
 | 
					\end{equation}
 | 
				
			||||||
@@ -549,7 +549,7 @@ The idea is to approach the singularities $p_F^{(\omega)}$ slowly, by defining s
 | 
				
			|||||||
  \Phi_{h}(\mathbf k-\mathbf p_F^{(\omega)}):=(\chi_0(2^{-h}|\mathbf k-\mathbf p_F^{(\omega)}|)-\chi_0(2^{-h+1}|\mathbf k-\mathbf p_F^{(\omega)}|))
 | 
					  \Phi_{h}(\mathbf k-\mathbf p_F^{(\omega)}):=(\chi_0(2^{-h}|\mathbf k-\mathbf p_F^{(\omega)}|)-\chi_0(2^{-h+1}|\mathbf k-\mathbf p_F^{(\omega)}|))
 | 
				
			||||||
  \label{fh}
 | 
					  \label{fh}
 | 
				
			||||||
\end{equation}
 | 
					\end{equation}
 | 
				
			||||||
which is a smooth function that is supported in $|\mathbf k-\mathbf p_F^{(\omega)}|\in[2^h\frac16,2^h\frac23]$, in other words, if localizes $\mathbf k$ to be at a distance from $\mathbf p_F^{(\omega)}$ that is of order $2^h$, see figure\-~\ref{fig:scale}.
 | 
					which is a smooth function that is supported in $|\mathbf k-\mathbf p_F^{(\omega)}|\in[2^h\frac16,2^h\frac23]$, in other words, it localizes $\mathbf k$ to be at a distance from $\mathbf p_F^{(\omega)}$ that is of order $2^h$, see figure\-~\ref{fig:scale}.
 | 
				
			||||||
Since $|k_0|\geqslant\frac\pi\beta$, we only need to consider
 | 
					Since $|k_0|\geqslant\frac\pi\beta$, we only need to consider
 | 
				
			||||||
\begin{equation}
 | 
					\begin{equation}
 | 
				
			||||||
  h\geqslant -N_\beta:=\log_2\frac\pi\beta
 | 
					  h\geqslant -N_\beta:=\log_2\frac\pi\beta
 | 
				
			||||||
@@ -679,7 +679,6 @@ We will take the propagators to be
 | 
				
			|||||||
\end{equation}
 | 
					\end{equation}
 | 
				
			||||||
\begin{equation}
 | 
					\begin{equation}
 | 
				
			||||||
  \int P^{[h]}(d\psi^{[h]})\ \psi_{b,\sigma}^{[h]-}(\Delta)\psi_{a,\sigma'}^{[h]+}(\Delta')=\delta_{\sigma,\sigma'}\delta_{\Delta,\Delta'}
 | 
					  \int P^{[h]}(d\psi^{[h]})\ \psi_{b,\sigma}^{[h]-}(\Delta)\psi_{a,\sigma'}^{[h]+}(\Delta')=\delta_{\sigma,\sigma'}\delta_{\Delta,\Delta'}
 | 
				
			||||||
  .
 | 
					 | 
				
			||||||
\end{equation}
 | 
					\end{equation}
 | 
				
			||||||
and all other propagators will be set to 0.
 | 
					and all other propagators will be set to 0.
 | 
				
			||||||
We can now evaluate how well these propagators approximate the non-hierarchical ones.
 | 
					We can now evaluate how well these propagators approximate the non-hierarchical ones.
 | 
				
			||||||
@@ -754,7 +753,7 @@ Because there are only four Grassmann fields and their conjugates per cell, $v_h
 | 
				
			|||||||
In fact, by symmetry considerations, we find that $v_h$ must be of the form
 | 
					In fact, by symmetry considerations, we find that $v_h$ must be of the form
 | 
				
			||||||
\begin{equation}
 | 
					\begin{equation}
 | 
				
			||||||
  v_h(\psi)=
 | 
					  v_h(\psi)=
 | 
				
			||||||
  \sum_{i=0}^6\alpha_i^{(h)}O_i(\psi)
 | 
					  \sum_{i=0}^6\ell_i^{(h)}O_i(\psi)
 | 
				
			||||||
  \label{vh_rcc}
 | 
					  \label{vh_rcc}
 | 
				
			||||||
\end{equation}
 | 
					\end{equation}
 | 
				
			||||||
with
 | 
					with
 | 
				
			||||||
@@ -894,19 +893,19 @@ We expand the exponential and use\-~(\ref{vh_rcc}):
 | 
				
			|||||||
  \begin{largearray}
 | 
					  \begin{largearray}
 | 
				
			||||||
    \beta|\Lambda|c^{[h]}
 | 
					    \beta|\Lambda|c^{[h]}
 | 
				
			||||||
    +
 | 
					    +
 | 
				
			||||||
    \sum_{i=0}^6\alpha_i^{(h-1)}O_i(\psi^{[\leqslant h-1]}(\bar\Delta))
 | 
					    \sum_{i=0}^6\ell_i^{(h-1)}O_i(\psi^{[\leqslant h-1]}(\bar\Delta))
 | 
				
			||||||
    =\\\hfill=
 | 
					    =\\\hfill=
 | 
				
			||||||
    2^{d+1}\log
 | 
					    2^{d+1}\log
 | 
				
			||||||
    \int P(d\psi^{[h]}(\Delta))
 | 
					    \int P(d\psi^{[h]}(\Delta))
 | 
				
			||||||
    \sum_{n=0}^\infty
 | 
					    \sum_{n=0}^\infty
 | 
				
			||||||
    \frac1{n!}
 | 
					    \frac1{n!}
 | 
				
			||||||
    \left(\sum_{i=0}^6\alpha_i^{(h)}O_i\left(\psi^{[h]}(\Delta)+2^{-\gamma}\psi^{[\leqslant h-1]}(\bar\Delta)\right)\right)^n
 | 
					    \left(\sum_{i=0}^6\ell_i^{(h)}O_i\left(\psi^{[h]}(\Delta)+2^{-\gamma}\psi^{[\leqslant h-1]}(\bar\Delta)\right)\right)^n
 | 
				
			||||||
    .
 | 
					    .
 | 
				
			||||||
  \end{largearray}
 | 
					  \end{largearray}
 | 
				
			||||||
  \label{betadef}
 | 
					  \label{betadef}
 | 
				
			||||||
\end{equation}
 | 
					\end{equation}
 | 
				
			||||||
The computation is thus reduced to computing the map $\alpha^{(h)}\mapsto\alpha^{(h-1)}$ using\-~(\ref{betadef}).
 | 
					The computation is thus reduced to computing the map $\ell^{(h)}\mapsto\ell^{(h-1)}$ using\-~(\ref{betadef}).
 | 
				
			||||||
The coefficients $\alpha_i^{(h)}$ are called {\it running coupling constants}, and the map $\alpha^{(h)}\mapsto\alpha^{(h-1)}$ is called the {\it beta function} of the model.
 | 
					The coefficients $\ell_i^{(h)}$ are called {\it running coupling constants}, and the map $\ell^{(h)}\mapsto\ell^{(h-1)}$ is called the {\it beta function} of the model.
 | 
				
			||||||
The running coupling constants play a very important role, as they specify the effective potential on scale $h$, and thereby the physical properties of the system at distances $\sim2^{-h}$.
 | 
					The running coupling constants play a very important role, as they specify the effective potential on scale $h$, and thereby the physical properties of the system at distances $\sim2^{-h}$.
 | 
				
			||||||
\bigskip
 | 
					\bigskip
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -914,7 +913,7 @@ The running coupling constants play a very important role, as they specify the e
 | 
				
			|||||||
Having defined the hierarchical model as we have, the infinite sum in\-~(\ref{betadef}) is actually finite ($n\leqslant 4$), so to compute the beta function, it suffices to compute Gaussian Grassmann integrals of a finite number of Grassmann monomials.
 | 
					Having defined the hierarchical model as we have, the infinite sum in\-~(\ref{betadef}) is actually finite ($n\leqslant 4$), so to compute the beta function, it suffices to compute Gaussian Grassmann integrals of a finite number of Grassmann monomials.
 | 
				
			||||||
A convenient way to carry out this computation is to represent each term graphically, using {\it Feynman diagrams}.
 | 
					A convenient way to carry out this computation is to represent each term graphically, using {\it Feynman diagrams}.
 | 
				
			||||||
First, let us expand the power $n$ and graphically represent the terms that must be integrated.
 | 
					First, let us expand the power $n$ and graphically represent the terms that must be integrated.
 | 
				
			||||||
For each $n$, we have $n$ possible choices of $\alpha_iO_i$.
 | 
					For each $n$, we have $n$ possible choices of $\ell_iO_i$.
 | 
				
			||||||
Now, $O_i$ can be quadratic in $\psi$ ($O_0$), quartic ($O_1$, $O_2$, $O_3$, $O_4$), sextic ($O_5$) or octic ($O_6$).
 | 
					Now, $O_i$ can be quadratic in $\psi$ ($O_0$), quartic ($O_1$, $O_2$, $O_3$, $O_4$), sextic ($O_5$) or octic ($O_6$).
 | 
				
			||||||
We will represent $O_i$ by a vertex with the label $i$, from which two, four, six or eight edges emanate, depending on the degree of $O_i$.
 | 
					We will represent $O_i$ by a vertex with the label $i$, from which two, four, six or eight edges emanate, depending on the degree of $O_i$.
 | 
				
			||||||
Each edge corresponds to a factor $\psi^{[h]}+2^{-\gamma}\psi^{[\leqslant h-1]}$.
 | 
					Each edge corresponds to a factor $\psi^{[h]}+2^{-\gamma}\psi^{[\leqslant h-1]}$.
 | 
				
			||||||
@@ -964,13 +963,13 @@ In other words, no integrating is taking place.
 | 
				
			|||||||
Let us denote the number of external edges by $2l$, which can either be 2, 4, 6 or 8.
 | 
					Let us denote the number of external edges by $2l$, which can either be 2, 4, 6 or 8.
 | 
				
			||||||
The contribution of this graph is (keeping track of the $2^{d+1}$ factor in\-~(\ref{betadef}))
 | 
					The contribution of this graph is (keeping track of the $2^{d+1}$ factor in\-~(\ref{betadef}))
 | 
				
			||||||
\begin{equation}
 | 
					\begin{equation}
 | 
				
			||||||
  2^{d+1-2l\gamma}\alpha_i^{(h)}
 | 
					  2^{d+1-2l\gamma}\ell_i^{(h)}
 | 
				
			||||||
  .
 | 
					  .
 | 
				
			||||||
\end{equation}
 | 
					\end{equation}
 | 
				
			||||||
Furthermore, this graph will contribute to the running coupling constant $\alpha_i$, and so, on scale $h-1$, we will have
 | 
					Furthermore, this graph will contribute to the running coupling constant $\ell_i$, and so, on scale $h-1$, we will have
 | 
				
			||||||
\begin{equation}
 | 
					\begin{equation}
 | 
				
			||||||
  \alpha_i^{(h-1)}=
 | 
					  \ell_i^{(h-1)}=
 | 
				
			||||||
  2^{d+1-2l\gamma}\alpha_i^{(h)}
 | 
					  2^{d+1-2l\gamma}\ell_i^{(h)}
 | 
				
			||||||
  +
 | 
					  +
 | 
				
			||||||
  \cdots
 | 
					  \cdots
 | 
				
			||||||
\end{equation}
 | 
					\end{equation}
 | 
				
			||||||
@@ -1004,7 +1003,7 @@ For a more general treatment of power counting in Fermionic models with point-si
 | 
				
			|||||||
\indent
 | 
					\indent
 | 
				
			||||||
In the case of graphene, we have one relevant coupling: $O_0$, which is quadratic in the Grassmann fields.
 | 
					In the case of graphene, we have one relevant coupling: $O_0$, which is quadratic in the Grassmann fields.
 | 
				
			||||||
This is the only relevant coupling, and all others stay small.
 | 
					This is the only relevant coupling, and all others stay small.
 | 
				
			||||||
However, since the relevant coupling is quadratic, it merely shifts the non-interacting system (whose Hamiltonian is quadratic in the Grassmann fields) to another system with a quadratic (that is non-interacting) Hamiltonian.
 | 
					However, since the relevant coupling is quadratic, it merely shifts the non-interacting system (whose Hamiltonian is quadratic in the Grassmann fields) to another system with a quadratic (that is, non-interacting) Hamiltonian.
 | 
				
			||||||
Thus the relevant coupling does {\it not} imply that the interactions are preponderant, but rather that the interaction terms shifts the system from one non-interacting system to another.
 | 
					Thus the relevant coupling does {\it not} imply that the interactions are preponderant, but rather that the interaction terms shifts the system from one non-interacting system to another.
 | 
				
			||||||
Since graphene only has one relevant coupling, and that one is quadratic, graphene is called {\it super-renormalizable}.
 | 
					Since graphene only has one relevant coupling, and that one is quadratic, graphene is called {\it super-renormalizable}.
 | 
				
			||||||
\bigskip
 | 
					\bigskip
 | 
				
			||||||
@@ -1013,20 +1012,20 @@ Since graphene only has one relevant coupling, and that one is quadratic, graphe
 | 
				
			|||||||
As was mentioned above, the beta function can be computed {\it explicitly} for the hierarchical model, so the claims in the previous paragraph can be verified rather easily.
 | 
					As was mentioned above, the beta function can be computed {\it explicitly} for the hierarchical model, so the claims in the previous paragraph can be verified rather easily.
 | 
				
			||||||
The exact computation involves many terms, but it can be done easily using the {\tt meankondo} software package\-~\cite{mk}.
 | 
					The exact computation involves many terms, but it can be done easily using the {\tt meankondo} software package\-~\cite{mk}.
 | 
				
			||||||
The resulting beta function contains 888 terms, and will not be written out here.
 | 
					The resulting beta function contains 888 terms, and will not be written out here.
 | 
				
			||||||
A careful analysis of the beta function shows that there is an equilibrium point at $\alpha_i=0$ for $i=1,2,3,4,5,6$ and
 | 
					A careful analysis of the beta function shows that there is an equilibrium point at $\ell_i=0$ for $i=1,2,3,4,5,6$ and
 | 
				
			||||||
\begin{equation}
 | 
					\begin{equation}
 | 
				
			||||||
  \alpha_0\in\{0,1\}
 | 
					  \ell_0\in\{0,1\}
 | 
				
			||||||
  .
 | 
					  .
 | 
				
			||||||
\end{equation}
 | 
					\end{equation}
 | 
				
			||||||
The point with $\alpha_0=0$ is unstable, whereas $\alpha_0=1$ is stable.
 | 
					The point with $\ell_0=0$ is unstable, whereas $\ell_0=1$ is stable.
 | 
				
			||||||
\bigskip
 | 
					\bigskip
 | 
				
			||||||
 | 
					
 | 
				
			||||||
\begin{figure}
 | 
					\begin{figure}
 | 
				
			||||||
\hfil\includegraphics[width=12cm]{graphene_vector_field.pdf}
 | 
					\hfil\includegraphics[width=12cm]{graphene_vector_field.pdf}
 | 
				
			||||||
\caption{
 | 
					\caption{
 | 
				
			||||||
  The projection of the directional vector field of the beta function for hierarchical graphene onto the $(\alpha_0,\alpha_1)$ plane.
 | 
					  The projection of the directional vector field of the beta function for hierarchical graphene onto the $(\ell_0,\ell_1)$ plane.
 | 
				
			||||||
  (Each arrow shows the direction of the vector field, the color corresponds to the logarithm of the amplitude, with red being larger and blue smaller.)
 | 
					  (Each arrow shows the direction of the vector field, the color corresponds to the logarithm of the amplitude, with red being larger and blue smaller.)
 | 
				
			||||||
  The stable equilibrium point at $\alpha_0=1$ and $\alpha_i=0$ is clearly visible.
 | 
					  The stable equilibrium point at $\ell_0=1$ and $\ell_i=0$ is clearly visible.
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
\label{fig:vector_field}
 | 
					\label{fig:vector_field}
 | 
				
			||||||
\end{figure}
 | 
					\end{figure}
 | 
				
			||||||
@@ -1509,69 +1508,30 @@ Let us first prove a technical lemma.
 | 
				
			|||||||
    =
 | 
					    =
 | 
				
			||||||
    e^{-t\lambda_j}a_j^\dagger\prod_{i\neq j}
 | 
					    e^{-t\lambda_j}a_j^\dagger\prod_{i\neq j}
 | 
				
			||||||
    (1+(e^{-t\lambda_i}-1)a_i^\dagger a_i)
 | 
					    (1+(e^{-t\lambda_i}-1)a_i^\dagger a_i)
 | 
				
			||||||
 | 
					  \end{equation}
 | 
				
			||||||
 | 
					  and since $(a_j^\dagger)^2=0$,
 | 
				
			||||||
 | 
					  \begin{equation}
 | 
				
			||||||
 | 
					    e^{-t\sum_{i=1}^N\lambda_ia_i^\dagger a_i}a_j^\dagger
 | 
				
			||||||
 | 
					    =
 | 
				
			||||||
 | 
					    e^{-t\lambda_j}a_j^\dagger\prod_{i}
 | 
				
			||||||
 | 
					    (1+(e^{-t\lambda_i}-1)a_i^\dagger a_i)
 | 
				
			||||||
 | 
					    =
 | 
				
			||||||
 | 
					    e^{-t\lambda_j}a_j^\dagger
 | 
				
			||||||
 | 
					    e^{-t\sum_{i=1}^N\lambda_ia_i^\dagger a_i}
 | 
				
			||||||
    .
 | 
					    .
 | 
				
			||||||
    \label{fock2}
 | 
					    \label{fock2}
 | 
				
			||||||
  \end{equation}
 | 
					  \end{equation}
 | 
				
			||||||
  Similarly,
 | 
					  Taking the $\dagger$ of\-~(\ref{fock2}), we find
 | 
				
			||||||
  \begin{equation}
 | 
					  \begin{equation}
 | 
				
			||||||
    e^{-t\sum_{i=1}^N\lambda_ia_i^\dagger a_i}a_j
 | 
					    a_je^{-t\sum_{i=1}^N\lambda_ia_i^\dagger a_i}
 | 
				
			||||||
    =
 | 
					 | 
				
			||||||
    \left(\prod_{i=1}^n(1+(e^{-t\lambda_i}-1)a_i^\dagger a_i)\right)a_j
 | 
					 | 
				
			||||||
  \end{equation}
 | 
					 | 
				
			||||||
  and so, using $a_i^2=0$, we find
 | 
					 | 
				
			||||||
  \begin{equation}
 | 
					 | 
				
			||||||
    e^{-t\sum_{i=1}^N\lambda_ia_i^\dagger a_i}a_j
 | 
					 | 
				
			||||||
    =
 | 
					    =
 | 
				
			||||||
 | 
					    e^{-t\lambda_j}
 | 
				
			||||||
 | 
					    e^{-t\sum_{i=1}^N\lambda_ia_i^\dagger a_i}
 | 
				
			||||||
    a_j
 | 
					    a_j
 | 
				
			||||||
    \prod_{i\neq j}
 | 
					 | 
				
			||||||
    (1+(e^{-t\lambda_i}-1)a_i^\dagger a_i)
 | 
					 | 
				
			||||||
    .
 | 
					    .
 | 
				
			||||||
    \label{fock3}
 | 
					    \label{fock3}
 | 
				
			||||||
  \end{equation}
 | 
					  \end{equation}
 | 
				
			||||||
  Furthermore, taking the $\dagger$ of\-~(\ref{fock3}), we find
 | 
					  Combining\-~(\ref{fock2}) and\-~(\ref{fock3}), we find\-~(\ref{fock4}).
 | 
				
			||||||
  \begin{equation}
 | 
					 | 
				
			||||||
    a_j^\dagger e^{-t\sum_{i=1}^N\lambda_ia_i^\dagger a_i}
 | 
					 | 
				
			||||||
    =
 | 
					 | 
				
			||||||
    \left(
 | 
					 | 
				
			||||||
      \prod_{i\neq j}
 | 
					 | 
				
			||||||
      (1+(e^{-t\lambda_i}-1)a_i^\dagger a_i)
 | 
					 | 
				
			||||||
    \right)
 | 
					 | 
				
			||||||
    a_j^\dagger
 | 
					 | 
				
			||||||
  \end{equation}
 | 
					 | 
				
			||||||
  and since
 | 
					 | 
				
			||||||
  \begin{equation}
 | 
					 | 
				
			||||||
    (1+(e^{-t\lambda_j}-1)a_j^\dagger a_j)a_j^\dagger
 | 
					 | 
				
			||||||
    =
 | 
					 | 
				
			||||||
    e^{-t\lambda_j}a_j^\dagger
 | 
					 | 
				
			||||||
  \end{equation}
 | 
					 | 
				
			||||||
  we have
 | 
					 | 
				
			||||||
  \begin{equation}
 | 
					 | 
				
			||||||
    a_j^\dagger e^{-t\sum_{i=1}^N\lambda_ia_i^\dagger a_i}
 | 
					 | 
				
			||||||
    =
 | 
					 | 
				
			||||||
    e^{t\lambda_j}e^{-t\sum_{i=1}^N\lambda_ia_i^\dagger a_i}a_j^\dagger 
 | 
					 | 
				
			||||||
    .
 | 
					 | 
				
			||||||
    \label{fock2'}
 | 
					 | 
				
			||||||
  \end{equation}
 | 
					 | 
				
			||||||
  This implies the first of\-~(\ref{fock4}).
 | 
					 | 
				
			||||||
  Taking the $\dagger$ of\-~(\ref{fock2}) yields
 | 
					 | 
				
			||||||
  \begin{equation}
 | 
					 | 
				
			||||||
    a_je^{-t\sum_{i=1}^N\lambda_ia_i^\dagger a_i}
 | 
					 | 
				
			||||||
    =e^{-t\lambda_j}\prod_{i\neq j}
 | 
					 | 
				
			||||||
    (1+(e^{-t\lambda_i}-1)a_i^\dagger a_i)a_j
 | 
					 | 
				
			||||||
  \end{equation}
 | 
					 | 
				
			||||||
  and since
 | 
					 | 
				
			||||||
  \begin{equation}
 | 
					 | 
				
			||||||
    (1+(e^{-t\lambda_i}-1)a_j^\dagger a_k)a_j
 | 
					 | 
				
			||||||
    =a_j
 | 
					 | 
				
			||||||
  \end{equation}
 | 
					 | 
				
			||||||
  we have
 | 
					 | 
				
			||||||
  \begin{equation}
 | 
					 | 
				
			||||||
    a_je^{-t\sum_{i=1}^N\lambda_ia_i^\dagger a_i}
 | 
					 | 
				
			||||||
    =e^{-t\lambda_j}e^{-t\sum_{i=1}^N\lambda_ia_i^\dagger a_i}a_j
 | 
					 | 
				
			||||||
    .
 | 
					 | 
				
			||||||
    \label{fock3'}
 | 
					 | 
				
			||||||
  \end{equation}
 | 
					 | 
				
			||||||
  This implies the second of\-~(\ref{fock4}).
 | 
					 | 
				
			||||||
\qed
 | 
					\qed
 | 
				
			||||||
\bigskip
 | 
					\bigskip
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
							
								
								
									
										2
									
								
								README
									
									
									
									
									
								
							
							
						
						
									
										2
									
								
								README
									
									
									
									
									
								
							@@ -28,6 +28,8 @@ Some extra functionality is provided in custom style files, located in the
 | 
				
			|||||||
  gnuplot
 | 
					  gnuplot
 | 
				
			||||||
  meankondo v1.5
 | 
					  meankondo v1.5
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					meankondo is available from http://ian.jauslin.org/software/meankondo
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
* Files:
 | 
					* Files:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -1,5 +1,5 @@
 | 
				
			|||||||
set ylabel "$\\alpha_1$" norotate
 | 
					set ylabel "$\\ell_1$" norotate
 | 
				
			||||||
set xlabel "$\\alpha_0$"
 | 
					set xlabel "$\\ell_0$"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# default output canvas size: 12.5cm x 8.75cm
 | 
					# default output canvas size: 12.5cm x 8.75cm
 | 
				
			||||||
set term lua tikz size 8,6 standalone
 | 
					set term lua tikz size 8,6 standalone
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user