Initial commit
This commit is contained in:
commit
647d192435
666
Gallavotti_Jauslin_2020.tex
Normal file
666
Gallavotti_Jauslin_2020.tex
Normal file
@ -0,0 +1,666 @@
|
|||||||
|
\documentclass[10pt]{article}
|
||||||
|
|
||||||
|
\usepackage{color}
|
||||||
|
\usepackage{graphicx}
|
||||||
|
\usepackage{amsfonts}
|
||||||
|
\usepackage[hidelinks]{hyperref}
|
||||||
|
\usepackage{natbib}
|
||||||
|
|
||||||
|
\def\Eq#1{\label{#1}}
|
||||||
|
|
||||||
|
% colors
|
||||||
|
\definecolor{iblue}{RGB}{65,105,225}
|
||||||
|
\definecolor{ired}{RGB}{220,20,60}
|
||||||
|
\definecolor{igreen}{RGB}{50,205,50}
|
||||||
|
\definecolor{ipurple}{RGB}{75,0,130}
|
||||||
|
\definecolor{iochre}{RGB}{218,165,32}
|
||||||
|
\definecolor{iteal}{RGB}{51,204,204}
|
||||||
|
\definecolor{imauve}{RGB}{204,51,153}
|
||||||
|
\definecolor{RED}{RGB}{255,0,0}
|
||||||
|
|
||||||
|
\def\alertv#1{{\color{green}#1}}
|
||||||
|
\def\alertm#1{{\color{magenta}#1}}
|
||||||
|
\def\alertb#1{{\color{blue}#1}}
|
||||||
|
\def\alertr#1{{\color{red}#1}}
|
||||||
|
\def\alertr#1{{\color{RED}#1}}
|
||||||
|
\def\alertn#1{{\color{black}#1}}
|
||||||
|
|
||||||
|
|
||||||
|
%% symbols
|
||||||
|
\let\a=\alpha \let\b=\beta \let\g=\gamma \let\d=\delta \let\e=\varepsilon
|
||||||
|
\let\z=\zeta \let\h=\eta \let\th=\vartheta \let\k=\kappa \let\l=\lambda
|
||||||
|
\let\m=\mu \let\n=\nu \let\x=\xi \let\p=\pi \let\r=\rho
|
||||||
|
\let\s=\sigma \let\t=\tau \let\f=\varphi \let\ph=\varphi\let\ch=\chi
|
||||||
|
\let\ch=\chi \let\ps=\psi \let\y=\upsilon \let\o=\omega \let\si=\varsigma
|
||||||
|
\let\G=\Gamma \let\D=\Delta \let\Th=\Theta \let\L=\Lambda \let\X=\Xi
|
||||||
|
\let\P=\Pi \let\Si=\Sigma \let\F=\Phi \let\Ps=\Psi
|
||||||
|
\let\O=\Omega \let\Y=\Upsilon
|
||||||
|
\def\V#1{{\bf#1}}\def\lhs{{\it l.h.s.}\ }\def\rhs{{\it r.h.s.}\ }
|
||||||
|
\def\*{\vskip 3mm}
|
||||||
|
\def\0{\noindent}
|
||||||
|
\def\be{\begin{equation}}
|
||||||
|
\def\ee{\end{equation}}
|
||||||
|
\def\bea{\begin{eqnarray}}
|
||||||
|
\def\eea{\end{eqnarray}}
|
||||||
|
%\renewcommand{\theequation}{\arabic{section}.\arabic{equation}}
|
||||||
|
\def\nn{\nonumber}
|
||||||
|
\def\xx{{\V x}}\def\pp{{\V p}}\def\kk{{\V k}}
|
||||||
|
\def\AA{{\mathcal A}}
|
||||||
|
\def\BB{{\cal B}}\def\CC{{\cal C}}\def\DD{{\mathcal D}}
|
||||||
|
\def\EE{{\cal E}}\def\HH{{\cal H}}\def\KK{{\cal K}}\def\LL{{\mathcal L}}
|
||||||
|
\def\NN{{\cal N}}\def\FF{{\cal F}}\def\PP{{\mathcal P}}
|
||||||
|
\def\QQ{{\mathcal Q}}\def\RR{{\cal R}}\def\TT{{\mathcal T}}
|
||||||
|
\let\dpr=\partial\let\fra=\frac
|
||||||
|
\def\ie{{\it i.e.}\ }
|
||||||
|
\def\eg{{\it e.g.}\ }
|
||||||
|
\def\equ#1{(\ref{#1})}
|
||||||
|
\def\lis#1{\overline{#1}}
|
||||||
|
\def\defi{{\buildrel def\over=}}
|
||||||
|
\def\Media#1{{\Big\langle\,#1\,\Big\rangle}}
|
||||||
|
\def\media#1{{\Blangle\,#1\,\Brangle}}
|
||||||
|
\def\bra#1{{\Blangle#1\Bvert}}\def\ket#1{{\Bvert#1\Brangle}}
|
||||||
|
\def\braket#1#2{\Blangle#1\Bvert#2\Brangle}
|
||||||
|
\def\otto{\,{\kern-1.truept\leftarrow\kern-5.truept\to\kern-1.truept}\,}
|
||||||
|
\def\wt#1{\widetilde{#1}}
|
||||||
|
\def\wh#1{\widehat{#1}}
|
||||||
|
\def\tende#1{\,\vtop{\ialign{##\crcr\rightarrowfill\crcr
|
||||||
|
\noalign{\kern-1pt\nointerlineskip} \hskip3.pt${\scriptstyle
|
||||||
|
#1}$\hskip3.pt\crcr}}\,}
|
||||||
|
\def\ie{{\it i.e.\ }}\def\etc{{\it etc.\ }}
|
||||||
|
\def\FF{{\mathcal F}}
|
||||||
|
\def\tto{\Rightarrow}
|
||||||
|
\def\ap{{\it a priori}}
|
||||||
|
\def\Ba {{\mbox{\boldmath$ \alpha$}}}
|
||||||
|
\def\Bb {{\mbox{\boldmath$ \beta$}}}
|
||||||
|
\def\Bg {{\mbox{\boldmath$ \gamma$}}}
|
||||||
|
\def\Bd {{\mbox{\boldmath$ \delta$}}}
|
||||||
|
\def\Be {{\mbox{\boldmath$ \varepsilon$}}}
|
||||||
|
\def\Bee {{\mbox{\boldmath$ \epsilon$}}}
|
||||||
|
\def\Bz {{\mbox{\boldmath$\zeta$}}}
|
||||||
|
\def\Bh {{\mbox{\boldmath$ \eta$}}}
|
||||||
|
\def\Bthh {{\mbox{\boldmath$ \theta$}}}
|
||||||
|
\def\Bth {{\mbox{\boldmath$ \vartheta$}}}
|
||||||
|
\def\Bi {{\mbox{\boldmath$ \iota$}}}
|
||||||
|
\def\Bk {{\mbox{\boldmath$ \kappa$}}}
|
||||||
|
\def\Bl {{\mbox{\boldmath$ \lambda$}}}
|
||||||
|
\def\Bm {{\mbox{\boldmath$ \mu$}}}
|
||||||
|
\def\Bn {{\mbox{\boldmath$ \nu$}}}
|
||||||
|
\def\Bx {{\mbox{\boldmath$ \xi$}}}
|
||||||
|
\def\Bom {{\mbox{\boldmath$ \omega$}}}
|
||||||
|
\def\Bp {{\mbox{\boldmath$ \pi$}}}
|
||||||
|
\def\Br {{\mbox{\boldmath$ \rho$}}}
|
||||||
|
\def\Bro {{\mbox{\boldmath$ \varrho$}}}
|
||||||
|
\def\Bs {{\mbox{\boldmath$ \sigma$}}}
|
||||||
|
\def\Bsi {{\mbox{\boldmath$ \varsigma$}}}
|
||||||
|
\def\Bt {{\mbox{\boldmath$ \tau$}}}
|
||||||
|
\def\Bu {{\mbox{\boldmath$ \upsilon$}}}
|
||||||
|
\def\Bf {{\mbox{\boldmath$ \phi$}}}
|
||||||
|
\def\Bff {{\mbox{\boldmath$ \varphi$}}}
|
||||||
|
\def\Bch {{\mbox{\boldmath$ \chi$}}}
|
||||||
|
\def\Bps {{\mbox{\boldmath$ \psi$}}}
|
||||||
|
\def\Bo {{\mbox{\boldmath$ \omega$}}}
|
||||||
|
\def\Bome {{\mbox{\boldmath$ \varomega$}}}
|
||||||
|
\def\BG {{\mbox{\boldmath$ \Gamma$}}}
|
||||||
|
\def\BD {{\mbox{\boldmath$ \Delta$}}}
|
||||||
|
\def\BTh {{\mbox{\boldmath$ \Theta$}}}
|
||||||
|
\def\BL {{\mbox{\boldmath$ \Lambda$}}}
|
||||||
|
\def\BX {{\mbox{\boldmath$ \Xi$}}}
|
||||||
|
\def\BP {{\mbox{\boldmath$ \Pi$}}}
|
||||||
|
\def\BS {{\mbox{\boldmath$ \Sigma$}}}
|
||||||
|
\def\BU {{\mbox{\boldmath$ \Upsilon$}}}
|
||||||
|
\def\BF {{\mbox{\boldmath$ \Phi$}}}
|
||||||
|
\def\BPs {{\mbox{\boldmath$ \Psi$}}}
|
||||||
|
\def\BO {{\mbox{\boldmath$ \Omega$}}}
|
||||||
|
\def\BDpr {{\mbox{\boldmath$ \partial$}}}
|
||||||
|
\def\Bstl {{\mbox{\boldmath$ *$}}}
|
||||||
|
\def\Brangle {{\mbox{\boldmath$ \rangle$}}}
|
||||||
|
\def\Blangle {{\mbox{\boldmath$ \langle$}}}
|
||||||
|
\def\Bvert{{\mbox{\boldmath$|$}}}
|
||||||
|
\def\Bell {{\mbox{\boldmath$\ell$}}}
|
||||||
|
\let\up\uparrow
|
||||||
|
\let\down\downarrow
|
||||||
|
\def\({\left(}
|
||||||
|
\def\){\right)}
|
||||||
|
\let\mc\mathcal
|
||||||
|
\let\mrm\mathrm
|
||||||
|
|
||||||
|
|
||||||
|
\def\iniz{\setcounter{equation}{0}}
|
||||||
|
\renewcommand{\theequation}{\arabic{section}.\arabic{equation}}
|
||||||
|
\def\inizA{\setcounter{equation}{0}
|
||||||
|
\renewcommand{\theequation}{\Alph{section}.\arabic{equation}}
|
||||||
|
}
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
\newdimen\xshift \newdimen\xwidth \newdimen\yshift \newdimen\ywidth%
|
||||||
|
\def\ins#1#2#3{\vbox to0pt{\kern-#2pt\hbox{\kern#1pt #3}\vss}\nointerlineskip}
|
||||||
|
|
||||||
|
\def\eqfig#1#2#3#4#5{
|
||||||
|
\par\xwidth=#1pt \xshift=\hsize \advance\xshift
|
||||||
|
by-\xwidth \divide\xshift by 2
|
||||||
|
\yshift=#2pt \divide\yshift by 2%
|
||||||
|
{\hglue\xshift \vbox to #2pt{\vfil
|
||||||
|
#3 \special{psfile=#4.eps}
|
||||||
|
}\hfill\raise\yshift\hbox{#5}}}
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
\def\Eqfig#1#2#3#4#5#6{
|
||||||
|
\par\xwidth=#1pt \xshift=\hsize \advance\xshift
|
||||||
|
by-\xwidth \divide\xshift by 2
|
||||||
|
\yshift=#2pt \divide\yshift by 2%
|
||||||
|
{\hglue\xshift \vbox to #2pt{\vfil
|
||||||
|
#3 \special{psfile=#4.eps}\kern200pt\special{psfile=#5.eps}
|
||||||
|
}\hfill\raise\yshift\hbox{#6}}}
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
\def\eqalign#1{\null\,\vcenter{\openup\jot
|
||||||
|
\ialign{\strut\hfil$\displaystyle{##}$&$\displaystyle{{}##}$\hfil
|
||||||
|
\crcr#1\crcr}}\,}
|
||||||
|
|
||||||
|
\def\qedsymbol{$\square$}
|
||||||
|
\def\qed{\penalty10000\hfill\penalty10000\qedsymbol}
|
||||||
|
|
||||||
|
\date{}
|
||||||
|
\author{\alertb{Giovanni Gallavotti${}^1$ and
|
||||||
|
Ian Jauslin${}^2$}}
|
||||||
|
|
||||||
|
\title{\alertr{\bf A Theorem on Ellipses, an Integrable System and a Theorem
|
||||||
|
of Boltzmann}
|
||||||
|
}
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
\maketitle
|
||||||
|
\kern-8mm
|
||||||
|
\centerline{${}^1$ INFN-Roma1 \& Universit\`a ``La Sapienza'', email: giovanni.gallavotti@roma1.infn.it}
|
||||||
|
\centerline{${}^2$ Department of Physics, Princeton University, email: ijauslin@princeton.edu}
|
||||||
|
|
||||||
|
|
||||||
|
%\kern-1cm
|
||||||
|
\begin{abstract}
|
||||||
|
%
|
||||||
|
We study a mechanical system that was considered by Boltzmann in 1868 in the
|
||||||
|
context of the derivation of the canonical and microcanonical ensembles. This
|
||||||
|
system was introduced as an example of ergodic dynamics, which was central to
|
||||||
|
Boltzmann's derivation. It consists of a single particle in two dimensions,
|
||||||
|
which is subjected to a gravitational attraction to a fixed center. In
|
||||||
|
addition, an infinite plane is fixed at some finite distance from the center,
|
||||||
|
which acts as a hard wall on which the particle collides elastically. Finally,
|
||||||
|
an extra centrifugal force is added. We will show that, in the absence of this
|
||||||
|
extra centrifugal force, there are two independent integrals of motion.
|
||||||
|
Therefore the extra centrifugal force is necessary for Boltzmann's claim of
|
||||||
|
ergodicity to hold.
|
||||||
|
%
|
||||||
|
\end{abstract}
|
||||||
|
\*
|
||||||
|
%
|
||||||
|
\0Keywords: {\small Ergodicity, Chaotic hypothesis, Gibbs
|
||||||
|
distributions, Boltzmann, Integrable systems}
|
||||||
|
\*
|
||||||
|
%\end{document}
|
||||||
|
|
||||||
|
In 1868, \cite{Bo868a} laid the foundations for our modern understanding of the
|
||||||
|
behavior of many-particle systems by introducing the ``microcanonical
|
||||||
|
ensemble'' (for more details on this history, see \cite{Ga016}). The principal
|
||||||
|
idea behind this ensemble is that one can achieve a good understanding of
|
||||||
|
many-particle systems by focusing not on the dynamics of each individual
|
||||||
|
particle, but on the statistical properties of the whole. More precisely, the
|
||||||
|
state of the system becomes a random variable, chosen according to a
|
||||||
|
probability distribution on phase space, which came to be called the
|
||||||
|
``microcanonical ensemble''. An important assumption that was made implicitly
|
||||||
|
by Boltzmann is that the dynamics of the system be ergodic. In this case,
|
||||||
|
time-averages of the dynamics can be rewritten as averages over phase space,
|
||||||
|
and the qualitative properties of the dynamics can be formulated as statistical
|
||||||
|
properties of the microcanonical ensemble.
|
||||||
|
|
||||||
|
To support this assumption, Boltzmann presented a mechanical system that
|
||||||
|
very same year (\cite{Bo868b}) as an example of an ergodic system. This
|
||||||
|
system consists of a particle in two dimensions that is attracted to a
|
||||||
|
fixed center via a gravitational potential $-\frac{\alpha}{2r}$. In
|
||||||
|
addition, he added an extra centrifugal potential $\frac g{2r^2}$. As was
|
||||||
|
known since at least the times of Kepler, this system is subjected to a
|
||||||
|
central force, and is therefore integrable. In order to break the
|
||||||
|
integrability, Boltzmann added an extra ingredient: a rigid infinite planar
|
||||||
|
wall, located a finite distance away from the center (see figure
|
||||||
|
\ref{trajectory}). Whenever the particle hits the wall, it undergoes an elastic
|
||||||
|
collision and is reflected back. Boltzmann's argument was, roughly, that in
|
||||||
|
the absence of the wall, the dynamics is quasi-periodic, so the particle
|
||||||
|
should intersect the plane of the wall at points which should fill up a
|
||||||
|
segment of the wall densely as the dynamics evolves, and concluded that the
|
||||||
|
region of phase space in which the energy is constant must also be filled
|
||||||
|
densely. As we will show, this is not the whole story; following a
|
||||||
|
conjectured integrability for $g=0$, \cite[p.150]{Ga013b},
|
||||||
|
and first tests
|
||||||
|
%(by (GG) proposing a relation with KAM theory for $g>0$ and by (IJ) proposing chaotic motions at large $g$)
|
||||||
|
in
|
||||||
|
\cite[p.225--228]{Ga016}, we have found that, in the absence of the
|
||||||
|
centrifugal term $g=0$, the dynamics (which has two degrees of freedom) still admits
|
||||||
|
two constants of motion even in presence of the hard wall. This
|
||||||
|
suggests that, if a suitable KAM analysis could be carried out, the system
|
||||||
|
would not be ergodic for small values of $g$.
|
||||||
|
|
||||||
|
\begin{figure}[ht]
|
||||||
|
\hfil\includegraphics[width=6cm]{trajectory.pdf}
|
||||||
|
|
||||||
|
\caption{A trajectory. The large dot is the attraction center $O$, and the line
|
||||||
|
is the hard wall $\LL$. In between collisions, the trajectories are ellipses.
|
||||||
|
The ellipses are drawn in full, but the part that is not covered by the
|
||||||
|
particle is dashed.
|
||||||
|
}
|
||||||
|
\label{trajectory}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
\setcounter{section}{0}
|
||||||
|
\section{Definition of the model and main result}
|
||||||
|
\label{sec1}
|
||||||
|
\iniz
|
||||||
|
|
||||||
|
|
||||||
|
Let us now specify the model formally, and state our main result more
|
||||||
|
precisely. We fix the gravitational center to the origin of the $x,y$-plane and
|
||||||
|
let $\LL$ be the line $y=h$. The Hamiltonian for the system in between
|
||||||
|
collisions is
|
||||||
|
%
|
||||||
|
\be H=\frac{p_x^2+p_y^2}2 -\frac{\a}{2r}+\frac{g}{2r^2}
|
||||||
|
\Eq{e1.1}\ee
|
||||||
|
%
|
||||||
|
where $\a>0,g\ge0,r=\sqrt{x^2+y^2}$ and the particle moves following
|
||||||
|
Hamilton's equations as long as it stays away from the obstacle $\LL$. When
|
||||||
|
an encounter with $\LL$ occurs the particle is reflected elastically and
|
||||||
|
continues on.
|
||||||
|
|
||||||
|
\cite{Bo868b}, considered this system on the hyper-surface $A={\V
|
||||||
|
p}^2-\frac\a r+\frac{g}{r^2}$. The intersection of this hyper-surface with
|
||||||
|
$y=h$ is the region $\FF_A$ enclosed within the curves
|
||||||
|
%
|
||||||
|
\be \pm\sqrt{(A-\frac{g}{x^2+h^2} +\frac{\a}{\sqrt{x^2+h^2}})},\qquad
|
||||||
|
x_{min}<x<x_{max}\Eq{e1.2}\ee
|
||||||
|
%
|
||||||
|
with $x_{min}$ and $x_{\max}$ the roots of
|
||||||
|
$A=\frac{g}{x^2+h^2} -\frac{\a}{\sqrt{x^2+h^2}}$. He argued that
|
||||||
|
all motions (with few exceptions) would cover densely the surfaces of
|
||||||
|
constant $A<0$ if $\a,g>0$.
|
||||||
|
\bigskip
|
||||||
|
|
||||||
|
From now on, unless it is explicitly stated otherwise, we will assume that
|
||||||
|
$g=0$.
|
||||||
|
\bigskip
|
||||||
|
|
||||||
|
In this case, the motion between collisions takes place at constant
|
||||||
|
energy $\frac12A$ and constant angular momentum $a$, and traces out an
|
||||||
|
ellipse. One of the foci of the ellipse is located at the origin, and we
|
||||||
|
will denote the angle that the aphelion of the ellipse makes with the
|
||||||
|
$x$-axis by $\theta_0$. Thus, the ellipse is entirely determined by the triplet
|
||||||
|
$(A,a,\theta_0)$. When a collision occurs, $A$ remains unchanged, but $a$ and
|
||||||
|
$\theta_0$ change discontinuously to values $(a',\theta_0')=\FF(a,\theta_0)$, and thus
|
||||||
|
the Kepler ellipse of the trajectory changes. In addition, the semi-major
|
||||||
|
axis $a_M$ of the ellipse is also fixed to $a_M=-\frac\a{2A}$ (Kepler's
|
||||||
|
law): so the successive ellipses have the same semi-major axis, while the
|
||||||
|
eccentricity varies because at each collision the angular momentum changes:
|
||||||
|
$e^2=1+ \frac{4 A a^2}{\a^2}$. Thus, the motion will take place on arcs of
|
||||||
|
various ellipses $\EE$, which all share the same focus and the same semi-major
|
||||||
|
axis, but whose angle and eccentricity changes at each collision.
|
||||||
|
|
||||||
|
Our main result is that the (canonical) map $(a',\f'_0)=\FF(a,\theta_0)$, which
|
||||||
|
maps the angular momentum and angle of the aphelion before a collision to their
|
||||||
|
values after the collision, admits a constant of motion. This follows from the
|
||||||
|
following geometric lemma about ellipses.
|
||||||
|
\bigskip
|
||||||
|
|
||||||
|
\0{\bf Lemma 1:} {\it Given an ellipse $\mathcal E$ with a focus at $O$ that
|
||||||
|
intersects $\LL$ at a point $P$. Let $Q$ denote the orthogonal projection of
|
||||||
|
$O$ onto $\LL$ (see figure \ref{fig1}). The distance $R_0$ between $Q$ and
|
||||||
|
the center of $\mathcal E$ depends solely on the semi-major axis $a_M$, the
|
||||||
|
distance $r$ from $O$ to $P$, and $\cos(2\lambda)$ where $\lambda$ is the angle
|
||||||
|
between the tangent of the ellipse at $P$ and $\LL$ (to define the direction of
|
||||||
|
the tangent, we parametrize the ellipse in the counter-clockwise direction):
|
||||||
|
\be
|
||||||
|
R_0=\sqrt{\frac14 r^2+\frac14(2a_M-r)^2 +\frac12 r (2a_M-r)\cos(2\l)}
|
||||||
|
.
|
||||||
|
\Eq{e1.3}\ee
|
||||||
|
}
|
||||||
|
\*
|
||||||
|
|
||||||
|
\begin{figure}[ht]
|
||||||
|
\hfil\includegraphics[width=100pt]{fig1.pdf}
|
||||||
|
|
||||||
|
\caption{The attractive center is $O$, hence it is the focus of the
|
||||||
|
ellipse in absence of centrifugal force $g=0$. $Q$ is the projection of
|
||||||
|
$O$ on the line $\LL$ and $P$ is a collision point. The arrow
|
||||||
|
represents the velocity of the particle after the collision.}
|
||||||
|
\label{fig1}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\underline{Proof}: We switch to polar coordinates
|
||||||
|
$p=(r\cos\f,r\sin\f)$.
|
||||||
|
|
||||||
|
Let $O'$ denote the other focus of the ellipse, and $C$ denote its center. The
|
||||||
|
first step is to compute the vector $\protect\overrightarrow{O'P}$, which in polar
|
||||||
|
coordinates is
|
||||||
|
\be
|
||||||
|
\protect\overrightarrow{O'P}=((2a_M-r)\cos\f',(2a_M-r)\sin\f')\Eq{e1.4}\ee
|
||||||
|
%
|
||||||
|
Let $\psi:=\pi+\f-\lambda$ denote the angle between the tangent of the
|
||||||
|
ellipse at $P$ and the vector $\protect\overrightarrow{PO}$ (see figure \ref{ellipse}),
|
||||||
|
and $\psi':=\pi+\f'-\lambda$ denote the angle between the tangent of the
|
||||||
|
ellipse at $P$ and the vector $\protect\overrightarrow{PO'}$.
|
||||||
|
|
||||||
|
\begin{figure}[ht]
|
||||||
|
\hfil\includegraphics[width=8cm]{ellipse.pdf}
|
||||||
|
|
||||||
|
\caption{An ellipse with foci $O$ and $O'$ and center $C$. The thick line is
|
||||||
|
$\LL$, which intersects the ellipse at $P$, and $Q$ is the projection of $O$
|
||||||
|
onto $\LL$. The dashed line is the tangent at $P$. $\lambda$ is the angle
|
||||||
|
between $\LL$ and the tangent, $\f$ is the polar coordinate, $\f'$ is the angle
|
||||||
|
between $\LL$ and $\protect\overrightarrow{O'P}$. $\psi$ is the angle between the
|
||||||
|
tangent and $\protect\overrightarrow{PO}$, which is equal to the angle between the
|
||||||
|
tangent and $\protect\overrightarrow{PO'}$. $R_0$ is the distance between $Q$ and $C$.}
|
||||||
|
\label{ellipse}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
By the focus-to-focus
|
||||||
|
reflection property of ellipses, we have $\psi'=\pi-\psi$. Thus
|
||||||
|
$\f'=2\lambda-\pi-\f$ and we find;
|
||||||
|
|
||||||
|
|
||||||
|
\begin{figure}[ht]
|
||||||
|
\hfil\includegraphics[width=8cm]{fig2.pdf}
|
||||||
|
|
||||||
|
\caption{Two ellipses, before and after a collision. The collision line $\LL$
|
||||||
|
is the line at $y=1$, $P$ is the collision point; $Q$ is the projection of $O$
|
||||||
|
onto $\LL$; the two ellipses $\EE$ and $\EE'$ have a common focus $O$, and
|
||||||
|
$O,O'$ are the foci of $\EE$, whereas $O,O''$ are the foci of $\EE'$; $C$ and
|
||||||
|
$C''$ are the centers of $\EE$ and $\EE'$ respectively; the ellipses are drawn
|
||||||
|
completely although the trajectory is restricted to the parts above $y=h=1$.
|
||||||
|
The distance from $C''$ to $Q$ is the same as that from $C$ to $Q$. The upper
|
||||||
|
ellipse $\EE$ contains the trajectory that starts at the collision point $P$
|
||||||
|
following the other ellipse $\EE'$ which has undergone reflection.}
|
||||||
|
\label{fig2}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\be
|
||||||
|
R_0^2=|Q-C|^2
|
||||||
|
=
|
||||||
|
\frac14\left(r^2+(2a_M-r)^2+2r(2a_M-r)\cos(2\lambda)\right)
|
||||||
|
.
|
||||||
|
\Eq{e1.5}\ee
|
||||||
|
See figures \ref{ellipse} and \ref{fig2}.\qed
|
||||||
|
|
||||||
|
\*
|
||||||
|
\0{\bf Theorem 1}: {\it The quantity
|
||||||
|
%
|
||||||
|
\be R= a^2+h\a e \sin\theta_0\Eq{e1.6}
|
||||||
|
\equiv\frac\alpha{2a_M}(h^2+a_M^2-R_0^2)
|
||||||
|
\Eq{e1.7}\ee
|
||||||
|
%
|
||||||
|
where $e$ is the eccentricity $e=\sqrt{1+\frac{4 A a^2}{\a^2}}$, is a constant
|
||||||
|
of motion.}
|
||||||
|
\*
|
||||||
|
|
||||||
|
\underline{Proof}:
|
||||||
|
During a collision, the value of $\l$ changes from $\l$ to $\p-\l$, while
|
||||||
|
$r$ and $a_M$ stay the same. By lemma 1, this implies that the distance $R_0$
|
||||||
|
between $Q$ and the center of the ellipse is preserved during a collision.
|
||||||
|
Furthermore, the position of the center $C$ of the ellipse is given by
|
||||||
|
$C=a_Me(\cos\theta_0,\sin\theta_0)$
|
||||||
|
so
|
||||||
|
\be
|
||||||
|
R_0^2=|Q-C|^2=a_M^2e^2-2a_Meh\sin\theta_0+h^2.\Eq{e1.8}
|
||||||
|
\ee
|
||||||
|
Furthermore, the angular momentum is equal to
|
||||||
|
$a^2=\frac12a_M\alpha(1-e^2)$
|
||||||
|
so
|
||||||
|
\be
|
||||||
|
-R_0^2+h^2+a_M^2
|
||||||
|
=
|
||||||
|
\frac{2a_M}\alpha(a^2+e\alpha h\sin\theta_0)\Eq{e1.9}
|
||||||
|
\ee
|
||||||
|
is a conserved quantity. \qed
|
||||||
|
\bigskip
|
||||||
|
|
||||||
|
\0{\bf Remark:} Some useful inequalities are
|
||||||
|
%
|
||||||
|
\be
|
||||||
|
\eqalign{
|
||||||
|
&r_{max}<{2}{a_M}; \ x_{max}=\sqrt{r_{max}^2-h^2};\
|
||||||
|
R_0^2\in ((a_M-r)^2,a_M^2);\cr
|
||||||
|
&\frac{\a h^2}{2a_M}\,<\,R\,<\,
|
||||||
|
(1+\frac{a_M^2}{h^2}-\Big(\frac{a_M}{h}-
|
||||||
|
\frac{r}h\Big)^2)\frac{\a h^2}{2a_M}\cr}
|
||||||
|
\Eq{e1.10}\ee
|
||||||
|
%
|
||||||
|
hence in the plane $(x,\l)$ the rectangle $(-x_{max},x_{max})\times(0,\p)$
|
||||||
|
(recall that $x_{max}$ is the largest $x$ accessible at energy $\frac12A$)
|
||||||
|
is the surface of energy $\frac12A$ and the trajectories are the curves of
|
||||||
|
constant $R$ inside this rectangle.
|
||||||
|
|
||||||
|
\def\SEC{Conjectures on action angle variables}
|
||||||
|
\section{\SEC}
|
||||||
|
\label{sec2}
|
||||||
|
\iniz
|
||||||
|
|
||||||
|
In the previous section, we exhibited a constant of motion, which, along
|
||||||
|
with the conservation of energy, brings the number of independent conserved
|
||||||
|
quantities to two. In a continuous Hamiltonian system, this would imply the
|
||||||
|
existence of action-angle variables, which are canonically conjugate to the
|
||||||
|
position and momentum of the particle, in terms of which the dynamics
|
||||||
|
reduces to a linear evolution on a torus. In this case, the collision
|
||||||
|
with the wall introduces some discreteness into the problem, and the
|
||||||
|
existence of the action angle variables is not guaranteed by standard
|
||||||
|
theorems. Indeed, in the presence of the collisions, we no longer have a
|
||||||
|
Hamiltonian system, but rather a discrete symplectic map (or a
|
||||||
|
non-differentiable Hamiltonian), which describes the change in the state of
|
||||||
|
the particle during a collision. In this section, we present some
|
||||||
|
conjectures pertaining to the existence of action angle variables for this
|
||||||
|
problem.
|
||||||
|
\bigskip
|
||||||
|
|
||||||
|
The first step is to change to variables which are action-angle variables for
|
||||||
|
the motion in between collision. We choose the {\it Delaunay} variables, whose
|
||||||
|
angles are the argument of the aphelion $\theta_0$ defined above, the {\it mean
|
||||||
|
anomaly} $M$, and whose actions are the angular momentum $a$, and another
|
||||||
|
momentum usually denoted by $L$ and related to the semi-major axis $a_M$ and
|
||||||
|
to the energy $E=\frac12 A$:
|
||||||
|
\be L:=-\sqrt{\frac{\alpha}2a_M},\quad a_M:=-\frac\alpha{2A}
|
||||||
|
,\quad
|
||||||
|
A:=p^2+\frac{a^2}{r^2}-\frac\alpha{r}\equiv-\frac{\alpha^2}{4L^2}
|
||||||
|
\Eq{e2.1}\ee
|
||||||
|
It is well known that this change of variables is canonical. In between
|
||||||
|
collisions, the dynamics of the particle in the variables
|
||||||
|
$(M,\theta_0;L,a)$ is, simply,
|
||||||
|
\be
|
||||||
|
\dot M=\frac{\alpha^2}{4L^3}
|
||||||
|
,\quad
|
||||||
|
\dot\theta_0=0
|
||||||
|
,\quad
|
||||||
|
\dot L=0
|
||||||
|
,\quad
|
||||||
|
\dot a=0
|
||||||
|
.\Eq{e2.2}
|
||||||
|
\ee
|
||||||
|
These variables are thus action-angle variables in between collisions, but when
|
||||||
|
a collision occurs, $\theta_0$ and $a$ will change.
|
||||||
|
\bigskip
|
||||||
|
|
||||||
|
The following conjecture states that there exists an action-angle variable
|
||||||
|
during the collisions.
|
||||||
|
\bigskip
|
||||||
|
|
||||||
|
\0{\bf Conjecture 1:} {\it There exists a variable $\gamma$ and an integer
|
||||||
|
$k$ such that, every $k$ collisions, the change in $\gamma$ is
|
||||||
|
\begin{equation}
|
||||||
|
\gamma'=\gamma+\o(L,R)\Eq{e2.3}
|
||||||
|
\end{equation}
|
||||||
|
in which case $\gamma$ is an angle that rotates on a circle of radius depending
|
||||||
|
on $L,R$. The function $\o(L,R)$ has a non zero derivative with respect to
|
||||||
|
$R$ at constant $L$, \ie the motion on the energy surface is quasi periodic
|
||||||
|
and anisochronous.}
|
||||||
|
\*
|
||||||
|
|
||||||
|
We will now sketch a construction of this variable $\gamma$, which we obtain
|
||||||
|
using a generating function $F(L,R,M,\theta_0)$.
|
||||||
|
\bigskip
|
||||||
|
|
||||||
|
First of all, by theorem 1, the angular momentum $a(\theta_0)$ is a solution of
|
||||||
|
\begin{equation}
|
||||||
|
a^2=R-h\a\sin\theta_0\sqrt{1-\fra{a^2}{L^2}}\Eq{e2.4}
|
||||||
|
\end{equation}
|
||||||
|
that is, if $\e=\pm$,
|
||||||
|
%
|
||||||
|
\be
|
||||||
|
a^2=R-\frac{h^2\alpha^2}{2L^2}\sin^2\theta_0+
|
||||||
|
\e\sqrt{\frac{h^4\alpha^2}{4L^4}\sin^4\theta_0+h^2\a^2\sin^2\theta_0-
|
||||||
|
\frac{R\alpha^2h^2}{L^2}\sin^2\theta_0}\Eq{e2.5}\ee
|
||||||
|
%
|
||||||
|
and $a=\h\sqrt{a^2}$, so that there may be four possibilities for the value of
|
||||||
|
$a$ denoted $a=a_{\e,\h}(\theta_0,R,L)$ with $\e=\pm,\h=\pm$. The choice of the
|
||||||
|
signs $\e=\pm1$, and $\h$ must be examined carefully.
|
||||||
|
\bigskip
|
||||||
|
|
||||||
|
We then define the generating function
|
||||||
|
\be F(L,R,M,\theta_0)=LM+\int_0^{\theta_0} a(L,R,\ps)d\ps
|
||||||
|
%-\int_0^{2\pi} a(L,R,\ps)d\ps
|
||||||
|
\Eq{e2.6}\ee
|
||||||
|
%
|
||||||
|
which yields the following canonical transformation:
|
||||||
|
|
||||||
|
\be\eqalign{
|
||||||
|
\g=&\dpr_R\int^{\theta_0}_0 a_{\e,\h}(L,R,\ps)\,d\ps
|
||||||
|
%-\dpr_R\int^{2\pi}_0 a_{\e,\h}(L,R,\ps)\,d\ps
|
||||||
|
\cr
|
||||||
|
M'=&M+\dpr_L\int^{\theta_0}_0 a_{\e,\h}(L,R,\ps)\,d\ps
|
||||||
|
%-\dpr_L\int^{2\pi}_0 a_{\e,\h}(L,R,\ps)\,d\ps
|
||||||
|
\cr
|
||||||
|
}\Eq{e2.7}\ee
|
||||||
|
%
|
||||||
|
It is natural, if Boltzmann's system is integrable (at $g=0$), that the new
|
||||||
|
variables are its action angle variables and $M',\gamma$ rotate uniformly in spite of
|
||||||
|
the collisions.
|
||||||
|
\bigskip
|
||||||
|
|
||||||
|
However, in this case, the signs $\e$ and $\h$ may change from one collision to
|
||||||
|
the next, complicating the situation. A careful numerical study of the system
|
||||||
|
has led us to the following conjecture (see figure \ref{action_angle}).
|
||||||
|
\bigskip
|
||||||
|
|
||||||
|
%
|
||||||
|
\0{\bf Conjecture 2:} {\it If $R>h\a$ (which is the case in which the
|
||||||
|
circle, of radius $R_0$, of the centers encloses the focus $O$), when the
|
||||||
|
motion collides for the $n$-th time, the angular momentum is proportional
|
||||||
|
to $(-1)^n$, and, thus, $\epsilon=(-1)^n$. The sign $\eta$ is fixed to
|
||||||
|
$+$. The increment $\Delta_2\gamma$ in $\gamma$ between the $n$-th and
|
||||||
|
the $n+2$-th collision is independent of $n$. } \*
|
||||||
|
\bigskip
|
||||||
|
|
||||||
|
\begin{figure}
|
||||||
|
\hfil\includegraphics[width=8cm]{action-angle.pdf}
|
||||||
|
\caption{A plot of the increment in $\gamma$ between the $n$-th and the $n+2$-nd collision as a function of $n$. The blue `+' signs correspond to even $n$, and the red `$\times$' to odd $n$. The variation of $\Delta_2\gamma$ is as small as 1 part per million, thus supporting conjecture 2.}
|
||||||
|
\label{action_angle}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\0{\it Remark:} The change of variables over the variables $a,\theta_0$ to
|
||||||
|
$R,\g$ at fixed $L$ is {\it remarkably} essentially the same as the one
|
||||||
|
(\ap\ unrelated) to find action-angle variable for the auxiliary
|
||||||
|
Hamiltonian $R=R(a,\theta_0)$. This might remain true even when $R<h\a$:
|
||||||
|
interpretable as a kind of auxiliary pendulum motion. \*
|
||||||
|
|
||||||
|
At the time of publication, it has been
|
||||||
|
brought to our attention that G. Felder has proved that the orbits are all
|
||||||
|
either periodic or quasi-periodic, which would be implied from conjecture
|
||||||
|
1.
|
||||||
|
|
||||||
|
\section{Conclusion and outlook}
|
||||||
|
In this brief note, we have shown that the system considered by Boltzmann in
|
||||||
|
1868, in the case $g=0$, admits two independent constants of motion.
|
||||||
|
This indicates that it should be possible to compute action
|
||||||
|
angle variables for this system, which is not entirely trivial because of the
|
||||||
|
discontinuous nature of the collision process. If such a construction could be
|
||||||
|
brought to its conclusion, then it would show that the trajectories are either
|
||||||
|
periodic or quasi-periodic, a fact which is consistent with the numerical
|
||||||
|
simulations we have run.
|
||||||
|
|
||||||
|
This is not a contradiction of Boltzmann's claim that this model is ergodic,
|
||||||
|
since Boltzmann considered the model at $g\neq 0$. However, we expect that a
|
||||||
|
KAM-type argument can be set up for this model, to show that the system cannot
|
||||||
|
be ergodic, even if $g>0$, provided $g$ is sufficiently small. However it
|
||||||
|
may still have invariant regions of positive volume where the motion is ergodic.
|
||||||
|
|
||||||
|
\*
|
||||||
|
|
||||||
|
|
||||||
|
\0{\bf Acknowledgements}: The authors thank G. Felder for giving us the impetus
|
||||||
|
to write this note up in its current form, and to publish it. I.J. gratefully
|
||||||
|
acknowledges support from NSF grants 31128155 and 1802170.
|
||||||
|
|
||||||
|
\bibliographystyle{plainnat}
|
||||||
|
%\bibliographystyle{alpha}
|
||||||
|
%\bibliographystyle{amsref}
|
||||||
|
%\bibliographystyle{apsrmp}
|
||||||
|
%\bibliographystyle{spmpsci}
|
||||||
|
%\bibliographystyle{annotate}
|
||||||
|
%\bibliography{0Bib}
|
||||||
|
\begin{thebibliography}{3}
|
||||||
|
\providecommand{\natexlab}[1]{#1}
|
||||||
|
\providecommand{\url}[1]{\texttt{#1}}
|
||||||
|
\expandafter\ifx\csname urlstyle\endcsname\relax
|
||||||
|
\providecommand{\doi}[1]{doi: #1}\else
|
||||||
|
\providecommand{\doi}{doi: \begingroup \urlstyle{rm}\Url}\fi
|
||||||
|
|
||||||
|
\bibitem[Boltzmann(1868a)]{Bo868a}
|
||||||
|
L.~Boltzmann.
|
||||||
|
\newblock Studien \"uber das Gleichgewicht der lebendingen Kraft zwischen bewegten materiellen Punkten.
|
||||||
|
\newblock \emph{Wiener Berichte}, {\bf 58}, 517--560, (49--96), 1868.
|
||||||
|
|
||||||
|
\bibitem[Boltzmann(1868b)]{Bo868b}
|
||||||
|
L.~Boltzmann.
|
||||||
|
\newblock L{\"o}sung eines mechanischen problems.
|
||||||
|
\newblock \emph{Wiener Berichte}, {\bf 58}, (W.A.,\#6):\penalty0 1035--1044,
|
||||||
|
(97--105), 1868.
|
||||||
|
|
||||||
|
\bibitem[Gallavotti(2014)]{Ga013b}
|
||||||
|
G.~Gallavotti.
|
||||||
|
\newblock \emph{Nonequilibrium and irreversibility}.
|
||||||
|
\newblock Theoretical and Mathematical Physics. Springer-Verlag, 2014.
|
||||||
|
|
||||||
|
\bibitem[Gallavotti(2016)]{Ga016}
|
||||||
|
G.~Gallavotti.
|
||||||
|
\newblock Ergodicity: a historical perspective. equilibrium and nonequilibrium.
|
||||||
|
\newblock \emph{European Physics Journal H}, {\bf 41}, 181--259, 2016.
|
||||||
|
\newblock \doi{DOI: 10.1140/epjh/e2016-70030-8}.
|
||||||
|
|
||||||
|
\end{thebibliography}
|
||||||
|
|
||||||
|
\*\*
|
||||||
|
\end{document}
|
||||||
|
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%###################
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%###################
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%###################
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%###################
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%###################
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%###################
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%###################
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%###################
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%###################
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%###################
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%###################
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%###################
|
||||||
|
|
||||||
|
%plot "lambdak-0.25-3.4--0.3333" u 1:2 every 2::1:::2000
|
||||||
|
% plot 'file' every {<point_incr>}
|
||||||
|
% {:{<block_incr>}
|
||||||
|
% {:{<start_point>}
|
||||||
|
% {:{<start_block>}
|
||||||
|
% {:{<end_point>}
|
||||||
|
% {:<end_block>}}}}}
|
||||||
|
%plot "grafk-0.326753-2--0.3333" u 3:4 every 2:1:0:0:5:0 w l
|
||||||
|
%plot "gammak-0.3-1--0.2" u 1:3 every 2:1:0:0:2:0 w l
|
||||||
|
|
||||||
|
% Syntax:
|
||||||
|
% plot 'file' every {<point_incr>}
|
||||||
|
% {:{<block_incr>}
|
||||||
|
% {:{<start_point>}
|
||||||
|
% {:{<start_block>}
|
||||||
|
% {:{<end_point>}
|
||||||
|
% {:<end_block>}}}}}
|
||||||
|
%
|
||||||
|
% every 3:1:2::1024:1
|
||||||
|
% 2 significa che inizia dal #3
|
46
Makefile
Normal file
46
Makefile
Normal file
@ -0,0 +1,46 @@
|
|||||||
|
PROJECTNAME=$(basename $(wildcard *.tex))
|
||||||
|
FIGS=$(notdir $(wildcard figs/*.fig))
|
||||||
|
|
||||||
|
PDFS=$(addsuffix .pdf, $(PROJECTNAME))
|
||||||
|
SYNCTEXS=$(addsuffix .synctex.gz, $(PROJECTNAME))
|
||||||
|
|
||||||
|
all: $(PROJECTNAME)
|
||||||
|
|
||||||
|
$(PROJECTNAME): $(FIGS)
|
||||||
|
pdflatex -file-line-error $@.tex
|
||||||
|
pdflatex -file-line-error $@.tex
|
||||||
|
pdflatex -synctex=1 $@.tex
|
||||||
|
|
||||||
|
$(PROJECTNAME).aux: $(FIGS)
|
||||||
|
pdflatex -file-line-error -draftmode $(PROJECTNAME).tex
|
||||||
|
|
||||||
|
|
||||||
|
$(SYNCTEXS): $(FIGS)
|
||||||
|
pdflatex -synctex=1 $(patsubst %.synctex.gz, %.tex, $@)
|
||||||
|
|
||||||
|
|
||||||
|
figs: $(FIGS)
|
||||||
|
|
||||||
|
$(FIGS):
|
||||||
|
make -C figs/$@
|
||||||
|
for pdf in $$(find figs/$@/ -name '*.pdf'); do ln -fs "$$pdf" ./ ; done
|
||||||
|
|
||||||
|
|
||||||
|
clean-aux: clean-figs-aux
|
||||||
|
rm -f $(addsuffix .aux, $(PROJECTNAME))
|
||||||
|
rm -f $(addsuffix .log, $(PROJECTNAME))
|
||||||
|
rm -f $(addsuffix .out, $(PROJECTNAME))
|
||||||
|
rm -f $(addsuffix .toc, $(PROJECTNAME))
|
||||||
|
|
||||||
|
clean-figs:
|
||||||
|
$(foreach fig,$(addprefix figs/, $(FIGS)), make -C $(fig) clean; )
|
||||||
|
rm -f $(notdir $(wildcard figs/*.fig/*.pdf))
|
||||||
|
|
||||||
|
clean-figs-aux:
|
||||||
|
$(foreach fig,$(addprefix figs/, $(FIGS)), make -C $(fig) clean-aux; )
|
||||||
|
|
||||||
|
|
||||||
|
clean-tex:
|
||||||
|
rm -f $(PDFS) $(SYNCTEXS)
|
||||||
|
|
||||||
|
clean: clean-aux clean-tex clean-figs
|
31
README
Normal file
31
README
Normal file
@ -0,0 +1,31 @@
|
|||||||
|
This directory contains the source files to typeset the article, and generate
|
||||||
|
the figures. This can be accomplished by running
|
||||||
|
make
|
||||||
|
|
||||||
|
The figures trajectory.pdf and action-angle.pdf use the data from a computation
|
||||||
|
which has not been released yet. Instead, the relevant data files are included.
|
||||||
|
|
||||||
|
|
||||||
|
* Dependencies:
|
||||||
|
|
||||||
|
pdflatex
|
||||||
|
TeXlive packages:
|
||||||
|
amsfonts
|
||||||
|
color
|
||||||
|
graphics
|
||||||
|
hyperref
|
||||||
|
latex
|
||||||
|
natbib
|
||||||
|
pgf
|
||||||
|
standalone
|
||||||
|
GNU make
|
||||||
|
gnuplot
|
||||||
|
|
||||||
|
* Files:
|
||||||
|
|
||||||
|
Gallavotti_Jauslin_2020.tex:
|
||||||
|
main LaTeX file
|
||||||
|
|
||||||
|
figs:
|
||||||
|
source code for the figures
|
||||||
|
|
33
figs/action-angle.fig/Makefile
Normal file
33
figs/action-angle.fig/Makefile
Normal file
@ -0,0 +1,33 @@
|
|||||||
|
PROJECTNAME=action-angle
|
||||||
|
|
||||||
|
SIMPLEQ=~/Work/Research/2018+bose_gas/cmp/simpleq
|
||||||
|
|
||||||
|
PDFS=$(addsuffix .pdf, $(PROJECTNAME))
|
||||||
|
TEXS=$(addsuffix .tikz.tex, $(PROJECTNAME))
|
||||||
|
DATS=etas.dat
|
||||||
|
|
||||||
|
all: $(PDFS)
|
||||||
|
|
||||||
|
$(PDFS): $(DATS)
|
||||||
|
gnuplot $(patsubst %.pdf, %.gnuplot, $@) > $(patsubst %.pdf, %.tikz.tex, $@)
|
||||||
|
pdflatex -jobname $(basename $@) -file-line-error $(patsubst %.pdf, %.tikz.tex, $@)
|
||||||
|
|
||||||
|
etas.dat:
|
||||||
|
python etas.py > $@
|
||||||
|
|
||||||
|
|
||||||
|
install: $(PDFS)
|
||||||
|
cp $^ $(INSTALLDIR)/
|
||||||
|
|
||||||
|
clean-aux:
|
||||||
|
rm -f $(addsuffix .aux, $(PROJECTNAME))
|
||||||
|
rm -f $(addsuffix .log, $(PROJECTNAME))
|
||||||
|
rm -f $(addsuffix .tikz.tex, $(PROJECTNAME))
|
||||||
|
|
||||||
|
clean-dat:
|
||||||
|
rm -f $(DATS)
|
||||||
|
|
||||||
|
clean-tex:
|
||||||
|
rm -f $(PDFS)
|
||||||
|
|
||||||
|
clean: clean-aux clean-tex
|
25
figs/action-angle.fig/action-angle.gnuplot
Normal file
25
figs/action-angle.fig/action-angle.gnuplot
Normal file
@ -0,0 +1,25 @@
|
|||||||
|
set xlabel "$n$"
|
||||||
|
set ylabel "$\\Delta_2\\gamma$" norotate
|
||||||
|
|
||||||
|
set ytics 0.6660909, 0.0000001
|
||||||
|
|
||||||
|
# default output canvas size: 12.5cm x 8.75cm
|
||||||
|
set term lua tikz size 8,6 standalone
|
||||||
|
|
||||||
|
set key off
|
||||||
|
|
||||||
|
|
||||||
|
# set linestyle
|
||||||
|
set style line 1 linetype rgbcolor "#4169E1" linewidth 2
|
||||||
|
set style line 2 linetype rgbcolor "#DC143C" linewidth 2
|
||||||
|
set style line 3 linetype rgbcolor "#32CD32" linewidth 2
|
||||||
|
set style line 4 linetype rgbcolor "#4B0082" linewidth 2
|
||||||
|
set style line 5 linetype rgbcolor "#DAA520" linewidth 2
|
||||||
|
set style line 6 linetype rgbcolor "#555500" linewidth 2
|
||||||
|
|
||||||
|
set pointsize 1
|
||||||
|
|
||||||
|
plot \
|
||||||
|
"etas.dat" using ($0*2):1 ls 1 ,\
|
||||||
|
"etas.dat" using ($0*2+1):2 ls 2
|
||||||
|
|
49
figs/action-angle.fig/etas.dat
Normal file
49
figs/action-angle.fig/etas.dat
Normal file
@ -0,0 +1,49 @@
|
|||||||
|
0.6660909569512501 0.6660909569517841
|
||||||
|
0.6660909569512068 0.6660909568572682
|
||||||
|
0.666090881906312 0.6660908743475806
|
||||||
|
0.6660909492953624 0.6660909569530551
|
||||||
|
0.6660909569551257 0.666090956950617
|
||||||
|
0.6660909569498561 0.6660909569513911
|
||||||
|
0.6660909569508098 0.666090957737135
|
||||||
|
0.6660908737928897 0.6660908734660769
|
||||||
|
0.6660909574099513 0.6660909569513342
|
||||||
|
0.6660909569510589 0.6660909569494657
|
||||||
|
0.666090956949009 0.6660909569517685
|
||||||
|
0.6660909569506912 0.6660909541449044
|
||||||
|
0.6660908740414464 0.6660908770567131
|
||||||
|
0.6660909571597132 0.6660909569500939
|
||||||
|
0.666090956949887 0.666090956948812
|
||||||
|
0.6660909569483953 0.666090956957927
|
||||||
|
0.6660909270003836 0.6660909609769751
|
||||||
|
0.6660909042589079 0.6660908702167302
|
||||||
|
0.666090956890927 0.666090956948973
|
||||||
|
0.6660909569482991 0.666090956948177
|
||||||
|
0.666090956947643 0.6660909569220005
|
||||||
|
0.666090854453731 0.6660909700231973
|
||||||
|
0.6660909767366049 0.6660908612031291
|
||||||
|
0.6660909569565692 0.666090956947536
|
||||||
|
0.6660909569466511 0.6660909569475739
|
||||||
|
0.6660909569469959 0.6660909569534238
|
||||||
|
0.6660908799755063 0.6660908742427215
|
||||||
|
0.6660909512195086 0.6660909569483087
|
||||||
|
0.666090956948585 0.6660909569461111
|
||||||
|
0.6660909569454749 0.6660909569473561
|
||||||
|
0.6660909569467641 0.6660909579964863
|
||||||
|
0.6660908731876072 0.6660908731982366
|
||||||
|
0.666090958006647 0.666090956946789
|
||||||
|
0.666090956946648 0.666090956945196
|
||||||
|
0.666090956944789 0.6660909569490353
|
||||||
|
0.666090956946594 0.6660909496555434
|
||||||
|
0.6660908743084164 0.6660908815363281
|
||||||
|
0.6660909568839747 0.6660909569457019
|
||||||
|
0.6660909569453359 0.6660909569445963
|
||||||
|
0.6660909569441398 0.6660909569542799
|
||||||
|
0.6660908386690396 0.6660909880746821
|
||||||
|
0.6660909925361512 0.6660908431096189
|
||||||
|
0.6660909569319037 0.666090956944476
|
||||||
|
0.6660909569436897 0.6660909569439311
|
||||||
|
0.6660909569433824 0.6660909568669846
|
||||||
|
0.666090876905717 0.6660908743223477
|
||||||
|
0.6660909542783731 0.666090956945574
|
||||||
|
0.6660909569495623 0.6660909569429838
|
||||||
|
0.6660909569421549 0.6660909569434601
|
24
figs/ellipse.fig/Makefile
Normal file
24
figs/ellipse.fig/Makefile
Normal file
@ -0,0 +1,24 @@
|
|||||||
|
PROJECTNAME=ellipse
|
||||||
|
|
||||||
|
SIMPLEQ=~/Work/Research/2018+bose_gas/cmp/simpleq
|
||||||
|
|
||||||
|
PDFS=$(addsuffix .pdf, $(PROJECTNAME))
|
||||||
|
TEXS=$(addsuffix .tikz.tex, $(PROJECTNAME))
|
||||||
|
|
||||||
|
all: $(PDFS)
|
||||||
|
|
||||||
|
$(PDFS): $(TEXS)
|
||||||
|
pdflatex -jobname $(basename $@) -file-line-error $(patsubst %.pdf, %.tikz.tex, $@)
|
||||||
|
|
||||||
|
|
||||||
|
install: $(PDFS)
|
||||||
|
cp $^ $(INSTALLDIR)/
|
||||||
|
|
||||||
|
clean-aux:
|
||||||
|
rm -f $(addsuffix .aux, $(PROJECTNAME))
|
||||||
|
rm -f $(addsuffix .log, $(PROJECTNAME))
|
||||||
|
|
||||||
|
clean-tex:
|
||||||
|
rm -f $(PDFS)
|
||||||
|
|
||||||
|
clean: clean-aux clean-tex
|
86
figs/ellipse.fig/ellipse.tikz.tex
Normal file
86
figs/ellipse.fig/ellipse.tikz.tex
Normal file
@ -0,0 +1,86 @@
|
|||||||
|
\documentclass{standalone}
|
||||||
|
|
||||||
|
\usepackage{xcolor}
|
||||||
|
|
||||||
|
\definecolor{darkgreen}{HTML}{329D32}
|
||||||
|
|
||||||
|
\usepackage{tikz}
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
\begin{tikzpicture}[scale=2.5]
|
||||||
|
|
||||||
|
\draw[color=blue](0,0)ellipse(1.5 and 1.0);
|
||||||
|
|
||||||
|
% angle of L
|
||||||
|
\def\tt{15}
|
||||||
|
% foci ae=sqrt(1-b^2/a^2)
|
||||||
|
\def\ae{1.118}
|
||||||
|
% collision point
|
||||||
|
\def\Px{0.5}
|
||||||
|
% Py=sqrt(1-Px^2/a^2)
|
||||||
|
\def\Py{0.943}
|
||||||
|
% slope Px/(a^2*sqrt(1-Px^2/a^2))
|
||||||
|
\def\slope{0.236}
|
||||||
|
% phi: atan(\Py/(\ae+\Px))
|
||||||
|
\def\ph{15.2}
|
||||||
|
% phi': pi-atan(\Py/(\ae-\Px))
|
||||||
|
\def\php{108.2}
|
||||||
|
% lambda: pi-atan(\slope)
|
||||||
|
\def\lam{151.7}
|
||||||
|
% psi: pi+phi-lambda
|
||||||
|
\def\ps{43.5}
|
||||||
|
% h=sin(\ph)*sqrt((\Px+\ae)^2+Py^2)
|
||||||
|
\def\h{0.491}
|
||||||
|
|
||||||
|
% foci
|
||||||
|
\path(-\ae,0)coordinate(F1);
|
||||||
|
\path(\ae,0)coordinate(F2);
|
||||||
|
% collision point
|
||||||
|
\path(\Px,\Py)coordinate(P);
|
||||||
|
%Q
|
||||||
|
\path(F1)++(90+\tt:\h)coordinate(Q);
|
||||||
|
|
||||||
|
\draw[densely dotted](F1)++(\tt:3)--++(180+\tt:3.5);
|
||||||
|
\draw[densely dotted](F2)++(\tt:0.7)--++(180+\tt:3.5);
|
||||||
|
\draw[line width=1](P)++(\tt:1)--++(180+\tt:3.5);
|
||||||
|
|
||||||
|
\draw[color=gray](F1)--(P)--(F2);
|
||||||
|
|
||||||
|
\draw[color=darkgreen,dashed](P)--++(1,-\slope);
|
||||||
|
\draw[color=darkgreen,dashed](P)--++(-1,\slope);
|
||||||
|
|
||||||
|
\draw[rotate=\tt](F1)++(0.4,0)arc(0:\ph:0.4);
|
||||||
|
\draw(F1)++(\tt+\ph/2:0.5)node{$\varphi$};
|
||||||
|
\draw[rotate=\tt](F2)++(0.15,0)arc(0:\php:0.15);
|
||||||
|
\draw(F2)++(\tt+\php/2:0.25)node{$\varphi'$};
|
||||||
|
|
||||||
|
\draw[rotate=\tt](P)++(0.1,0)arc(0:\lam:0.1);
|
||||||
|
\draw(P)++(\tt+\lam/2:0.2)node{$\lambda$};
|
||||||
|
|
||||||
|
\draw[rotate=\tt+\lam](P)++(0.2,0)arc(0:\ps:0.2);
|
||||||
|
\draw(P)++(\tt+\lam+\ps/2-7:0.3)node{$\psi$};
|
||||||
|
\draw[rotate=180+\tt+\lam](P)++(0.2,0)arc(0:-\ps:0.2);
|
||||||
|
\draw(P)++(\tt+180+\lam-\ps/2:0.3)node{$\psi$};
|
||||||
|
|
||||||
|
|
||||||
|
\fill[color=red](F1)circle(0.03);
|
||||||
|
\draw(F1)++(0,-0.15)node{$O$};
|
||||||
|
\fill(F2)circle(0.03);
|
||||||
|
\draw(F2)++(0,-0.15)node{$O'$};
|
||||||
|
|
||||||
|
\fill(P)circle(0.03);
|
||||||
|
\draw(P)++(\lam+\ps+90-\ps:0.15)node{$P$};
|
||||||
|
|
||||||
|
\fill(0,0)circle(0.03);
|
||||||
|
\draw(0,-0.15)node{$C$};
|
||||||
|
|
||||||
|
\fill(Q)circle(0.03);
|
||||||
|
\draw(Q)++(0,-0.15)node{$Q$};
|
||||||
|
|
||||||
|
\draw[dotted,<->](F1)++(\tt:-0.5)--++(90+\tt:\h);
|
||||||
|
\draw(F1)++(\tt:-0.6)++(90+\tt:\h/2)node{$h$};
|
||||||
|
|
||||||
|
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{document}
|
||||||
|
|
30
figs/trajectory.fig/Makefile
Normal file
30
figs/trajectory.fig/Makefile
Normal file
@ -0,0 +1,30 @@
|
|||||||
|
PROJECTNAME=trajectory
|
||||||
|
|
||||||
|
SIMPLEQ=~/Work/Research/2018+bose_gas/cmp/simpleq
|
||||||
|
|
||||||
|
PDFS=$(addsuffix .pdf, $(PROJECTNAME))
|
||||||
|
TEXS=trajectory.tikz.tex
|
||||||
|
|
||||||
|
all: $(PDFS)
|
||||||
|
|
||||||
|
$(PDFS): $(TEXS)
|
||||||
|
pdflatex -jobname $(basename $@) -file-line-error $(patsubst %.pdf, %.tikz.tex, $@)
|
||||||
|
|
||||||
|
trajectory.tikz.tex:
|
||||||
|
python trajectory.py > $@
|
||||||
|
|
||||||
|
|
||||||
|
install: $(PDFS)
|
||||||
|
cp $^ $(INSTALLDIR)/
|
||||||
|
|
||||||
|
clean-aux:
|
||||||
|
rm -f $(addsuffix .aux, $(PROJECTNAME))
|
||||||
|
rm -f $(addsuffix .log, $(PROJECTNAME))
|
||||||
|
|
||||||
|
clean-dat:
|
||||||
|
rm -f $(TEXS)
|
||||||
|
|
||||||
|
clean-tex:
|
||||||
|
rm -f $(PDFS)
|
||||||
|
|
||||||
|
clean: clean-aux clean-tex
|
26
figs/trajectory.fig/trajectory.tikz.tex
Normal file
26
figs/trajectory.fig/trajectory.tikz.tex
Normal file
@ -0,0 +1,26 @@
|
|||||||
|
\documentclass{standalone}
|
||||||
|
\usepackage{tikz}
|
||||||
|
\begin{document}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\draw[rotate=263.6206297915572,line width=1,dashed](-4.47213595499958,0) ellipse (5.0 and 2.2360679774997902);
|
||||||
|
\begin{scope}
|
||||||
|
\clip(-5,2)--++(15,0)--++(0,8)--++(-15,0);
|
||||||
|
\draw[rotate=263.6206297915572,line width=2, color=blue](-4.47213595499958,0) ellipse (5.0 and 2.2360679774997902);
|
||||||
|
\end{scope}
|
||||||
|
\draw[rotate=231.45599405039505,line width=1,dashed](-3.725076664340498,0) ellipse (5.0 and 3.3352366999638683);
|
||||||
|
\begin{scope}
|
||||||
|
\clip(-5,2)--++(15,0)--++(0,8)--++(-15,0);
|
||||||
|
\draw[rotate=231.45599405039505,line width=2, color=blue](-3.725076664340498,0) ellipse (5.0 and 3.3352366999638683);
|
||||||
|
\end{scope}
|
||||||
|
\draw[rotate=172.42531416885245,line width=1,dashed](-1.2502080963147824,0) ellipse (5.0 and 4.841175447751193);
|
||||||
|
\begin{scope}
|
||||||
|
\clip(-5,2)--++(15,0)--++(0,8)--++(-15,0);
|
||||||
|
\draw[rotate=172.42531416885245,line width=2, color=blue](-1.2502080963147824,0) ellipse (5.0 and 4.841175447751193);
|
||||||
|
\end{scope}
|
||||||
|
\draw[line width=2](-5,2)--++(15,0);
|
||||||
|
\fill[color=red](0,0)circle(0.2);
|
||||||
|
\draw(0.5,0)node{\huge$O$};
|
||||||
|
\draw[densely dotted,<->,line width=1](0,0)--++(0,2);
|
||||||
|
\draw(0.3,1)node{\huge$h$};
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{document}
|
Loading…
Reference in New Issue
Block a user