Compare commits

...

2 Commits
v0.0 ... master

Author SHA1 Message Date
Ian Jauslin 219d5c2a6d Update to v1.1
Wrong factor in (13)

Typos

Update style files, add DOIs to the bibliography
2015-10-26 13:23:54 +00:00
Ian Jauslin 23b474936c Version bump 2015-09-18 21:52:11 +00:00
5 changed files with 159 additions and 50 deletions

View File

@ -4,7 +4,7 @@
%% length used to display the bibliography
\newlength{\rw}
\setlength{\rw}{1.5cm}
\setlength{\rw}{1.75cm}
%% read header
\IfFileExists{header.BBlog.tex}{\input{header.BBlog}}{}
@ -28,6 +28,14 @@
%% an empty definition for the aux file
\def\BBlogcite#1{}
%% an entry
\long\def\BBlogentry#1#2#3{
\hrefanchor
\outdef{label@cite#1}{#2}
\parbox[t]{\rw}{[\cite{#1}]}\parbox[t]{\colw}{#3}\par
\bigskip
}
%% display the bibliography
\long\def\BBlography{
\newlength{\colw}

View File

@ -32,14 +32,14 @@ The $s-d$ model describes a chain of spin-1/2 electrons interacting magnetically
\hugeskip
\indent The $s-d$ model was introduced by Anderson [\cite{andSO}] and used by Kondo [\cite{konSF}] to study what would subsequently be called the {\it Kondo effect}. It describes a chain of electrons interacting with a fixed spin-1/2 magnetic impurity. One of the manifestations of the effect is that when the coupling is anti-ferrmoagnetic, the magnetic susceptibility of the impurity remains finite in the 0-temperature limit, whereas it diverges for ferromagnetic and for vanishing interactions.\par
\indent The $s-d$ model was introduced by Anderson [\cite{An61}] and used by Kondo [\cite{Ko64}] to study what would subsequently be called the {\it Kondo effect}. It describes a chain of electrons interacting with a fixed spin-1/2 magnetic impurity. One of the manifestations of the effect is that when the coupling is anti-ferrmoagnetic, the magnetic susceptibility of the impurity remains finite in the 0-temperature limit, whereas it diverges for ferromagnetic and for vanishing interactions.\par
\indent A modified version of the $s-d$ model was introduced by Andrei [\cite{andEZ}], which was shown to be exactly solvable by Bethe Ansatz. In [\cite{bgjOFi}], a hierarchical version of Andrei's model was introduced and shown to exhibit a Kondo effect. In the present letter, we show how the argument can be adapted to the $s-d$ model.\par
\indent A modified version of the $s-d$ model was introduced by Andrei [\cite{An80}], which was shown to be exactly solvable by Bethe Ansatz. In [\cite{BGJ15}], a hierarchical version of Andrei's model was introduced and shown to exhibit a Kondo effect. In the present letter, we show how the argument can be adapted to the $s-d$ model.\par
\indent We will show that in the hierarchical $s-d$ model, the computation of the susceptibility reduces to iterating an {\it explicit} map relating 6 {\it running coupling constants} (rccs), and that this map can be obtained by restricting the flow equation for the hierarchical Andrei model [\cite{bgjOFi}] to one of its invariant manifolds. The physics of both models are therefore very closely related, as had already been argued in [\cite{bgjOFi}]. This is particularly noteworthy since, at 0-field, the flow in the hierarchical Andrei model is relevant, whereas it is marginal in the hierarchical $s-d$ model, which shows that the relevant direction carries little to no physical significance.\par
\indent We will show that in the hierarchical $s-d$ model, the computation of the susceptibility reduces to iterating an {\it explicit} map relating 6 {\it running coupling constants} (rccs), and that this map can be obtained by restricting the flow equation for the hierarchical Andrei model [\cite{BGJ15}] to one of its invariant manifolds. The physics of both models are therefore very closely related, as had already been argued in [\cite{BGJ15}]. This is particularly noteworthy since, at 0-field, the flow in the hierarchical Andrei model is relevant, whereas it is marginal in the hierarchical $s-d$ model, which shows that the relevant direction carries little to no physical significance.\par
\bigskip
\indent The $s-d$ model [\cite{konSF}] represents a chain of non-interacting spin-1/2 fermions, called {\it electrons}, which interact with an isolated spin-1/2 {\it impurity} located at site 0. The Hilbert space of the system is $\mathcal F_L\otimes\mathbb C^2$ in which $\mathcal F_L$ is the Fock space of a length-$L$ chain of spin-1/2 fermions (the electrons) and $\mathbb C^2$ is the state space for the two-level impurity. The Hamiltonian, in the presence of a magnetic field of amplitude $h$ in the direction $\bm\omega\equiv(\bm\omega_1,\bm\omega_2,\bm\omega_3)$, is
\indent The $s-d$ model [\cite{Ko64}] represents a chain of non-interacting spin-1/2 fermions, called {\it electrons}, which interact with an isolated spin-1/2 {\it impurity} located at site 0. The Hilbert space of the system is $\mathcal F_L\otimes\mathbb C^2$ in which $\mathcal F_L$ is the Fock space of a length-$L$ chain of spin-1/2 fermions (the electrons) and $\mathbb C^2$ is the state space for the two-level impurity. The Hamiltonian, in the presence of a magnetic field of amplitude $h$ in the direction $\bm\omega\equiv(\bm\omega_1,\bm\omega_2,\bm\omega_3)$, is
\begin{equation}\begin{array}{r@{\ }>{\displaystyle}l}
H_K=&H_0+V_0+V_h=:H_0+V\\[0.3cm]
H_0=&\sum_{\alpha\in\{\uparrow,\downarrow\}}\sum_{x=-{L}/2}^{{L}/2-1} c^+_\alpha(x)\,\left(-\frac{\Delta}2-1\right)\,c^-_\alpha(x)\\[0.5cm]
@ -48,7 +48,7 @@ V_h=&-h \,\sum_{j=1,2,3}\bm\omega_j \tau^j
\end{array}\label{eqhamdef}\end{equation}
where $\lambda_0$ is the interaction strength, $\Delta$ is the discrete Laplacian $c_\alpha^\pm(x),\,\alpha=\uparrow,\downarrow$ are creation and annihilation operators acting on {\it electrons}, and $\sigma^j=\tau^j,\,j=1,2,3$, are Pauli matrices. The operators $\tau^j$ act on the {\it impurity}. The boundary conditions are taken to be periodic.\par
\indent In the {\it Andrei model} [\cite{andEZ}], the impurity is represented by a fermion instead of a two-level system, that is the Hilbert space is replaced by $\mathcal F_L\otimes\mathcal F_1$, and the Hamiltonian is defined by replacing $\tau^j$ in~(\ref{eqhamdef}) by $d^+\tau^jd^-$ in which $d_\alpha^\pm(x),\,\alpha=\uparrow,\downarrow$ are creation and annihilation operators acting on the impurity.\par
\indent In the {\it Andrei model} [\cite{An80}], the impurity is represented by a fermion instead of a two-level system, that is the Hilbert space is replaced by $\mathcal F_L\otimes\mathcal F_1$, and the Hamiltonian is defined by replacing $\tau^j$ in~(\ref{eqhamdef}) by $d^+\tau^jd^-$ in which $d_\alpha^\pm(x),\,\alpha=\uparrow,\downarrow$ are creation and annihilation operators acting on the impurity.\par
\bigskip
\indent The partition function $Z={\rm Tr}\, e^{-\beta H_K}$ can be expressed formally as a functional integral:
@ -62,7 +62,7 @@ $$
and the trace is over the state-space of the spin-1/2 impurity, that is a trace over $\mathbb C^2$.\par
\bigskip
\indent We will consider a {\it hierarchical} version of the $s-d$ model. The hierarchical model defined below is {\it inspired} by the $s-d$ model in the same way as the hierarchical model defined in [\cite{bgjOFi}] was inspired by the Andrei model. We will not give any details on the justification of the definition, as such considerations are entirely analogous to the discussion in [\cite{bgjOFi}].\par
\indent We will consider a {\it hierarchical} version of the $s-d$ model. The hierarchical model defined below is {\it inspired} by the $s-d$ model in the same way as the hierarchical model defined in [\cite{BGJ15}] was inspired by the Andrei model. We will not give any details on the justification of the definition, as such considerations are entirely analogous to the discussion in [\cite{BGJ15}].\par
\indent The model is defined by introducing a family of {\it hierarchical fields} and specifying a {\it propagator} for each pair of fields. The average of any monomial of fields is then computed using the Wick rule.\par
@ -112,10 +112,10 @@ and find that
with
\begin{equation}\begin{array}{r@{\quad}l}
O_{0,\eta}^{[\le 0]}(\Delta):=\frac12\mathbf A^{[\le 0]}_\eta(\Delta)\cdot\bm\tau,& O_{1,\eta}^{[\le 0]}(\Delta):=\frac12\mathbf A^{[\le 0]}_\eta(\Delta)^2,\\[0.3cm]
O_{4,\eta}^{[\le 0]}(\Delta):=\frac12\mathbf A^{[\le 0]}_\eta(\Delta)\cdot\bm\omega,& O_{5,\eta}^{[\le 0]}(\Delta):=\frac12\mathbf \bm\tau\cdot\bm\omega,\\[0.3cm]
O_{4,\eta}^{[\le 0]}(\Delta):=\frac12\mathbf A^{[\le 0]}_\eta(\Delta)\cdot\bm\omega,& O_{5,\eta}^{[\le 0]}(\Delta):=\frac12 \bm\tau\cdot\bm\omega,\\[0.3cm]
O_{6,\eta}^{[\le 0]}(\Delta):=\frac12(\mathbf A^{[\le 0]}_\eta(\Delta)\cdot\bm\omega)(\bm\tau\cdot\bm\omega),& O_{7,\eta}^{[\le 0]}(\Delta):=\frac12(\mathbf A^{[\le 0]}_\eta(\Delta)^2)(\bm\tau\cdot\bm\omega)
\end{array}\label{eqOdef}\end{equation}
(the numbering is meant to recall that in [\cite{bgjOFi}]) in which $\bm\tau=(\tau^1,\tau^2,\tau^3)$ and $\mathbf A_\eta^{[\le 0]}(\Delta)$ is a vector of polynomials in the fields whose $j$-th component for $j\in\{1,2,3\}$ is
(the numbering is meant to recall that in [\cite{BGJ15}]) in which $\bm\tau=(\tau^1,\tau^2,\tau^3)$ and $\mathbf A_\eta^{[\le 0]}(\Delta)$ is a vector of polynomials in the fields whose $j$-th component for $j\in\{1,2,3\}$ is
\begin{equation}
A_\eta^{[\le 0]j}(\Delta):=\sum_{(\alpha,\alpha')\in\{\uparrow,\downarrow\}^2} \psi_\alpha^{[\le 0]+}(\Delta_\eta)\sigma^j_{\alpha,\alpha'}\psi_{\alpha'}^{[\le 0]-}(\Delta_\eta)
\label{eqAdef}\end{equation}
@ -123,7 +123,7 @@ $\psi_\alpha^{[\le 0]\pm}:=\sum_{m\le0}2^{\frac m2}\psi_\alpha^{[m]\pm}$, and
\begin{equation}\begin{array}{r@{\ }>{\displaystyle}l}
C=&\cosh(\tilde h),\quad \ell_0^{[0]}=\frac1C\frac{\lambda_0}{\tilde h}\sinh(\tilde h),\quad
\ell_1^{[0]}=\frac1C\frac{\lambda_0^2}{12\tilde h}(\tilde h\cosh(\tilde h)+2\sinh(\tilde h))\\[0.3cm]
\ell_4^{[0]}=&\frac1C\lambda_0\sinh(\tilde h),\quad \ell_5^{[0]}=\frac1C\sinh(\tilde h),\quad
\ell_4^{[0]}=&\frac1C\lambda_0\sinh(\tilde h),\quad \ell_5^{[0]}=\frac2C\sinh(\tilde h),\quad
\ell_6^{[0]}=\frac1C\frac{\lambda_0}{\tilde h}(\tilde h\cosh(\tilde h)-\sinh(\tilde h))\\[0.3cm]
\ell_7^{[0]}=&\frac1C\frac{\lambda_0^2}{12\tilde h^2}(\tilde h^2\sinh(\tilde h)+2\tilde h\cosh(\tilde h)-2\sinh(\tilde h))
\end{array}\label{eqinitcd}\end{equation}
@ -141,7 +141,7 @@ in terms of which
\begin{equation}
Z=C^{2|\mathcal Q_0|}\prod_{m=-N(\beta)+1}^0(C^{[m]})^{|\mathcal Q_{m-1}|}
\label{eqZind}\end{equation}
in which $|\mathcal Q_m|=2^{N(\beta)-|m|}$ is the cardinality of $\mathcal Q_m$. In addition, similarly to [\cite{bgjOFi}], the map relating $\ell_p^{[m]}$ to $\ell_p^{[m-1]}$ and $C^{[m]}$ can be computed explicitly from~(\ref{eqindW}):
in which $|\mathcal Q_m|=2^{N(\beta)-|m|}$ is the cardinality of $\mathcal Q_m$. In addition, similarly to [\cite{BGJ15}], the map relating $\ell_p^{[m]}$ to $\ell_p^{[m-1]}$ and $C^{[m]}$ can be computed explicitly from~(\ref{eqindW}):
\begin{equation}\begin{array}{r@{\ }>{\displaystyle}l}
C^{[m]} =& 1 +\frac{3}{2}\ell_{0}^2 +\ell_{0}\ell_{6} +9\ell_{1}^2 +\frac{\ell_{4}^2}{2} +\frac{\ell_{5}^2}{4} +\frac{\ell_{6}^2}{2} +9\ell_{7}^2 \\[0.3cm]
\ell^{[m-1]}_{0} =& \frac1C\left(\ell_{0} -\ell_{0}^2 +3\ell_{0}\ell_{1} -\ell_{0}\ell_{6} \right)\\[0.3cm]
@ -155,9 +155,9 @@ in which the $^{[m]}$ have been dropped from the right hand side.\par
\bigskip
\indent The flow equation~(\ref{eqbetafun}) can be recovered from that of the hierarchical Andrei model studied in [\cite{bgjOFi}] (see in particular [\cite{bgjOFi}, (C1)] by restricting the flow to the invariant submanifold defined by \begin{equation} \ell_2^{[m]}=\frac13,\quad \ell_3^{[m]}=\frac16\ell_1^{[m]},\quad \ell_8^{[m]}=\frac16\ell_4^{[m]}. \label{e18}\end{equation} This is of particular interest since $\ell_2^{[m]}$ is a relevant coupling and the fact that it plays no role in the $s-d$ model indicates that it has little to no physical relevance.\par
\indent The flow equation~(\ref{eqbetafun}) can be recovered from that of the hierarchical Andrei model studied in [\cite{BGJ15}] (see in particular [\cite{BGJ15}, (C1)] by restricting the flow to the invariant submanifold defined by \begin{equation} \ell_2^{[m]}=\frac13,\quad \ell_3^{[m]}=\frac16\ell_1^{[m]},\quad \ell_8^{[m]}=\frac16\ell_4^{[m]}. \label{e18}\end{equation} This is of particular interest since $\ell_2^{[m]}$ is a relevant coupling and the fact that it plays no role in the $s-d$ model indicates that it has little to no physical relevance.\par
\indent The qualitative behavior of the flow is therefore the same as that described in [\cite{bgjOFi}] for the hierarchical Andrei model. In particular the susceptibility, which can be computed by deriving $-\beta^{-1}\log Z$ with respect to $h$, remains finite in the 0-temperature limit as long as $\lambda_0<0$, that is as long as the interaction is anti-ferromagnetic.\par
\indent The qualitative behavior of the flow is therefore the same as that described in [\cite{BGJ15}] for the hierarchical Andrei model. In particular the susceptibility, which can be computed by deriving $-\beta^{-1}\log Z$ with respect to $h$, remains finite in the 0-temperature limit as long as $\lambda_0<0$, that is as long as the interaction is anti-ferromagnetic.\par
\hugeskip
{\bf Acknowledgements}: We are grateful to G.~Benfatto for many enlightening discussions on the $s-d$ and Andrei's models.

View File

@ -1,20 +1,4 @@
\hrefanchor
\outdef{citeandSO}{And61}
\hbox{\parbox[t]{\rw}{[\cite{andSO}]}\parbox[t]{\colw}{P.~Anderson - {\it Localized magnetic states in metals}, Physical Review, Vol.~124, n.~1, p.~41-53, 1961.}}\par
\bigskip
\hrefanchor
\outdef{citeandEZ}{And80}
\hbox{\parbox[t]{\rw}{[\cite{andEZ}]}\parbox[t]{\colw}{N.~Andrei - {\it Diagonalization of the Kondo Hamiltonian}, Physical Review Letters, Vol.~45, n.~5, 1980.}}\par
\bigskip
\hrefanchor
\outdef{citebgjOFi}{BGJ15}
\hbox{\parbox[t]{\rw}{[\cite{bgjOFi}]}\parbox[t]{\colw}{G.~Benfatto, G.~Gallavotti, I.~Jauslin - {\it Kondo effect in a Fermionic hierarchical model}, arXiv 1506.04381, 2015.}}\par
\bigskip
\hrefanchor
\outdef{citekonSF}{Kon64}
\hbox{\parbox[t]{\rw}{[\cite{konSF}]}\parbox[t]{\colw}{J.~Kondo - {\it Resistance minimum in dilute magnetic alloys}, Progress of Theoretical Physics, Vol.~32, n.~1, 1964.}}\par
\bigskip
\BBlogentry{An61}{An61}{P.W. Anderson - {\it Localized magnetic states in metals}, Physical Review, Vol.~124, n.~1, p.~41-53, 1961, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1103/PhysRev.124.41}{10.1103/PhysRev.124.41}}.}
\BBlogentry{An80}{An80}{N. Andrei - {\it Diagonalization of the Kondo Hamiltonian}, Physical Review Letters, Vol.~45, n.~5, 1980, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1103/PhysRevLett.45.379}{10.1103/PhysRevLett.45.379}}.}
\BBlogentry{BGJ15}{BGJ15}{G. Benfatto, G. Gallavotti, I. Jauslin - {\it Kondo effect in a Fermionic hierarchical model}, to appear in the Journal of Statistical Physics, 2015, doi:{\color{blue}\href{http://dx.doi.org/10.1007/s10955-015-1378-7}{10.1007/s10955-015-1378-7}}.}
\BBlogentry{Ko64}{Ko64}{J. Kondo - {\it Resistance minimum in dilute magnetic alloys}, Progress of Theoretical Physics, Vol.~32, n.~1, 1964, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1143/PTP.32.37}{10.1143/PTP.32.37}}.}

View File

@ -40,6 +40,16 @@
\eject
}
%% prevent page breaks
\newcount\prevpostdisplaypenalty
\def\nopagebreakaftereq{
\prevpostdisplaypenalty=\postdisplaypenalty
\postdisplaypenalty=10000
}
\def\restorepagebreakaftereq{
\postdisplaypenalty=\prevpostdisplaypenalty
}
%% hyperlinks
% hyperlinkcounter
\newcounter{lncount}
@ -64,15 +74,21 @@
%% define a label for the latest tag
%% label defines a command containing the string stored in \tag
\AtBeginDocument{
\def\label#1{\expandafter\outdef{#1}{\safe\tag}}
\def\label#1{\expandafter\outdef{label@#1}{\safe\tag}}
%% make a custom link at any given location in the document
\def\makelink#1#2{
\hrefanchor
\outdef{label@#1}{#2}
}
\def\ref#1{%
% check whether the label is defined (hyperlink runs into errors if this check is ommitted)
\ifcsname #1@hl\endcsname%
\hyperlink{ln.\csname #1@hl\endcsname}{\safe\csname #1\endcsname}%
\ifcsname label@#1@hl\endcsname%
\hyperlink{ln.\csname label@#1@hl\endcsname}{{\color{blue}\safe\csname label@#1\endcsname}}%
\else%
\ifcsname #1\endcsname%
\csname #1\endcsname%
\ifcsname label@#1\endcsname%
{\color{blue}\csname #1\endcsname}%
\else%
{\bf ??}%
\fi%
@ -143,11 +159,9 @@
\ifsubseqcount%
\setcounter{seqcount}0%
\fi%
% space before subsection (if not first)
\ifnum\thesubsectioncount>1%
% space before subsection
\subseqskip%
\penalty-500%
\fi%
% hyperref anchor
\hrefanchor
% define tag (for \label)
@ -180,11 +194,13 @@
\newlength\itemizeseparator
% space between the item symbol and the text
\setlength\itemizeseparator{5pt}
% penalty preceding an itemize
\def\itemizepenalty{0}
\newlength\current@itemizeskip
\setlength\current@itemizeskip{0pt}
\def\itemize{
\par\medskip
\par\penalty\itemizepenalty\medskip\penalty\itemizepenalty
\addtolength\current@itemizeskip{\itemizeskip}
\leftskip\current@itemizeskip
}
@ -202,6 +218,31 @@
\hskip-\itempt@total\itemizept\hskip\itemizeseparator
}
%% enumerate
\newcounter{enumerate@count}
\def\enumerate{
\setcounter{enumerate@count}0
\let\olditem\item
\let\olditemizept\itemizept
\def\item{
% counter
\stepcounter{enumerate@count}
% set header
\def\itemizept{\theenumerate@count.}
% hyperref anchor
\hrefanchor
% define tag (for \label)
\xdef\tag{\theenumerate@count}
\olditem
}
\itemize
}
\def\endenumerate{
\enditemize
\let\item\olditem
\let\itemizept\olditemizept
}
%% points
\def\point{
\stepcounter{pointcount}
@ -229,6 +270,17 @@
% define tag (for \label)
\xdef\tag{\thepointcount-\thesubpointcount-\thesubsubpointcount}
}
\def\pspoint{
\stepcounter{pointcount}
\stepcounter{subpointcount}
\setcounter{subsubpointcount}0
% hyperref anchor
\hrefanchor
\indent\hskip.5cm{\bf \thepointcount-\thesubpointcount\ - }
% define tag (for \label)
\xdef\tag{\thepointcount-\thesubpointcount}
}
% reset points
\def\resetpointcounter{
\setcounter{pointcount}{0}
@ -265,7 +317,7 @@
\setlength\figwidth\textwidth
\addtolength\figwidth{-2.5cm}
\def\figcount#1{%
\def\caption#1{%
\stepcounter{figcount}%
% hyperref anchor
\hrefanchor%
@ -279,7 +331,25 @@
% define tag (for \label)
\xdef\tag{\figformat}%
% write
\hfil fig \figformat: \parbox[t]{\figwidth}{\small#1}%
\hfil fig \figformat: \parbox[t]{\figwidth}{\leavevmode\small#1}%
\par\bigskip%
}
%% short caption: centered
\def\captionshort#1{%
\stepcounter{figcount}%
% hyperref anchor
\hrefanchor%
% the number of the figure
\edef\figformat{\thefigcount}%
% add section number
\ifsections%
\let\tmp\figformat%
\edef\figformat{\sectionprefix\thesectioncount.\tmp}%
\fi%
% define tag (for \label)
\xdef\tag{\figformat}%
% write
\hfil fig \figformat: {\small#1}%
\par\bigskip%
}
@ -290,10 +360,48 @@
\def\endfigure{
\par\penalty-1000
}
\let\caption\figcount
%% delimiters
\def\delimtitle#1{\par \leavevmode\raise.3em\hbox to\hsize{\lower0.3em\hbox{\vrule height0.3em}\hrulefill\ \lower.3em\hbox{#1}\ \hrulefill\lower0.3em\hbox{\vrule height0.3em}}\par\penalty10000}
\def\delimtitle#1{\par%
\leavevmode%
\raise.3em\hbox to\hsize{%
\lower0.3em\hbox{\vrule height0.3em}%
\hrulefill%
\ \lower.3em\hbox{#1}\ %
\hrulefill%
\lower0.3em\hbox{\vrule height0.3em}%
}\par\penalty10000}
%% callable by ref
\def\delimtitleref#1{\par%
% hyperref anchor
\hrefanchor%
% define tag (for \label)
\xdef\tag{#1}%
\leavevmode%
\raise.3em\hbox to\hsize{%
\lower0.3em\hbox{\vrule height0.3em}%
\hrulefill%
\ \lower.3em\hbox{\bf #1}\ %
\hrulefill%
\lower0.3em\hbox{\vrule height0.3em}%
}\par\penalty10000}
%% no title
\def\delim{\par%
\leavevmode\raise.3em\hbox to\hsize{%
\lower0.3em\hbox{\vrule height0.3em}%
\hrulefill%
\lower0.3em\hbox{\vrule height0.3em}%
}\par\penalty10000}
%% end delim
\def\enddelim{\par\penalty10000%
\leavevmode%
\raise.3em\hbox to\hsize{%
\vrule height0.3em\hrulefill\vrule height0.3em%
}\par}
\def\delim{\par\leavevmode\raise.3em\hbox to\hsize{\vrule height0.3em\hrulefill\vrule height0.3em}\par\penalty10000}
\def\enddelim{\par\penalty10000\leavevmode\raise.3em\hbox to\hsize{\vrule height0.3em\hrulefill\vrule height0.3em}\par}
@ -317,6 +425,10 @@
\delimtitle{\bf #1 \formattheo}
}
\let\endtheo\enddelim
%% theorem headers with name
\def\theoname#1#2{
\theo{#1}\hfil({\it #2})\par\penalty10000\medskip%
}
%% start appendices
\def\appendix{%
@ -381,12 +493,12 @@
\stepcounter{tocsectioncount}
\setcounter{tocsubsectioncount}{0}
% write
\smallskip\hyperlink{ln.\csname toc@sec.\thetocsectioncount\endcsname}{{\bf \tocsectionprefix\thetocsectioncount}.\hskip5pt #1\leaderfill#2}\par
\smallskip\hyperlink{ln.\csname toc@sec.\thetocsectioncount\endcsname}{{\bf \tocsectionprefix\thetocsectioncount}.\hskip5pt {\color{blue}#1}\leaderfill#2}\par
}
\def\tocsubsection #1#2{
\stepcounter{tocsubsectioncount}
% write
{\hskip10pt\hyperlink{ln.\csname toc@subsec.\thetocsectioncount.\thetocsubsectioncount\endcsname}{{\bf \thetocsubsectioncount}.\hskip5pt {\small #1}\leaderfill#2}}\par
{\hskip10pt\hyperlink{ln.\csname toc@subsec.\thetocsectioncount.\thetocsubsectioncount\endcsname}{{\bf \thetocsubsectioncount}.\hskip5pt {\color{blue}\small #1}\leaderfill#2}}\par
}
\def\tocappendices{
\medskip
@ -397,6 +509,6 @@
}
\def\tocreferences#1{
\medskip
{\hyperlink{ln.\csname toc@references\endcsname}{{\bf References}\leaderfill#1}}\par
{\hyperlink{ln.\csname toc@references\endcsname}{{\color{blue}\bf References}\leaderfill#1}}\par
\smallskip
}

View File

@ -34,8 +34,13 @@
\@beginparpenalty=\prevparpenalty
}
%% stack relations in subscript or superscript
\def\mAthop#1{\displaystyle\mathop{\scriptstyle #1}}
%% array spanning the entire line
\def\largearray{\begin{array}{@{}>{\displaystyle}l@{}}\hphantom{\hspace{\textwidth}}\\[-.5cm]}
\newlength\largearray@width
\setlength\largearray@width\textwidth
\addtolength\largearray@width{-10pt}
\def\largearray{\begin{array}{@{}>{\displaystyle}l@{}}\hphantom{\hspace{\largearray@width}}\\[-.5cm]}
\def\endlargearray{\end{array}}