Typo in definition of Fourier transform
This commit is contained in:
parent
242a8e123d
commit
c8f0715899
@ -574,8 +574,8 @@ where $\mathcal H_0$ is the {\it free Hamiltonian} and $\mathcal H_I$ is the {\i
|
|||||||
\end{array}\label{hamx}\end{equation}
|
\end{array}\label{hamx}\end{equation}
|
||||||
Equation~(\ref{hamx}) can be rewritten in Fourier space as follows. We define the Fourier transform of the annihilation operators as
|
Equation~(\ref{hamx}) can be rewritten in Fourier space as follows. We define the Fourier transform of the annihilation operators as
|
||||||
\begin{equation} \hat a_{k}:=\sum_{x\in\Lambda}e^{ikx}a_{x}\;,\quad
|
\begin{equation} \hat a_{k}:=\sum_{x\in\Lambda}e^{ikx}a_{x}\;,\quad
|
||||||
\hat{\tilde b}_{k}:=\sum_{x\in\Lambda}e^{ikx}\hat{\tilde b}_{x+\delta_1}\;,\quad
|
\hat{\tilde b}_{k}:=\sum_{x\in\Lambda}e^{ikx}\tilde b_{x+\delta_1}\;,\quad
|
||||||
\hat{\tilde a}_{k}:=\sum_{x\in\Lambda}e^{ikx}\hat{\tilde a}_{x-\delta_1}\;,\quad
|
\hat{\tilde a}_{k}:=\sum_{x\in\Lambda}e^{ikx}\tilde a_{x-\delta_1}\;,\quad
|
||||||
\hat b_{k}:=\sum_{x\in\Lambda}e^{ikx}b_{x+\delta_1}\;\end{equation}
|
\hat b_{k}:=\sum_{x\in\Lambda}e^{ikx}b_{x+\delta_1}\;\end{equation}
|
||||||
in terms of which
|
in terms of which
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
|
Loading…
Reference in New Issue
Block a user