Update to v1.1
Wrong value for \lambda_0 in the caption of fig.6.4 Missing \omega in (7.1) Typos and misformats Update style files, add DOIs to the bibliography
This commit is contained in:
parent
4461f4aa73
commit
ffa924ccdd
@ -1,19 +1,17 @@
|
||||
%%
|
||||
%% bibliography related commands
|
||||
%% BBlog bibliography related commands
|
||||
%%
|
||||
|
||||
%% length used to display the bibliography
|
||||
\newlength{\rw}
|
||||
\setlength{\rw}{1.5cm}
|
||||
\setlength{\rw}{1.75cm}
|
||||
|
||||
%% read header
|
||||
\IfFileExists{header.BBlog.tex}{\input{header.BBlog}}{}
|
||||
|
||||
%% cite a reference
|
||||
\def\cite#1{%
|
||||
%% check whether the reference exists
|
||||
\ref{cite#1}%
|
||||
%
|
||||
%% add entry to citelist after checking it has not already been added
|
||||
\ifcsname if#1cited\endcsname%
|
||||
\expandafter\if\csname if#1cited\endcsname%
|
||||
@ -30,6 +28,14 @@
|
||||
%% an empty definition for the aux file
|
||||
\def\BBlogcite#1{}
|
||||
|
||||
%% an entry
|
||||
\long\def\BBlogentry#1#2#3{
|
||||
\hrefanchor
|
||||
\outdef{label@cite#1}{#2}
|
||||
\parbox[t]{\rw}{[\cite{#1}]}\parbox[t]{\colw}{#3}\par
|
||||
\bigskip
|
||||
}
|
||||
|
||||
%% display the bibliography
|
||||
\long\def\BBlography{
|
||||
\newlength{\colw}
|
@ -2,7 +2,7 @@
|
||||
% load packages
|
||||
\usepackage{header}
|
||||
% bibliography commands
|
||||
\usepackage{bibliography}
|
||||
\usepackage{BBlog}
|
||||
% miscellaneous commands
|
||||
\usepackage{toolbox}
|
||||
% main style file
|
||||
@ -56,13 +56,13 @@
|
||||
|
||||
\section{Kondo model and main results} \label{secmodel}
|
||||
\indent Consider a {\it 1-dimensional} Fermi gas of spin-1/2 ``electrons'', and a spin-1/2 fermionic ``impurity'', with {\it no} interactions. It is well known that:
|
||||
\begin{enumerate}[\ \ (1)\ \ ]
|
||||
\begin{enumerate}
|
||||
\item the magnetic susceptibility of the impurity diverges as $\beta=\frac1{k_B T}\to\infty$ while
|
||||
\item both the total susceptibility per particle of the electron gas ({\it i.e.}\ the response to a field acting on the whole sample) [\cite{Ki76}] and the susceptibility to a magnetic field acting on a single lattice site of the chain ({\it i.e.}\ the response to a field localized on a site, say at $0$) are finite at zero temperature (see remark (1) in appendix~\ref{appXY} for a discussion of the second claim).
|
||||
\item both the total susceptibility per particle of the electron gas ({\it i.e.}\ the response to a field acting on the whole sample) [\cite{Ki76}] and the susceptibility to a magnetic field acting on a single lattice site of the chain ({\it i.e.}\ the response to a field localized on a site, say at $0$) are finite at zero temperature (see remark~\ref{rkfinitesusc} in appendix~\ref{appXY} for a discussion of the second claim).
|
||||
\end{enumerate}
|
||||
\medskip
|
||||
|
||||
\indent The question that will be addressed in this work is whether a small coupling of the impurity {fermion} with the electron gas can change this behavior, that is whether the susceptibility of the impurity interacting with the electrons diverges or not.
|
||||
\indent The question that will be addressed in this work is whether a small coupling of the impurity fermion with the electron gas can change this behavior, that is whether the susceptibility of the impurity interacting with the electrons diverges or not.
|
||||
|
||||
\indent To that end we will study a model inspired by the Kondo Hamiltonian which, expressed in second quantized form, is
|
||||
|
||||
@ -73,7 +73,7 @@ V_0=&-\lambda_0\sum_{j=1,2,3}\sum_{\alpha_1,\alpha_2,\alpha_3,\alpha_4}c^+_{\alp
|
||||
V_h=& -h\sum_{j=1,2,3}\bm\omega_j \, \sum_{(\alpha,\alpha')\in\{\uparrow,\downarrow\}^2}d^+_\alpha\sigma^j_{\alpha,\alpha'} d_{\alpha'}^-
|
||||
\label{eqhamkondo}\end{array}\end{equation}
|
||||
where $\lambda_0,h$ are the interaction and magnetic field strengths and
|
||||
\begin{enumerate}[\ \ (1)\ \ ]
|
||||
\begin{enumerate}
|
||||
\item$c_\alpha^\pm(x),d^\pm_\alpha, \,\alpha=\uparrow,\downarrow$ are creation and annihilation operators corresponding respectively to electrons and the impurity,
|
||||
\item$\sigma^j,\,j=1,2,3$, are the Pauli matrices,
|
||||
\item$x$ is on the unit lattice and $-{L}/2$, ${L}/2$ are identified (periodic boundary),
|
||||
@ -101,14 +101,14 @@ where $\tau^j$ is the $j$-th Pauli matrix and acts on the spin of the impurity.
|
||||
{\bf Remark}: The hierarchical Kondo model {\it will not be an approximation} of~(\ref{eqhamkondo}). It is a model that illustrates a simple mechanism for the control of the growth of relevant operators in a theory exhibiting a Kondo effect.
|
||||
\medskip
|
||||
|
||||
\indent The reason why the Kondo effect is not easy to understand is that it is an intrinsically non-perturbative effect, in that the impurity susceptibility in the interacting model is qualitatively different from its non-interacting counterpart. In the sense of the renormalization group it exhibits several ``relevant'', ``marginal'' and ``irrelevant'' running couplings: this makes any naive perturbative approach hopeless because all couplings become large ({\it i.e.}\ at least of O(1)) at large scale, no matter how small the interaction is, as long as $\lambda_0<0$, and thus leave the perturbative regime. It is among the simplest cases in which asymptotic freedom {\it does not occur}. {Using the fact that the beta function of the hierarchical model can be computed exactly, its non-perturbative regime can easily be investigated.}
|
||||
\indent The reason why the Kondo effect is not easy to understand is that it is an intrinsically non-perturbative effect, in that the impurity susceptibility in the interacting model is qualitatively different from its non-interacting counterpart. In the sense of the renormalization group it exhibits several ``relevant'', ``marginal'' and ``irrelevant'' running couplings: this makes any naive perturbative approach hopeless because all couplings become large ({\it i.e.}\ at least of O(1)) at large scale, no matter how small the interaction is, as long as $\lambda_0<0$, and thus leave the perturbative regime. It is among the simplest cases in which asymptotic freedom {\it does not occur}. Using the fact that the beta function of the hierarchical model can be computed exactly, its non-perturbative regime can easily be investigated.
|
||||
\medskip
|
||||
|
||||
\indent In the sections below, we will define the hierarchical Kondo model and show numerical evidence for the following claims (in principle, such claims could be proved using computer-assisted methods, though, since the numerical results are very clear and stable, it may not be worth the trouble).
|
||||
|
||||
\smallskip
|
||||
{\it If the interactions between the electron spins and the impurity are antiferromagnetic } ({\it i.e.}\ $\lambda_0<0$ in our notations), then
|
||||
\begin{enumerate}[\ \ (1)\ \ ]
|
||||
\begin{enumerate}
|
||||
\item The {\it existence of a Kondo effect} can be proved in spite of the lack of asymptotic freedom and formal growth of the effective Hamiltonian away from the trivial fixed point, {\it because the beta function can be computed exactly} (in particular non-pertubatively).
|
||||
|
||||
\item In addition, there exists an inverse temperature $\beta_K=2^{n_K(\lambda_0)}$ called the {\it Kondo} inverse temperature, such that the Kondo effect manifests itself for $\beta>\beta_K$. Asymptotically as $\lambda_0\to0$, $n_K(\lambda_0)=c_1|\lambda_0|^{-1}+O(1)$.
|
||||
@ -130,7 +130,7 @@ where $\tau^j$ is the $j$-th Pauli matrix and acts on the spin of the impurity.
|
||||
\medskip
|
||||
|
||||
{\bf Remark:}\listparpenalty
|
||||
\begin{enumerate}[\ \ (1)\ \ ]
|
||||
\begin{enumerate}
|
||||
\item It is worth stressing that in a system consisting of two classical spins with coupling $\lambda_0$ the susceptibility at $0$ field is $4\beta(1+e^{-2\beta\lambda_0})^ {-1}$, hence it vanishes at $T=0$ in the antiferromagnetic case and diverges in the ferromagnetic and in the free case. Therefore this simple model does not exhibit a Kondo effect.
|
||||
|
||||
\item In the exactly solvable XY model, which can be shown to be equivalent to a spin-less analogue of~(\ref{eqhamkondo}), the susceptibility can be shown to diverge in the $\beta\to\infty$ limit, see appendix~\ref{appXY}, \ref{appXYcomp} (at least for some boundary conditions). Therefore this model does not exhibit a Kondo effect either.
|
||||
@ -139,7 +139,7 @@ where $\tau^j$ is the $j$-th Pauli matrix and acts on the spin of the impurity.
|
||||
\section{Functional integration in the Kondo model} \label{secfunint}
|
||||
\indent In [\cite{Wi75}], Wilson studies the Kondo problem using renormalization group techniques in a Hamiltonian context. In the present work, our aim is to reproduce, in a simpler model, analogous results using a formalism based on functional integrals.
|
||||
|
||||
\indent In this section, we give a rapid review of the functional integral formalism we will use, following Refs.[\cite{BG90b}, \cite{Sh94}]. We will not attempt to reproduce all technical details, since it will merely be used as an inspiration for the definition of the hierarchical model in section~\ref{sechierk}.
|
||||
\indent In this section, we give a rapid review of the functional integral formalism we will use, following [\cite{BG90}, \cite{Sh94}]. We will not attempt to reproduce all technical details, since it will merely be used as an inspiration for the definition of the hierarchical model in section~\ref{sechierk}.
|
||||
|
||||
\indent We introduce an extra dimension, called {\it imaginary time}, and define new creation and annihilation operators:
|
||||
|
||||
@ -168,10 +168,11 @@ g_{\varphi,\alpha}(t-t'):=&
|
||||
\end{array}\right..
|
||||
\end{array}\label{eqprop}\end{equation}
|
||||
|
||||
\indent By a direct computation [\cite{BG90b},~(2.7)], we find that in the limit $L,\beta\to\infty$, if $e(k):=(1-\cos k) -1\equiv -\cos k$ (assuming the Fermi level is set to $1$, {\it i.e.}\ the Fermi momentum to $\pm\frac\pi2$) then
|
||||
\indent By a direct computation [\cite{BG90},~(2.7)], we find that in the limit $L,\beta\to\infty$, if $e(k):=(1-\cos k) -1\equiv -\cos k$ (assuming the Fermi level is set to $1$, {\it i.e.}\ the Fermi momentum to $\pm\frac\pi2$) then
|
||||
\begin{equation}
|
||||
g_{\psi,\alpha}(\xi,\tau) =\int\frac{dk_0 dk}{(2\pi)^2}\,{e^{-ik_0(\tau+0^-)-ik\xi} \over-ik_0+e(k) },\quad
|
||||
g_{\varphi,\alpha}(\tau) = \int\frac{dk_0}{2\pi}\,{e^{-ik_0(\tau+0^-)} \over-ik_0}.\label{eqpropk}\end{equation}
|
||||
g_{\psi,\alpha}(\xi,\tau) =\int\frac{dk_0 dk}{(2\pi)^2}\,\frac{e^{-ik_0(\tau+0^-)-ik\xi}}{-ik_0+e(k)},\quad
|
||||
g_{\varphi,\alpha}(\tau) = \int\frac{dk_0}{2\pi}\,\frac{e^{-ik_0(\tau+0^-)}}{-ik_0}.
|
||||
\label{eqpropk}\end{equation}
|
||||
If $\beta,L$ are finite, $\int\,\frac{dk_0 dk}{(2\pi)^2}$ in~(\ref{eqpropk}) has to be understood as $\frac1\beta \sum_{k_0} \frac1L \sum_k$, where $k_0$ is the ``Matsubara momentum'' $k_0= \frac\pi{\beta} +\frac{2\pi}\beta n_0$, $n_0\in\mathbb Z$, $|n_0|\le\frac12\beta$, and $k$ is the linear momentum $k=\frac{2\pi}L n$, $n\in [-L/2,L/2-1]\cap\mathbb Z$.
|
||||
\medskip
|
||||
|
||||
@ -179,7 +180,7 @@ If $\beta,L$ are finite, $\int\,\frac{dk_0 dk}{(2\pi)^2}$ in~(\ref{eqpropk}) has
|
||||
\begin{equation}\begin{array}{r@{\ }>{\displaystyle}l}
|
||||
V(\psi,\varphi)=&
|
||||
-\lambda_0 \sum_{{j\in\{1,2,3\}}\atop{\alpha_1,\alpha'_1,\alpha_2,\alpha_2'}}\int dt \,(\psi^+_{\alpha_1}(0,t)\sigma^j_{\alpha_1,\alpha'_1} \psi^-_{\alpha'_1}(0,t)) (\varphi^+_{\alpha_2}(t)\sigma^j_{\alpha_2,\alpha_2'} \varphi^-_{\alpha_2'}(t))\\
|
||||
&-h \sum_{j\in\{1,2,3\}}\bm\omega_j \int dt\sum_{(\alpha,\alpha')\in\{\uparrow,\downarrow\}^2}\varphi^+_{\alpha}(t)\sigma^j_{\alpha,\alpha'} \varphi^-_{\alpha'}(t)
|
||||
&-h \sum_{j\in\{1,2,3\}}\bm\omega_j \int dt\sum_{(\alpha,\alpha')\in\{\uparrow,\downarrow\}^2}\varphi^+_{\alpha}(t)\sigma^j_{\alpha,\alpha'} \varphi^-_{\alpha'}(t).
|
||||
\end{array}\label{eqpotgrass}\end{equation}
|
||||
Notice that $V$ only depends on the fields located at the site $x=0$. This is important because it will allow us to reduce the problem to a 1-dimensional one [\cite{AY69}, \cite{AYH70}].
|
||||
|
||||
@ -203,11 +204,11 @@ g_\varphi^{[\mathrm{uv}]}(\tau):=&g_\varphi(\tau)-\sum_{m=-N_\beta}^{m_0}g_\varp
|
||||
where $m_0$ is an integer of order one (see below).
|
||||
\medskip
|
||||
|
||||
{\bf Remark}: The $\omega=\pm$ label refers to the ``quasi particle'' momentum $\omega p_F$, where $p_F$ is the Fermi momentum. The usual approach [\cite{BG90b}, \cite{Sh94}] is to decompose the field $\psi$ into quasi-particle fields:
|
||||
{\bf Remark}: The $\omega=\pm$ label refers to the ``quasi particle'' momentum $\omega p_F$, where $p_F$ is the Fermi momentum. The usual approach [\cite{BG90}, \cite{Sh94}] is to decompose the field $\psi$ into quasi-particle fields:
|
||||
\begin{equation}
|
||||
\psi^\pm_{\alpha}(0,t)=\sum_{\omega=\pm} \psi^\pm_{\omega,\alpha}(0,t),
|
||||
\label{eqquasipartdcmp} \end{equation}
|
||||
indeed, the introduction of quasi particles [\cite{BG90b}, \cite{Sh94}], is key to separating the oscillations on the Fermi scale $p_F^{-1}$ from the propagators thus allowing a ``naive'' renormalization group analysis of fermionic models in which multiscale phenomena are important (as in the theory of the ground state of interacting fermions [\cite{BG90b}, \cite{BGe94}], or as in the Kondo model). In this case, however, since the fields are evaluated at $x=0$, such oscillations play no role, so we will not decompose the field.
|
||||
indeed, the introduction of quasi particles [\cite{BG90}, \cite{Sh94}], is key to separating the oscillations on the Fermi scale $p_F^{-1}$ from the propagators thus allowing a ``naive'' renormalization group analysis of fermionic models in which multiscale phenomena are important (as in the theory of the ground state of interacting fermions [\cite{BG90}, \cite{BGe94}], or as in the Kondo model). In this case, however, since the fields are evaluated at $x=0$, such oscillations play no role, so we will not decompose the field.
|
||||
\medskip
|
||||
|
||||
\indent We set $m_0$ to be small enough ({\it i.e.}\ negative enough) so that $2^{m_0}p_F\le1$ and introduce a first {\it approximation}: we neglect $g_{\psi}^{[\mathrm{uv}]}$ and $g_\varphi^{[\mathrm{uv}]}$, and replace $e(k)$ in~(\ref{eqpropk}) by its first order Taylor expansion around $\omega p_F$, that is by $\omega k$. As long as $m_0$ is small enough, for all $m\le m_0$ the supports {of the two functions $\chi(2^{-2m}((k-\omega\pi/2)^2+k_0^2))$, $\omega=\pm1$}, which appear in the first of~(\ref{eqpropdcmp}) do not intersect, and approximating $e(k)$ by $\omega k$ is reasonable. We shall hereafter fix $m_0=0$ thus avoiding the introduction of a further length scale and keeping only two scales when no impurity is present.
|
||||
@ -236,10 +237,10 @@ with $\psi_{\alpha}^{[m]}(0,t)$ and $\varphi_\alpha^{[m]}(t)$ being, respectivel
|
||||
\int P_0(d\psi^{[m]})\psi_{\alpha}^{[m]-}(0,t)\psi_{\alpha'}^{[m]+}(0,t')
|
||||
=:&\delta_{\alpha,\alpha'}g_{\psi}^{[0]}(0,2^{m}(t-t'))\\
|
||||
\int P(d\varphi^{[m]})\varphi_{\alpha}^{[m]-}(t)\varphi_{\alpha'}^{[m]+}(t')
|
||||
=:&\delta_{\alpha,\alpha'}g_{\varphi}^{[0]}(2^{m}(t-t'))
|
||||
=:&\delta_{\alpha,\alpha'}g_{\varphi}^{[0]}(2^{m}(t-t')).
|
||||
\end{array}\label{eqfieldprop}\end{equation}
|
||||
|
||||
{\bf Remark:} by \label.(\ref{eqpropscale}) this is equivalent to stating that the propagators associated with the $\psi^{[m]},\varphi^{[m]}$ fields are $2^{-m}g^{[m]}$ and $g^{[m]}$, respectively.
|
||||
{\bf Remark:} by (\ref{eqpropscale}) this is equivalent to stating that the propagators associated with the $\psi^{[m]},\varphi^{[m]}$ fields are $2^{-m}g^{[m]}$ and $g^{[m]}$, respectively.
|
||||
\medskip
|
||||
|
||||
\indent Finally, we define
|
||||
@ -331,10 +332,10 @@ V(\psi,\varphi)=&
|
||||
in which $\psi^\pm_\alpha(0,t)$ and $\varphi^\pm_\alpha(t)$ are now defined in~(\ref{eqfieldhier}).
|
||||
\medskip
|
||||
|
||||
\indent Note that since the model defined above only involves fields localized at the impurity site, that is at $x=0$, we only have to deal with $1$-dimensional fermionic fields. {\it This does not mean} that the lattice supporting the electrons plays no role: on the contrary it will show up, and in an essential way, because the ``dimension'' of the electron field will be different from that of the impurity, as made already manifest by the factor $2^m\mathop{\longrightarrow}_{m\to-\infty}0$ in~(\ref{eqprophiercmp}).
|
||||
\indent Note that since the model defined above only involves fields localized at the impurity site, that is at $x=0$, we only have to deal with $1$-dimensional fermionic fields. {\it This does not mean} that the lattice supporting the electrons plays no role: on the contrary it will show up, and in an essential way, because the ``dimension'' of the electron field will be different from that of the impurity, as made already manifest by the factor $2^m\displaystyle\mathop{\longrightarrow}_{m\to-\infty}0$ in~(\ref{eqprophiercmp}).
|
||||
\medskip
|
||||
|
||||
\indent Clearly several properties of the non-hierarchical propagators,~(\ref{eqpropapprox}), are not reflected in~(\ref{eqprophiercmp}). However it will be seen that even so simplified the model exhibits a ``Kondo effect'' in the sense outlined in section~\ref{secintroduction}.
|
||||
\indent Clearly several properties of the non-hierarchical propagators,~(\ref{eqpropapprox}), are not reflected in~(\ref{eqprophiercmp}). However it will be seen that even so simplified the model exhibits a ``Kondo effect'' in the sense outlined in section~\ref{secintro}.
|
||||
|
||||
\section{Beta function for the partition function.} \label{secbetapart}
|
||||
\indent In this section, we show how to compute the partition function $Z$ of the hierarchical Kondo model (see~(\ref{eqhieravg})), and introduce the concept of a {\it renormalization group flow} in this context. We will first restrict the discussion to the $h=0$ case, in which $V=V_0$; the case $h\ne0$ is discussed in section~\ref{secbetakondo}.
|
||||
@ -351,8 +352,9 @@ and for $\Delta\in\mathcal Q_{-m},\,m<-N_\beta$,
|
||||
|
||||
\indent Notice that the fields $\psi_{\alpha}^{[\le m-1]\pm}(\Delta)$ and $\varphi_{\alpha}^{[\le m-1]\pm}(\Delta)$ play (temporarily) the role of {\it external fields} as they do not depend on the index $\eta$, and are therefore independent of the half box in which the {\it internal fields} $\psi_{\alpha}^{[\le m]\pm}(\Delta_\eta)$ and $\varphi_{\alpha}^{[\le m]\pm}(\Delta_\eta)$ are defined. In addition, by iterating~(\ref{eqhierfieldind}), we can rewrite~(\ref{eqfieldhier}) as
|
||||
\begin{equation}
|
||||
\psi_\alpha^\pm(t)\equiv\psi_{\alpha}^{[\le0]\pm}(\Delta^{[1]}(t)),\quad \varphi_\alpha^\pm(t)\equiv\varphi_\alpha^{[\le0]\pm}(\Delta^{[1]}(t))
|
||||
\psi_\alpha^\pm(t)\equiv\psi_{\alpha}^{[\le0]\pm}(\Delta^{[1]}(t)),\quad \varphi_\alpha^\pm(t)\equiv\varphi_\alpha^{[\le0]\pm}(\Delta^{[1]}(t)).
|
||||
\label{eqhierfieldindinit}\end{equation}
|
||||
|
||||
\indent We then define, for $m\in\{0,-1,\cdots,-N_\beta\}$,
|
||||
\begin{equation}\begin{array}{r@{\ }>{\displaystyle}l}
|
||||
\beta c^{[m]}+V^{[m-1]}(\psi^{[\le m-1]},\varphi^{[\le m-1]})
|
||||
@ -449,7 +451,7 @@ C^{[m]}=&1+ 3\ell_0^2+9\ell_2^2\\[0.3cm]
|
||||
\ell_2^{[m-1]}=& \frac1{C^{[m]}}\Big(2\ell_2+ \ell_0^2\Big)\\
|
||||
\end{array}\label{eqbetareduced}\end{equation}
|
||||
which can be shown to have $4$ fixed points:
|
||||
\begin{enumerate}[\ \ (1)\ \ ]
|
||||
\begin{enumerate}
|
||||
\item$f_0=(0,0)$, unstable in the $\ell_2$ direction and marginal in the $\ell_0$ direction (repelling if $\ell_0<0, \ell_2=0$), this is the {\it trivial fixed point};
|
||||
\item $f_+=(0,\frac13)$, stable in the $\ell_2$ direction and marginal in the $\ell_0$ direction (repelling if $\ell_0<0, \ell_2=\frac13$), which we call the {\it ferromagnetic fixed-point} (because the flow converges to $f_+$ in the ferromagnetic case, see below);
|
||||
\item $f_-=(0,-\frac13)$ stable in both directions;
|
||||
@ -466,7 +468,7 @@ $f_+$ (see appendix~\ref{appfixed}-{\bf\ref{ptfixedreduced}}).
|
||||
|
||||
\indent We introduce a magnetic field of amplitude $h\in R$ and direction $\bm\omega\in\mathcal S_2$ (in which $\mathcal S_2$ denotes the $2$-sphere) acting on the impurity. As a consequence, the potential $V$ becomes
|
||||
\begin{equation}
|
||||
V(\psi,\varphi)=V_0(\psi,\varphi)
|
||||
V_h(\psi,\varphi)=V_0(\psi,\varphi)
|
||||
-h\sum_{\displaystyle\mathop{\scriptstyle(\alpha,\alpha')\in\{\uparrow,\downarrow\}^2}_{j\in\{1,2,3\}}} \int dt(\varphi_{\alpha}^+(t)\sigma_{\alpha,\alpha'}^j\varphi_{\alpha'}^-(t))\, \omega_j
|
||||
\label{eqpoth}\end{equation}
|
||||
|
||||
@ -490,8 +492,8 @@ where $O_{n,\eta}^{[\le m]}(\Delta)$ for $n\in\{0,1,2,3\}$ was defined in~(\ref{
|
||||
\begin{equation}\begin{array}{>{\displaystyle}c}
|
||||
O^{[\le m]}_{4,\eta}(\Delta):=\frac12\mathbf A^{[\le m]}_\eta(\Delta)\cdot\bm\omega,\quad
|
||||
O^{[\le m]}_{5,\eta}(\Delta):=\frac12\mathbf B^{[\le m]}_\eta(\Delta)\cdot\bm\omega,\\[0.5cm]
|
||||
O^{[\le m]}_{6,\eta}(\Delta):=\frac12\Big(\mathbf A^{[\le m]}_\eta(\Delta) \cdot\bm\omega\Big)\Big(\mathbf B^{[\le m]}_\eta(\Delta)\cdot\bm\omega\Big)\\[0.5cm]
|
||||
O^{[\le m]}_{7,\eta}(\Delta):= \frac12\Big(\mathbf A^{[\le m]}_\eta(\Delta) \cdot\mathbf A^{[\le m]}_\eta(\Delta)\Big)\Big(\mathbf B^{[\le m]}_\eta(\Delta) \cdot\bm\omega\Big)\\[0.5cm]
|
||||
O^{[\le m]}_{6,\eta}(\Delta):=\frac12\Big(\mathbf A^{[\le m]}_\eta(\Delta) \cdot\bm\omega\Big)\Big(\mathbf B^{[\le m]}_\eta(\Delta)\cdot\bm\omega\Big),\\[0.5cm]
|
||||
O^{[\le m]}_{7,\eta}(\Delta):= \frac12\Big(\mathbf A^{[\le m]}_\eta(\Delta) \cdot\mathbf A^{[\le m]}_\eta(\Delta)\Big)\Big(\mathbf B^{[\le m]}_\eta(\Delta) \cdot\bm\omega\Big),\\[0.5cm]
|
||||
O^{[\le m]}_{8,\eta}(\Delta):=\frac12\Big(\mathbf B^{[\le m]}_\eta(\Delta) \cdot\mathbf B^{[\le m]}_\eta(\Delta)\Big)\Big(\mathbf A^{[\le m]}_\eta(\Delta) \cdot\bm\omega\Big).
|
||||
\end{array}\label{eqOrcch}\end{equation}
|
||||
|
||||
@ -567,7 +569,7 @@ n_2(\lambda_0)=c_2|\log_2|\lambda_0||+O(1),\quad c_2\approx2.
|
||||
|
||||
\begin{figure}
|
||||
\hfil\includegraphics[width=280pt]{Figs/susc_beta_plot.pdf}\par\penalty10000
|
||||
\caption{plot of $\frac{\bm\ell}{\bm\ell^*}$ as a function of the iteration step $N_\beta$ for $\lambda_0=-0.01$ and $h=2^{-40}$. Here $\ell_0^*$ through $\ell_3^*$ are the components of the non-trivial fixed point $\bm\ell^*$ and $\ell_4^*$ through $\ell_8^*$ are the values reached by $\ell_4$ through $\ell_8$ of largest absolute value. The flow behaves similarly to that at $h=0$ until $\ell_4$ through $\ell_8$ become large, at which point the couplings decay to 0, except for $\ell_5$ and $\ell_2$.}
|
||||
\caption{plot of $\frac{\bm\ell}{\bm\ell^*}$ as a function of the iteration step $N_\beta$ for $\lambda_0=-0.125$ and $h=2^{-40}$. Here $\ell_0^*$ through $\ell_3^*$ are the components of the non-trivial fixed point $\bm\ell^*$ and $\ell_4^*$ through $\ell_8^*$ are the values reached by $\ell_4$ through $\ell_8$ of largest absolute value. The flow behaves similarly to that at $h=0$ until $\ell_4$ through $\ell_8$ become large, at which point the couplings decay to 0, except for $\ell_5$ and $\ell_2$.}
|
||||
\label{figbetasuscplot}
|
||||
\end{figure}
|
||||
|
||||
@ -601,7 +603,7 @@ r_j(h)=c_r\log_2 h^{-1}+O(1),\quad c_r\approx2.6.
|
||||
\section{Concluding remarks} \label{secconc}
|
||||
\point The hierarchical Kondo model defined in section~\ref{sechierk} is a well defined statistical mechanics model, for which the partition function and correlation functions are unambiguously defined and finite as long as $\beta$ is finite. In addition, since the magnetic susceptibility of the impurity can be rewritten as a correlation function:
|
||||
\begin{equation}
|
||||
\chi(\beta,0)=\int_0^\beta dt\, \left<\,(\varphi^+(0)\bm\sigma\varphi^-(0))(\varphi^+(t)\bm\sigma\varphi^-(t))\,\right>_{h=0},
|
||||
\chi(\beta,0)=\int_0^\beta dt\, \left<\,((\varphi^+(0)\bm\sigma\varphi^-(0))\cdot\bm\omega)((\varphi^+(t)\bm\sigma\varphi^-(t))\cdot\bm\omega)\,\right>_{h=0},
|
||||
\label{eqsuscavg}\end{equation}
|
||||
$\chi(\beta,0)$ is a thermodynamical quantity of the model.
|
||||
\bigskip
|
||||
@ -856,12 +858,12 @@ is obtained. Does it exhibit a Kondo effect?
|
||||
|
||||
|
||||
{\bf Remarks:}\listparpenalty
|
||||
\begin{enumerate}[\ \ (1)\ \ ]
|
||||
\item Finally an analysis essentially identical to the above can be performed to study the model in~(\ref{eqhamkondo}) {\it without impurity} (and with or without spin) to check that the magnetic susceptibility to a field $h$ acting only at a single site is finite: the result is the same as that of the XY model above: the single site susceptibility is finite and, up to a factor $2$, given by the same formula $\chi(\beta,0)=\frac{4\sinh \beta}{1+\cosh\beta}$.
|
||||
\begin{enumerate}
|
||||
\item\label{rkfinitesusc} Finally an analysis essentially identical to the above can be performed to study the model in~(\ref{eqhamkondo}) {\it without impurity} (and with or without spin) to check that the magnetic susceptibility to a field $h$ acting only at a single site is finite: the result is the same as that of the XY model above: the single site susceptibility is finite and, up to a factor $2$, given by the same formula $\chi(\beta,0)=\frac{4\sinh \beta}{1+\cosh\beta}$.
|
||||
\item The latter result makes clear both the essential roles for the Kondo effect of the spin and of the noncommutativity of the impurity spin components.
|
||||
\end{enumerate}\unlistparpenalty
|
||||
|
||||
\section{Some details on appendix \expandonce\appXY} \label{appXYcomp}
|
||||
\section{Some details on appendix \expandonce{\ref{appXY}}} \label{appXYcomp}
|
||||
\indent The definition of $H_h$ has to be supplemented by a boundary condition to give a meaning to $\bm\sigma_{L+1}$. If $\sigma^\pm_n=(\sigma^x\pm i\sigma^y_n)/2$ define $\mathcal N_{<n}$ as $\sum_{i<n}\sigma^+_i\sigma^-_i=\sum_{i<n}\mathcal N_i$ and $\mathcal N=\mathcal N_{\le L}$. Then set as boundary condition
|
||||
\begin{equation}
|
||||
\sigma_{L+1}^\pm:= -(-1)^\mathcal N\sigma^\pm_{1}
|
||||
|
2
README
2
README
@ -13,7 +13,7 @@ In order to typeset the LaTeX document, run
|
||||
bibliography.BBlog.tex :
|
||||
list of references.
|
||||
|
||||
bibliography.sty :
|
||||
BBlog.sty :
|
||||
bibliography related commands.
|
||||
|
||||
Figs :
|
||||
|
@ -1,80 +1,20 @@
|
||||
\hrefanchor
|
||||
\outdef{citeABe71}{ABe71}
|
||||
\hbox{\parbox[t]{\rw}{[\cite{ABe71}]}\parbox[t]{\colw}{D.B. Abraham, E. Barouch, G. Gallavotti, A. Martin-L\"of - {\it Dynamics of a local perturbation in the XY model - I.~Approach to equilibrium}, Studies in Applied Mathematics, Vol.~50, p.~121-131, 1971.}}\par
|
||||
\bigskip
|
||||
\hrefanchor
|
||||
\outdef{citeAn61}{An61}
|
||||
\hbox{\parbox[t]{\rw}{[\cite{An61}]}\parbox[t]{\colw}{P.W. Anderson - {\it Localized magnetic states in metals}, Physical Review, Vol.~124, n.~1, p.~41-53, 1961.}}\par
|
||||
\bigskip
|
||||
\hrefanchor
|
||||
\outdef{citeAY69}{AY69}
|
||||
\hbox{\parbox[t]{\rw}{[\cite{AY69}]}\parbox[t]{\colw}{P.W. Anderson, G. Yuval - {\it Exact results in the Kondo problem: equivalence to a classical one-dimensional Coulomb gas}, Physical Review Letters, Vol.~23, n.~2, p.~89-92, 1969.}}\par
|
||||
\bigskip
|
||||
\hrefanchor
|
||||
\outdef{citeAn70}{An70}
|
||||
\hbox{\parbox[t]{\rw}{[\cite{An70}]}\parbox[t]{\colw}{P.W. Anderson - {\it A poor man's derivation of scaling laws for the Kondo problem}, Journal of Physics C: Solid State Physics, Vol.~3, p.~2436, 1970.}}\par
|
||||
\bigskip
|
||||
\hrefanchor
|
||||
\outdef{citeAYH70}{AYH70}
|
||||
\hbox{\parbox[t]{\rw}{[\cite{AYH70}]}\parbox[t]{\colw}{P.W. Anderson, G. Yuval, D.R. Hamann - {\it Exact results in the Kondo problem - II. Scaling theory, qualitatively correct solution, and some new results on one-dimensional classical statistical mechanics}, Physical Review B, Vol.~1, n.~11, p.~4464-4473, 1970.}}\par
|
||||
\bigskip
|
||||
\hrefanchor
|
||||
\outdef{citeAn80}{An80}
|
||||
\hbox{\parbox[t]{\rw}{[\cite{An80}]}\parbox[t]{\colw}{N. Andrei - {\it Diagonalization of the Kondo Hamiltonian}, Physical Review Letters, Vol.~45, n.~5, 1980.}}\par
|
||||
\bigskip
|
||||
\hrefanchor
|
||||
\outdef{citeAFL83}{AFL83}
|
||||
\hbox{\parbox[t]{\rw}{[\cite{AFL83}]}\parbox[t]{\colw}{N. Andrei, K. Furuya, J.H. Lowenstein - {\it Solution of the Kondo problem}, Reviews of Modern Physics, Vol.~55, n.~2, p.~331-402, 1983.}}\par
|
||||
\bigskip
|
||||
\hrefanchor
|
||||
\outdef{citeBG90b}{BG90}
|
||||
\hbox{\parbox[t]{\rw}{[\cite{BG90b}]}\parbox[t]{\colw}{G. Benfatto, G. Gallavotti - {\it Perturbation theory of the Fermi surface in a quantum Liquid - a general quasiparticle formalism and one-dimensional systems}, Journal of Statistical Physics, Vol.~59, n.~2-3, p.~541-664, 1990.}}\par
|
||||
\bigskip
|
||||
\hrefanchor
|
||||
\outdef{citeBGe94}{BGe94}
|
||||
\hbox{\parbox[t]{\rw}{[\cite{BGe94}]}\parbox[t]{\colw}{G. Benfatto, G. Gallavotti, A.Procacci, B. Scoppola - {\it Beta function and Schwinger functions for a many Fermions system in one dimension - Anomaly of the Fermi surface}, Communications in Mathematical Physics, Vol.~160, p.~93-171, 1994.}}\par
|
||||
\bigskip
|
||||
\hrefanchor
|
||||
\outdef{citeDo91}{Do91}
|
||||
\hbox{\parbox[t]{\rw}{[\cite{Do91}]}\parbox[t]{\colw}{T.C. Dorlas - {\it Renormalization group analysis of a simple hierarchical fermion model}, Communications in Mathematical Physics, Vol.~136, p.~169-194, 1991.}}\par
|
||||
\bigskip
|
||||
\hrefanchor
|
||||
\outdef{citeDy69}{Dy69}
|
||||
\hbox{\parbox[t]{\rw}{[\cite{Dy69}]}\parbox[t]{\colw}{F.J. Dyson - {\it Existence of a phase-transition in a one-dimensional Ising ferromagnet}, Communications in Mathematical Physics, Vol.~12, p.~91-107, 1969.}}\par
|
||||
\bigskip
|
||||
\hrefanchor
|
||||
\outdef{citeKi76}{Ki76}
|
||||
\hbox{\parbox[t]{\rw}{[\cite{Ki76}]}\parbox[t]{\colw}{C. Kittel - {\it Introduction to solid state physics}, Wiley\&Sons, 1976.}}\par
|
||||
\bigskip
|
||||
\hrefanchor
|
||||
\outdef{citeKo64}{Ko64}
|
||||
\hbox{\parbox[t]{\rw}{[\cite{Ko64}]}\parbox[t]{\colw}{J. Kondo - {\it Resistance minimum in dilute magnetic alloys}, Progress of Theoretical Physics, Vol.~32, n.~1, 1964.}}\par
|
||||
\bigskip
|
||||
\hrefanchor
|
||||
\outdef{citeKo05}{Ko05}
|
||||
\hbox{\parbox[t]{\rw}{[\cite{Ko05}]}\parbox[t]{\colw}{J. Kondo - {\it Sticking to my bush}, Journal of the Physical Society of Japan, Vol.~74, n.~1, p.~1-3, 2005.}}\par
|
||||
\bigskip
|
||||
\hrefanchor
|
||||
\outdef{citeNo74}{No74}
|
||||
\hbox{\parbox[t]{\rw}{[\cite{No74}]}\parbox[t]{\colw}{P. Nozi\`eres - {\it A ``Fermi-liquid'' description of the Kondo problem at low temperatures}, Journal of Low Temperature Physics, Vol.~17, n.~1-2, p.~31-42, 1974.}}\par
|
||||
\bigskip
|
||||
\hrefanchor
|
||||
\outdef{citeRu99b}{Ru99}
|
||||
\hbox{\parbox[t]{\rw}{[\cite{Ru99b}]}\parbox[t]{\colw}{D. Ruelle - {\it Statistical mechanics: rigorous results}, Imperial College Press, World Scientific, first edition: Benjamin, 1969, 1999.}}\par
|
||||
\bigskip
|
||||
\hrefanchor
|
||||
\outdef{citeSh94}{Sh94}
|
||||
\hbox{\parbox[t]{\rw}{[\cite{Sh94}]}\parbox[t]{\colw}{R. Shankar - {\it Renormalization group approach to interacting fermions}, Reviews of Modern Physics, Vol.~66, n.~1, p.~129-192, 1994.}}\par
|
||||
\bigskip
|
||||
\hrefanchor
|
||||
\outdef{citeWi65}{Wi65}
|
||||
\hbox{\parbox[t]{\rw}{[\cite{Wi65}]}\parbox[t]{\colw}{K.G. Wilson - {\it Model Hamiltonians for local quantum field theory}, Physical Review, Vol.~140, n.~2B, p.~445-457, 1965.}}\par
|
||||
\bigskip
|
||||
\hrefanchor
|
||||
\outdef{citeWi70}{Wi70}
|
||||
\hbox{\parbox[t]{\rw}{[\cite{Wi70}]}\parbox[t]{\colw}{K.G. Wilson - {\it Model of coupling-constant renormalization}, Physical Review D, Vol.~2, n.~8, p.~1438-1472, 1970.}}\par
|
||||
\bigskip
|
||||
\hrefanchor
|
||||
\outdef{citeWi75}{Wi75}
|
||||
\hbox{\parbox[t]{\rw}{[\cite{Wi75}]}\parbox[t]{\colw}{K.G. Wilson - {\it The renormalization group: Critical phenomena and the Kondo problem}, Reviews of Modern Physics, Vol.~47, n.~4, 1975.}}\par
|
||||
\bigskip
|
||||
\BBlogentry{ABe71}{ABe71}{D.B. Abraham, E. Barouch, G. Gallavotti, A. Martin-L\"of - {\it Dynamics of a local perturbation in the XY model - I.~Approach to equilibrium}, Studies in Applied Mathematics, Vol.~50, p.~121-131, 1971, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1002/sapm1971502121}{10.1002/sapm1971502121}}.}
|
||||
\BBlogentry{An61}{An61}{P.W. Anderson - {\it Localized magnetic states in metals}, Physical Review, Vol.~124, n.~1, p.~41-53, 1961, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1103/PhysRev.124.41}{10.1103/PhysRev.124.41}}.}
|
||||
\BBlogentry{AY69}{AY69}{P.W. Anderson, G. Yuval - {\it Exact results in the Kondo problem: equivalence to a classical one-dimensional Coulomb gas}, Physical Review Letters, Vol.~23, n.~2, p.~89-92, 1969, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1103/PhysRevLett.23.89}{10.1103/PhysRevLett.23.89}}.}
|
||||
\BBlogentry{An70}{An70}{P.W. Anderson - {\it A poor man's derivation of scaling laws for the Kondo problem}, Journal of Physics C: Solid State Physics, Vol.~3, p.~2436, 1970, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1088/0022-3719/3/12/008}{10.1088/0022-3719/3/12/008}}.}
|
||||
\BBlogentry{AYH70}{AYH70}{P.W. Anderson, G. Yuval, D.R. Hamann - {\it Exact results in the Kondo problem - II. Scaling theory, qualitatively correct solution, and some new results on one-dimensional classical statistical mechanics}, Physical Review B, Vol.~1, n.~11, p.~4464-4473, 1970, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1103/PhysRevB.1.4464}{10.1103/PhysRevB.1.4464}}.}
|
||||
\BBlogentry{An80}{An80}{N. Andrei - {\it Diagonalization of the Kondo Hamiltonian}, Physical Review Letters, Vol.~45, n.~5, 1980, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1103/PhysRevLett.45.379}{10.1103/PhysRevLett.45.379}}.}
|
||||
\BBlogentry{AFL83}{AFL83}{N. Andrei, K. Furuya, J.H. Lowenstein - {\it Solution of the Kondo problem}, Reviews of Modern Physics, Vol.~55, n.~2, p.~331-402, 1983, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1103/RevModPhys.55.331}{10.1103/RevModPhys.55.331}}.}
|
||||
\BBlogentry{BG90}{BG90}{G. Benfatto, G. Gallavotti - {\it Perturbation theory of the Fermi surface in a quantum liquid - a general quasiparticle formalism and one-dimensional systems}, Journal of Statistical Physics, Vol.~59, n.~3-4, p.~541-664, 1990, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1007/BF01025844}{10.1007/BF01025844}}.}
|
||||
\BBlogentry{BGe94}{BGe94}{G. Benfatto, G. Gallavotti, A.Procacci, B. Scoppola - {\it Beta function and Schwinger functions for a many Fermions system in one dimension - Anomaly of the Fermi surface}, Communications in Mathematical Physics, Vol.~160, p.~93-171, 1994, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1007/BF02099791}{10.1007/BF02099791}}.}
|
||||
\BBlogentry{Do91}{Do91}{T.C. Dorlas - {\it Renormalization group analysis of a simple hierarchical fermion model}, Communications in Mathematical Physics, Vol.~136, p.~169-194, 1991, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1007/BF02096796}{10.1007/BF02096796}}.}
|
||||
\BBlogentry{Dy69}{Dy69}{F.J. Dyson - {\it Existence of a phase-transition in a one-dimensional Ising ferromagnet}, Communications in Mathematical Physics, Vol.~12, p.~91-107, 1969, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1007/BF01645907}{10.1007/BF01645907}}.}
|
||||
\BBlogentry{Ki76}{Ki76}{C. Kittel - {\it Introduction to solid state physics}, Wiley\&Sons, 1976.}
|
||||
\BBlogentry{Ko64}{Ko64}{J. Kondo - {\it Resistance minimum in dilute magnetic alloys}, Progress of Theoretical Physics, Vol.~32, n.~1, 1964, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1143/PTP.32.37}{10.1143/PTP.32.37}}.}
|
||||
\BBlogentry{Ko05}{Ko05}{J. Kondo - {\it Sticking to my bush}, Journal of the Physical Society of Japan, Vol.~74, n.~1, p.~1-3, 2005, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1143/JPSJ.74.1}{10.1143/JPSJ.74.1}}.}
|
||||
\BBlogentry{No74}{No74}{P. Nozi\`eres - {\it A ``Fermi-liquid'' description of the Kondo problem at low temperatures}, Journal of Low Temperature Physics, Vol.~17, n.~1-2, p.~31-42, 1974, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1007/BF00654541}{10.1007/BF00654541}}.}
|
||||
\BBlogentry{Ru99b}{Ru99}{D. Ruelle - {\it Statistical mechanics: rigorous results}, Imperial College Press, World Scientific, first edition: Benjamin, 1969, 1999.}
|
||||
\BBlogentry{Sh94}{Sh94}{R. Shankar - {\it Renormalization group approach to interacting fermions}, Reviews of Modern Physics, Vol.~66, n.~1, p.~129-192, 1994, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1103/RevModPhys.66.129}{10.1103/RevModPhys.66.129}}.}
|
||||
\BBlogentry{Wi65}{Wi65}{K.G. Wilson - {\it Model Hamiltonians for Local Quantum Field Theory}, Physical Review, Vol.~140, n.~2B, p.~B445-B457, 1965, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1103/PhysRev.140.B445}{10.1103/PhysRev.140.B445}}.}
|
||||
\BBlogentry{Wi70}{Wi70}{K.G. Wilson - {\it Model of coupling-constant renormalization}, Physical Review D, Vol.~2, n.~8, p.~1438-1472, 1970, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1103/PhysRevD.2.1438}{10.1103/PhysRevD.2.1438}}.}
|
||||
\BBlogentry{Wi75}{Wi75}{K.G. Wilson - {\it The renormalization group: Critical phenomena and the Kondo problem}, Reviews of Modern Physics, Vol.~47, n.~4, 1975, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1103/RevModPhys.47.773}{10.1103/RevModPhys.47.773}}.}
|
||||
|
183
iansecs.sty
183
iansecs.sty
@ -34,6 +34,22 @@
|
||||
%% style for the equation number
|
||||
\def\eqnumstyle{}
|
||||
|
||||
%% correct vertical alignment at the end of a document
|
||||
\AtEndDocument{
|
||||
\vfill
|
||||
\eject
|
||||
}
|
||||
|
||||
%% prevent page breaks
|
||||
\newcount\prevpostdisplaypenalty
|
||||
\def\nopagebreakaftereq{
|
||||
\prevpostdisplaypenalty=\postdisplaypenalty
|
||||
\postdisplaypenalty=10000
|
||||
}
|
||||
\def\restorepagebreakaftereq{
|
||||
\postdisplaypenalty=\prevpostdisplaypenalty
|
||||
}
|
||||
|
||||
%% hyperlinks
|
||||
% hyperlinkcounter
|
||||
\newcounter{lncount}
|
||||
@ -58,14 +74,24 @@
|
||||
%% define a label for the latest tag
|
||||
%% label defines a command containing the string stored in \tag
|
||||
\AtBeginDocument{
|
||||
\def\label#1{\expandafter\outdef{#1}{\safe\tag}}
|
||||
\def\label#1{\expandafter\outdef{label@#1}{\safe\tag}}
|
||||
|
||||
%% make a custom link at any given location in the document
|
||||
\def\makelink#1#2{
|
||||
\hrefanchor
|
||||
\outdef{label@#1}{#2}
|
||||
}
|
||||
|
||||
\def\ref#1{%
|
||||
% check whether the label is defined (hyperlink runs into errors if this check is ommitted)
|
||||
\ifcsname #1@hl\endcsname%
|
||||
\hyperlink{ln.\csname #1@hl\endcsname}{\safe\csname #1\endcsname}%
|
||||
\ifcsname label@#1@hl\endcsname%
|
||||
\hyperlink{ln.\csname label@#1@hl\endcsname}{{\color{blue}\safe\csname label@#1\endcsname}}%
|
||||
\else%
|
||||
\safe\csname #1\endcsname%
|
||||
\ifcsname label@#1\endcsname%
|
||||
{\color{blue}\csname #1\endcsname}%
|
||||
\else%
|
||||
{\bf ??}%
|
||||
\fi%
|
||||
\fi%
|
||||
}
|
||||
}
|
||||
@ -133,11 +159,9 @@
|
||||
\ifsubseqcount%
|
||||
\setcounter{seqcount}0%
|
||||
\fi%
|
||||
% space before subsection (if not first)
|
||||
\ifnum\thesubsectioncount>1%
|
||||
% space before subsection
|
||||
\subseqskip%
|
||||
\penalty-500%
|
||||
\fi%
|
||||
% hyperref anchor
|
||||
\hrefanchor
|
||||
% define tag (for \label)
|
||||
@ -161,6 +185,64 @@
|
||||
\medskip\penalty10000%
|
||||
}
|
||||
|
||||
%% itemize
|
||||
\newlength\itemizeskip
|
||||
% left margin for items
|
||||
\setlength\itemizeskip{20pt}
|
||||
% item symbol
|
||||
\def\itemizept{\textbullet}
|
||||
\newlength\itemizeseparator
|
||||
% space between the item symbol and the text
|
||||
\setlength\itemizeseparator{5pt}
|
||||
% penalty preceding an itemize
|
||||
\def\itemizepenalty{0}
|
||||
|
||||
\newlength\current@itemizeskip
|
||||
\setlength\current@itemizeskip{0pt}
|
||||
\def\itemize{
|
||||
\par\penalty\itemizepenalty\medskip\penalty\itemizepenalty
|
||||
\addtolength\current@itemizeskip{\itemizeskip}
|
||||
\leftskip\current@itemizeskip
|
||||
}
|
||||
\def\enditemize{
|
||||
\addtolength\current@itemizeskip{-\itemizeskip}
|
||||
\par\leftskip\current@itemizeskip
|
||||
\medskip
|
||||
}
|
||||
\newlength\itempt@total
|
||||
\def\item{
|
||||
\settowidth\itempt@total{\itemizept}
|
||||
\addtolength\itempt@total{\itemizeseparator}
|
||||
\par
|
||||
\medskip
|
||||
\hskip-\itempt@total\itemizept\hskip\itemizeseparator
|
||||
}
|
||||
|
||||
%% enumerate
|
||||
\newcounter{enumerate@count}
|
||||
\def\enumerate{
|
||||
\setcounter{enumerate@count}0
|
||||
\let\olditem\item
|
||||
\let\olditemizept\itemizept
|
||||
\def\item{
|
||||
% counter
|
||||
\stepcounter{enumerate@count}
|
||||
% set header
|
||||
\def\itemizept{\theenumerate@count.}
|
||||
% hyperref anchor
|
||||
\hrefanchor
|
||||
% define tag (for \label)
|
||||
\xdef\tag{\theenumerate@count}
|
||||
\olditem
|
||||
}
|
||||
\itemize
|
||||
}
|
||||
\def\endenumerate{
|
||||
\enditemize
|
||||
\let\item\olditem
|
||||
\let\itemizept\olditemizept
|
||||
}
|
||||
|
||||
%% points
|
||||
\def\point{
|
||||
\stepcounter{pointcount}
|
||||
@ -188,6 +270,17 @@
|
||||
% define tag (for \label)
|
||||
\xdef\tag{\thepointcount-\thesubpointcount-\thesubsubpointcount}
|
||||
}
|
||||
\def\pspoint{
|
||||
\stepcounter{pointcount}
|
||||
\stepcounter{subpointcount}
|
||||
\setcounter{subsubpointcount}0
|
||||
% hyperref anchor
|
||||
\hrefanchor
|
||||
\indent\hskip.5cm{\bf \thepointcount-\thesubpointcount\ - }
|
||||
% define tag (for \label)
|
||||
\xdef\tag{\thepointcount-\thesubpointcount}
|
||||
}
|
||||
|
||||
% reset points
|
||||
\def\resetpointcounter{
|
||||
\setcounter{pointcount}{0}
|
||||
@ -224,7 +317,7 @@
|
||||
\setlength\figwidth\textwidth
|
||||
\addtolength\figwidth{-2.5cm}
|
||||
|
||||
\def\figcount#1{%
|
||||
\def\caption#1{%
|
||||
\stepcounter{figcount}%
|
||||
% hyperref anchor
|
||||
\hrefanchor%
|
||||
@ -238,7 +331,25 @@
|
||||
% define tag (for \label)
|
||||
\xdef\tag{\figformat}%
|
||||
% write
|
||||
\hfil fig \figformat: \parbox[t]{\figwidth}{\small#1}%
|
||||
\hfil fig \figformat: \parbox[t]{\figwidth}{\leavevmode\small#1}%
|
||||
\par\bigskip%
|
||||
}
|
||||
%% short caption: centered
|
||||
\def\captionshort#1{%
|
||||
\stepcounter{figcount}%
|
||||
% hyperref anchor
|
||||
\hrefanchor%
|
||||
% the number of the figure
|
||||
\edef\figformat{\thefigcount}%
|
||||
% add section number
|
||||
\ifsections%
|
||||
\let\tmp\figformat%
|
||||
\edef\figformat{\sectionprefix\thesectioncount.\tmp}%
|
||||
\fi%
|
||||
% define tag (for \label)
|
||||
\xdef\tag{\figformat}%
|
||||
% write
|
||||
\hfil fig \figformat: {\small#1}%
|
||||
\par\bigskip%
|
||||
}
|
||||
|
||||
@ -249,10 +360,48 @@
|
||||
\def\endfigure{
|
||||
\par\penalty-1000
|
||||
}
|
||||
\let\caption\figcount
|
||||
|
||||
%% delimiters
|
||||
\def\delimtitle#1{\par \leavevmode\raise.3em\hbox to\hsize{\lower0.3em\hbox{\vrule height0.3em}\hrulefill\ \lower.3em\hbox{#1}\ \hrulefill\lower0.3em\hbox{\vrule height0.3em}}\par\penalty10000}
|
||||
\def\delimtitle#1{\par%
|
||||
\leavevmode%
|
||||
\raise.3em\hbox to\hsize{%
|
||||
\lower0.3em\hbox{\vrule height0.3em}%
|
||||
\hrulefill%
|
||||
\ \lower.3em\hbox{#1}\ %
|
||||
\hrulefill%
|
||||
\lower0.3em\hbox{\vrule height0.3em}%
|
||||
}\par\penalty10000}
|
||||
|
||||
%% callable by ref
|
||||
\def\delimtitleref#1{\par%
|
||||
% hyperref anchor
|
||||
\hrefanchor%
|
||||
% define tag (for \label)
|
||||
\xdef\tag{#1}%
|
||||
\leavevmode%
|
||||
\raise.3em\hbox to\hsize{%
|
||||
\lower0.3em\hbox{\vrule height0.3em}%
|
||||
\hrulefill%
|
||||
\ \lower.3em\hbox{\bf #1}\ %
|
||||
\hrulefill%
|
||||
\lower0.3em\hbox{\vrule height0.3em}%
|
||||
}\par\penalty10000}
|
||||
|
||||
%% no title
|
||||
\def\delim{\par%
|
||||
\leavevmode\raise.3em\hbox to\hsize{%
|
||||
\lower0.3em\hbox{\vrule height0.3em}%
|
||||
\hrulefill%
|
||||
\lower0.3em\hbox{\vrule height0.3em}%
|
||||
}\par\penalty10000}
|
||||
|
||||
%% end delim
|
||||
\def\enddelim{\par\penalty10000%
|
||||
\leavevmode%
|
||||
\raise.3em\hbox to\hsize{%
|
||||
\vrule height0.3em\hrulefill\vrule height0.3em%
|
||||
}\par}
|
||||
|
||||
\def\delim{\par\leavevmode\raise.3em\hbox to\hsize{\vrule height0.3em\hrulefill\vrule height0.3em}\par\penalty10000}
|
||||
\def\enddelim{\par\penalty10000\leavevmode\raise.3em\hbox to\hsize{\vrule height0.3em\hrulefill\vrule height0.3em}\par}
|
||||
|
||||
@ -276,6 +425,10 @@
|
||||
\delimtitle{\bf #1 \formattheo}
|
||||
}
|
||||
\let\endtheo\enddelim
|
||||
%% theorem headers with name
|
||||
\def\theoname#1#2{
|
||||
\theo{#1}\hfil({\it #2})\par\penalty10000\medskip%
|
||||
}
|
||||
|
||||
%% start appendices
|
||||
\def\appendix{%
|
||||
@ -340,12 +493,12 @@
|
||||
\stepcounter{tocsectioncount}
|
||||
\setcounter{tocsubsectioncount}{0}
|
||||
% write
|
||||
\smallskip\hyperlink{ln.\csname toc@sec.\thetocsectioncount\endcsname}{{\bf \tocsectionprefix\thetocsectioncount}.\hskip5pt #1\leaderfill#2}\par
|
||||
\smallskip\hyperlink{ln.\csname toc@sec.\thetocsectioncount\endcsname}{{\bf \tocsectionprefix\thetocsectioncount}.\hskip5pt {\color{blue}#1}\leaderfill#2}\par
|
||||
}
|
||||
\def\tocsubsection #1#2#3{
|
||||
\def\tocsubsection #1#2{
|
||||
\stepcounter{tocsubsectioncount}
|
||||
% write
|
||||
{\hskip10pt\hyperlink{ln.\csname toc@subsec.\thetocsectioncount.\thetocsubsectioncount\endcsname}{{\bf \thetocsubsectioncount}.\hskip5pt {\small #1}\leaderfill#3}}\par
|
||||
{\hskip10pt\hyperlink{ln.\csname toc@subsec.\thetocsectioncount.\thetocsubsectioncount\endcsname}{{\bf \thetocsubsectioncount}.\hskip5pt {\color{blue}\small #1}\leaderfill#2}}\par
|
||||
}
|
||||
\def\tocappendices{
|
||||
\medskip
|
||||
@ -356,6 +509,6 @@
|
||||
}
|
||||
\def\tocreferences#1{
|
||||
\medskip
|
||||
{\hyperlink{ln.\csname toc@references\endcsname}{{\bf References}\leaderfill#1}}\par
|
||||
{\hyperlink{ln.\csname toc@references\endcsname}{{\color{blue}\bf References}\leaderfill#1}}\par
|
||||
\smallskip
|
||||
}
|
||||
|
13
toolbox.sty
13
toolbox.sty
@ -12,6 +12,12 @@
|
||||
}
|
||||
|
||||
|
||||
%% larger skip
|
||||
\newskip\hugeskipamount
|
||||
\hugeskipamount=24pt plus8pt minus8pt
|
||||
\def\hugeskip{\vskip\hugeskipamount}
|
||||
|
||||
|
||||
%% penalty before large blocks
|
||||
\def\preblock{
|
||||
\penalty-500
|
||||
@ -28,8 +34,13 @@
|
||||
\@beginparpenalty=\prevparpenalty
|
||||
}
|
||||
|
||||
%% stack relations in subscript or superscript
|
||||
\def\mAthop#1{\displaystyle\mathop{\scriptstyle #1}}
|
||||
|
||||
%% array spanning the entire line
|
||||
\def\largearray{\begin{array}{@{}>{\displaystyle}l@{}}\hphantom{\hspace{\textwidth}}\\[-.5cm]}
|
||||
\newlength\largearray@width
|
||||
\setlength\largearray@width\textwidth
|
||||
\addtolength\largearray@width{-10pt}
|
||||
\def\largearray{\begin{array}{@{}>{\displaystyle}l@{}}\hphantom{\hspace{\largearray@width}}\\[-.5cm]}
|
||||
\def\endlargearray{\end{array}}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user