Update to v1.1

Wrong value for \lambda_0 in the caption of fig.6.4

Missing \omega in (7.1)

Typos and misformats

Update style files, add DOIs to the bibliography
This commit is contained in:
Ian Jauslin 2015-10-26 13:02:24 +00:00
parent 4461f4aa73
commit ffa924ccdd
6 changed files with 242 additions and 130 deletions

View File

@ -1,19 +1,17 @@
%% %%
%% bibliography related commands %% BBlog bibliography related commands
%% %%
%% length used to display the bibliography %% length used to display the bibliography
\newlength{\rw} \newlength{\rw}
\setlength{\rw}{1.5cm} \setlength{\rw}{1.75cm}
%% read header %% read header
\IfFileExists{header.BBlog.tex}{\input{header.BBlog}}{} \IfFileExists{header.BBlog.tex}{\input{header.BBlog}}{}
%% cite a reference %% cite a reference
\def\cite#1{% \def\cite#1{%
%% check whether the reference exists
\ref{cite#1}% \ref{cite#1}%
%
%% add entry to citelist after checking it has not already been added %% add entry to citelist after checking it has not already been added
\ifcsname if#1cited\endcsname% \ifcsname if#1cited\endcsname%
\expandafter\if\csname if#1cited\endcsname% \expandafter\if\csname if#1cited\endcsname%
@ -30,6 +28,14 @@
%% an empty definition for the aux file %% an empty definition for the aux file
\def\BBlogcite#1{} \def\BBlogcite#1{}
%% an entry
\long\def\BBlogentry#1#2#3{
\hrefanchor
\outdef{label@cite#1}{#2}
\parbox[t]{\rw}{[\cite{#1}]}\parbox[t]{\colw}{#3}\par
\bigskip
}
%% display the bibliography %% display the bibliography
\long\def\BBlography{ \long\def\BBlography{
\newlength{\colw} \newlength{\colw}

View File

@ -2,7 +2,7 @@
% load packages % load packages
\usepackage{header} \usepackage{header}
% bibliography commands % bibliography commands
\usepackage{bibliography} \usepackage{BBlog}
% miscellaneous commands % miscellaneous commands
\usepackage{toolbox} \usepackage{toolbox}
% main style file % main style file
@ -56,13 +56,13 @@
\section{Kondo model and main results} \label{secmodel} \section{Kondo model and main results} \label{secmodel}
\indent Consider a {\it 1-dimensional} Fermi gas of spin-1/2 ``electrons'', and a spin-1/2 fermionic ``impurity'', with {\it no} interactions. It is well known that: \indent Consider a {\it 1-dimensional} Fermi gas of spin-1/2 ``electrons'', and a spin-1/2 fermionic ``impurity'', with {\it no} interactions. It is well known that:
\begin{enumerate}[\ \ (1)\ \ ] \begin{enumerate}
\item the magnetic susceptibility of the impurity diverges as $\beta=\frac1{k_B T}\to\infty$ while \item the magnetic susceptibility of the impurity diverges as $\beta=\frac1{k_B T}\to\infty$ while
\item both the total susceptibility per particle of the electron gas ({\it i.e.}\ the response to a field acting on the whole sample) [\cite{Ki76}] and the susceptibility to a magnetic field acting on a single lattice site of the chain ({\it i.e.}\ the response to a field localized on a site, say at $0$) are finite at zero temperature (see remark (1) in appendix~\ref{appXY} for a discussion of the second claim). \item both the total susceptibility per particle of the electron gas ({\it i.e.}\ the response to a field acting on the whole sample) [\cite{Ki76}] and the susceptibility to a magnetic field acting on a single lattice site of the chain ({\it i.e.}\ the response to a field localized on a site, say at $0$) are finite at zero temperature (see remark~\ref{rkfinitesusc} in appendix~\ref{appXY} for a discussion of the second claim).
\end{enumerate} \end{enumerate}
\medskip \medskip
\indent The question that will be addressed in this work is whether a small coupling of the impurity {fermion} with the electron gas can change this behavior, that is whether the susceptibility of the impurity interacting with the electrons diverges or not. \indent The question that will be addressed in this work is whether a small coupling of the impurity fermion with the electron gas can change this behavior, that is whether the susceptibility of the impurity interacting with the electrons diverges or not.
\indent To that end we will study a model inspired by the Kondo Hamiltonian which, expressed in second quantized form, is \indent To that end we will study a model inspired by the Kondo Hamiltonian which, expressed in second quantized form, is
@ -73,7 +73,7 @@ V_0=&-\lambda_0\sum_{j=1,2,3}\sum_{\alpha_1,\alpha_2,\alpha_3,\alpha_4}c^+_{\alp
V_h=& -h\sum_{j=1,2,3}\bm\omega_j \, \sum_{(\alpha,\alpha')\in\{\uparrow,\downarrow\}^2}d^+_\alpha\sigma^j_{\alpha,\alpha'} d_{\alpha'}^- V_h=& -h\sum_{j=1,2,3}\bm\omega_j \, \sum_{(\alpha,\alpha')\in\{\uparrow,\downarrow\}^2}d^+_\alpha\sigma^j_{\alpha,\alpha'} d_{\alpha'}^-
\label{eqhamkondo}\end{array}\end{equation} \label{eqhamkondo}\end{array}\end{equation}
where $\lambda_0,h$ are the interaction and magnetic field strengths and where $\lambda_0,h$ are the interaction and magnetic field strengths and
\begin{enumerate}[\ \ (1)\ \ ] \begin{enumerate}
\item$c_\alpha^\pm(x),d^\pm_\alpha, \,\alpha=\uparrow,\downarrow$ are creation and annihilation operators corresponding respectively to electrons and the impurity, \item$c_\alpha^\pm(x),d^\pm_\alpha, \,\alpha=\uparrow,\downarrow$ are creation and annihilation operators corresponding respectively to electrons and the impurity,
\item$\sigma^j,\,j=1,2,3$, are the Pauli matrices, \item$\sigma^j,\,j=1,2,3$, are the Pauli matrices,
\item$x$ is on the unit lattice and $-{L}/2$, ${L}/2$ are identified (periodic boundary), \item$x$ is on the unit lattice and $-{L}/2$, ${L}/2$ are identified (periodic boundary),
@ -101,14 +101,14 @@ where $\tau^j$ is the $j$-th Pauli matrix and acts on the spin of the impurity.
{\bf Remark}: The hierarchical Kondo model {\it will not be an approximation} of~(\ref{eqhamkondo}). It is a model that illustrates a simple mechanism for the control of the growth of relevant operators in a theory exhibiting a Kondo effect. {\bf Remark}: The hierarchical Kondo model {\it will not be an approximation} of~(\ref{eqhamkondo}). It is a model that illustrates a simple mechanism for the control of the growth of relevant operators in a theory exhibiting a Kondo effect.
\medskip \medskip
\indent The reason why the Kondo effect is not easy to understand is that it is an intrinsically non-perturbative effect, in that the impurity susceptibility in the interacting model is qualitatively different from its non-interacting counterpart. In the sense of the renormalization group it exhibits several ``relevant'', ``marginal'' and ``irrelevant'' running couplings: this makes any naive perturbative approach hopeless because all couplings become large ({\it i.e.}\ at least of O(1)) at large scale, no matter how small the interaction is, as long as $\lambda_0<0$, and thus leave the perturbative regime. It is among the simplest cases in which asymptotic freedom {\it does not occur}. {Using the fact that the beta function of the hierarchical model can be computed exactly, its non-perturbative regime can easily be investigated.} \indent The reason why the Kondo effect is not easy to understand is that it is an intrinsically non-perturbative effect, in that the impurity susceptibility in the interacting model is qualitatively different from its non-interacting counterpart. In the sense of the renormalization group it exhibits several ``relevant'', ``marginal'' and ``irrelevant'' running couplings: this makes any naive perturbative approach hopeless because all couplings become large ({\it i.e.}\ at least of O(1)) at large scale, no matter how small the interaction is, as long as $\lambda_0<0$, and thus leave the perturbative regime. It is among the simplest cases in which asymptotic freedom {\it does not occur}. Using the fact that the beta function of the hierarchical model can be computed exactly, its non-perturbative regime can easily be investigated.
\medskip \medskip
\indent In the sections below, we will define the hierarchical Kondo model and show numerical evidence for the following claims (in principle, such claims could be proved using computer-assisted methods, though, since the numerical results are very clear and stable, it may not be worth the trouble). \indent In the sections below, we will define the hierarchical Kondo model and show numerical evidence for the following claims (in principle, such claims could be proved using computer-assisted methods, though, since the numerical results are very clear and stable, it may not be worth the trouble).
\smallskip \smallskip
{\it If the interactions between the electron spins and the impurity are antiferromagnetic } ({\it i.e.}\ $\lambda_0<0$ in our notations), then {\it If the interactions between the electron spins and the impurity are antiferromagnetic } ({\it i.e.}\ $\lambda_0<0$ in our notations), then
\begin{enumerate}[\ \ (1)\ \ ] \begin{enumerate}
\item The {\it existence of a Kondo effect} can be proved in spite of the lack of asymptotic freedom and formal growth of the effective Hamiltonian away from the trivial fixed point, {\it because the beta function can be computed exactly} (in particular non-pertubatively). \item The {\it existence of a Kondo effect} can be proved in spite of the lack of asymptotic freedom and formal growth of the effective Hamiltonian away from the trivial fixed point, {\it because the beta function can be computed exactly} (in particular non-pertubatively).
\item In addition, there exists an inverse temperature $\beta_K=2^{n_K(\lambda_0)}$ called the {\it Kondo} inverse temperature, such that the Kondo effect manifests itself for $\beta>\beta_K$. Asymptotically as $\lambda_0\to0$, $n_K(\lambda_0)=c_1|\lambda_0|^{-1}+O(1)$. \item In addition, there exists an inverse temperature $\beta_K=2^{n_K(\lambda_0)}$ called the {\it Kondo} inverse temperature, such that the Kondo effect manifests itself for $\beta>\beta_K$. Asymptotically as $\lambda_0\to0$, $n_K(\lambda_0)=c_1|\lambda_0|^{-1}+O(1)$.
@ -130,7 +130,7 @@ where $\tau^j$ is the $j$-th Pauli matrix and acts on the spin of the impurity.
\medskip \medskip
{\bf Remark:}\listparpenalty {\bf Remark:}\listparpenalty
\begin{enumerate}[\ \ (1)\ \ ] \begin{enumerate}
\item It is worth stressing that in a system consisting of two classical spins with coupling $\lambda_0$ the susceptibility at $0$ field is $4\beta(1+e^{-2\beta\lambda_0})^ {-1}$, hence it vanishes at $T=0$ in the antiferromagnetic case and diverges in the ferromagnetic and in the free case. Therefore this simple model does not exhibit a Kondo effect. \item It is worth stressing that in a system consisting of two classical spins with coupling $\lambda_0$ the susceptibility at $0$ field is $4\beta(1+e^{-2\beta\lambda_0})^ {-1}$, hence it vanishes at $T=0$ in the antiferromagnetic case and diverges in the ferromagnetic and in the free case. Therefore this simple model does not exhibit a Kondo effect.
\item In the exactly solvable XY model, which can be shown to be equivalent to a spin-less analogue of~(\ref{eqhamkondo}), the susceptibility can be shown to diverge in the $\beta\to\infty$ limit, see appendix~\ref{appXY}, \ref{appXYcomp} (at least for some boundary conditions). Therefore this model does not exhibit a Kondo effect either. \item In the exactly solvable XY model, which can be shown to be equivalent to a spin-less analogue of~(\ref{eqhamkondo}), the susceptibility can be shown to diverge in the $\beta\to\infty$ limit, see appendix~\ref{appXY}, \ref{appXYcomp} (at least for some boundary conditions). Therefore this model does not exhibit a Kondo effect either.
@ -139,7 +139,7 @@ where $\tau^j$ is the $j$-th Pauli matrix and acts on the spin of the impurity.
\section{Functional integration in the Kondo model} \label{secfunint} \section{Functional integration in the Kondo model} \label{secfunint}
\indent In [\cite{Wi75}], Wilson studies the Kondo problem using renormalization group techniques in a Hamiltonian context. In the present work, our aim is to reproduce, in a simpler model, analogous results using a formalism based on functional integrals. \indent In [\cite{Wi75}], Wilson studies the Kondo problem using renormalization group techniques in a Hamiltonian context. In the present work, our aim is to reproduce, in a simpler model, analogous results using a formalism based on functional integrals.
\indent In this section, we give a rapid review of the functional integral formalism we will use, following Refs.[\cite{BG90b}, \cite{Sh94}]. We will not attempt to reproduce all technical details, since it will merely be used as an inspiration for the definition of the hierarchical model in section~\ref{sechierk}. \indent In this section, we give a rapid review of the functional integral formalism we will use, following [\cite{BG90}, \cite{Sh94}]. We will not attempt to reproduce all technical details, since it will merely be used as an inspiration for the definition of the hierarchical model in section~\ref{sechierk}.
\indent We introduce an extra dimension, called {\it imaginary time}, and define new creation and annihilation operators: \indent We introduce an extra dimension, called {\it imaginary time}, and define new creation and annihilation operators:
@ -168,10 +168,11 @@ g_{\varphi,\alpha}(t-t'):=&
\end{array}\right.. \end{array}\right..
\end{array}\label{eqprop}\end{equation} \end{array}\label{eqprop}\end{equation}
\indent By a direct computation [\cite{BG90b},~(2.7)], we find that in the limit $L,\beta\to\infty$, if $e(k):=(1-\cos k) -1\equiv -\cos k$ (assuming the Fermi level is set to $1$, {\it i.e.}\ the Fermi momentum to $\pm\frac\pi2$) then \indent By a direct computation [\cite{BG90},~(2.7)], we find that in the limit $L,\beta\to\infty$, if $e(k):=(1-\cos k) -1\equiv -\cos k$ (assuming the Fermi level is set to $1$, {\it i.e.}\ the Fermi momentum to $\pm\frac\pi2$) then
\begin{equation} \begin{equation}
g_{\psi,\alpha}(\xi,\tau) =\int\frac{dk_0 dk}{(2\pi)^2}\,{e^{-ik_0(\tau+0^-)-ik\xi} \over-ik_0+e(k) },\quad g_{\psi,\alpha}(\xi,\tau) =\int\frac{dk_0 dk}{(2\pi)^2}\,\frac{e^{-ik_0(\tau+0^-)-ik\xi}}{-ik_0+e(k)},\quad
g_{\varphi,\alpha}(\tau) = \int\frac{dk_0}{2\pi}\,{e^{-ik_0(\tau+0^-)} \over-ik_0}.\label{eqpropk}\end{equation} g_{\varphi,\alpha}(\tau) = \int\frac{dk_0}{2\pi}\,\frac{e^{-ik_0(\tau+0^-)}}{-ik_0}.
\label{eqpropk}\end{equation}
If $\beta,L$ are finite, $\int\,\frac{dk_0 dk}{(2\pi)^2}$ in~(\ref{eqpropk}) has to be understood as $\frac1\beta \sum_{k_0} \frac1L \sum_k$, where $k_0$ is the ``Matsubara momentum'' $k_0= \frac\pi{\beta} +\frac{2\pi}\beta n_0$, $n_0\in\mathbb Z$, $|n_0|\le\frac12\beta$, and $k$ is the linear momentum $k=\frac{2\pi}L n$, $n\in [-L/2,L/2-1]\cap\mathbb Z$. If $\beta,L$ are finite, $\int\,\frac{dk_0 dk}{(2\pi)^2}$ in~(\ref{eqpropk}) has to be understood as $\frac1\beta \sum_{k_0} \frac1L \sum_k$, where $k_0$ is the ``Matsubara momentum'' $k_0= \frac\pi{\beta} +\frac{2\pi}\beta n_0$, $n_0\in\mathbb Z$, $|n_0|\le\frac12\beta$, and $k$ is the linear momentum $k=\frac{2\pi}L n$, $n\in [-L/2,L/2-1]\cap\mathbb Z$.
\medskip \medskip
@ -179,7 +180,7 @@ If $\beta,L$ are finite, $\int\,\frac{dk_0 dk}{(2\pi)^2}$ in~(\ref{eqpropk}) has
\begin{equation}\begin{array}{r@{\ }>{\displaystyle}l} \begin{equation}\begin{array}{r@{\ }>{\displaystyle}l}
V(\psi,\varphi)=& V(\psi,\varphi)=&
-\lambda_0 \sum_{{j\in\{1,2,3\}}\atop{\alpha_1,\alpha'_1,\alpha_2,\alpha_2'}}\int dt \,(\psi^+_{\alpha_1}(0,t)\sigma^j_{\alpha_1,\alpha'_1} \psi^-_{\alpha'_1}(0,t)) (\varphi^+_{\alpha_2}(t)\sigma^j_{\alpha_2,\alpha_2'} \varphi^-_{\alpha_2'}(t))\\ -\lambda_0 \sum_{{j\in\{1,2,3\}}\atop{\alpha_1,\alpha'_1,\alpha_2,\alpha_2'}}\int dt \,(\psi^+_{\alpha_1}(0,t)\sigma^j_{\alpha_1,\alpha'_1} \psi^-_{\alpha'_1}(0,t)) (\varphi^+_{\alpha_2}(t)\sigma^j_{\alpha_2,\alpha_2'} \varphi^-_{\alpha_2'}(t))\\
&-h \sum_{j\in\{1,2,3\}}\bm\omega_j \int dt\sum_{(\alpha,\alpha')\in\{\uparrow,\downarrow\}^2}\varphi^+_{\alpha}(t)\sigma^j_{\alpha,\alpha'} \varphi^-_{\alpha'}(t) &-h \sum_{j\in\{1,2,3\}}\bm\omega_j \int dt\sum_{(\alpha,\alpha')\in\{\uparrow,\downarrow\}^2}\varphi^+_{\alpha}(t)\sigma^j_{\alpha,\alpha'} \varphi^-_{\alpha'}(t).
\end{array}\label{eqpotgrass}\end{equation} \end{array}\label{eqpotgrass}\end{equation}
Notice that $V$ only depends on the fields located at the site $x=0$. This is important because it will allow us to reduce the problem to a 1-dimensional one [\cite{AY69}, \cite{AYH70}]. Notice that $V$ only depends on the fields located at the site $x=0$. This is important because it will allow us to reduce the problem to a 1-dimensional one [\cite{AY69}, \cite{AYH70}].
@ -203,11 +204,11 @@ g_\varphi^{[\mathrm{uv}]}(\tau):=&g_\varphi(\tau)-\sum_{m=-N_\beta}^{m_0}g_\varp
where $m_0$ is an integer of order one (see below). where $m_0$ is an integer of order one (see below).
\medskip \medskip
{\bf Remark}: The $\omega=\pm$ label refers to the ``quasi particle'' momentum $\omega p_F$, where $p_F$ is the Fermi momentum. The usual approach [\cite{BG90b}, \cite{Sh94}] is to decompose the field $\psi$ into quasi-particle fields: {\bf Remark}: The $\omega=\pm$ label refers to the ``quasi particle'' momentum $\omega p_F$, where $p_F$ is the Fermi momentum. The usual approach [\cite{BG90}, \cite{Sh94}] is to decompose the field $\psi$ into quasi-particle fields:
\begin{equation} \begin{equation}
\psi^\pm_{\alpha}(0,t)=\sum_{\omega=\pm} \psi^\pm_{\omega,\alpha}(0,t), \psi^\pm_{\alpha}(0,t)=\sum_{\omega=\pm} \psi^\pm_{\omega,\alpha}(0,t),
\label{eqquasipartdcmp} \end{equation} \label{eqquasipartdcmp} \end{equation}
indeed, the introduction of quasi particles [\cite{BG90b}, \cite{Sh94}], is key to separating the oscillations on the Fermi scale $p_F^{-1}$ from the propagators thus allowing a ``naive'' renormalization group analysis of fermionic models in which multiscale phenomena are important (as in the theory of the ground state of interacting fermions [\cite{BG90b}, \cite{BGe94}], or as in the Kondo model). In this case, however, since the fields are evaluated at $x=0$, such oscillations play no role, so we will not decompose the field. indeed, the introduction of quasi particles [\cite{BG90}, \cite{Sh94}], is key to separating the oscillations on the Fermi scale $p_F^{-1}$ from the propagators thus allowing a ``naive'' renormalization group analysis of fermionic models in which multiscale phenomena are important (as in the theory of the ground state of interacting fermions [\cite{BG90}, \cite{BGe94}], or as in the Kondo model). In this case, however, since the fields are evaluated at $x=0$, such oscillations play no role, so we will not decompose the field.
\medskip \medskip
\indent We set $m_0$ to be small enough ({\it i.e.}\ negative enough) so that $2^{m_0}p_F\le1$ and introduce a first {\it approximation}: we neglect $g_{\psi}^{[\mathrm{uv}]}$ and $g_\varphi^{[\mathrm{uv}]}$, and replace $e(k)$ in~(\ref{eqpropk}) by its first order Taylor expansion around $\omega p_F$, that is by $\omega k$. As long as $m_0$ is small enough, for all $m\le m_0$ the supports {of the two functions $\chi(2^{-2m}((k-\omega\pi/2)^2+k_0^2))$, $\omega=\pm1$}, which appear in the first of~(\ref{eqpropdcmp}) do not intersect, and approximating $e(k)$ by $\omega k$ is reasonable. We shall hereafter fix $m_0=0$ thus avoiding the introduction of a further length scale and keeping only two scales when no impurity is present. \indent We set $m_0$ to be small enough ({\it i.e.}\ negative enough) so that $2^{m_0}p_F\le1$ and introduce a first {\it approximation}: we neglect $g_{\psi}^{[\mathrm{uv}]}$ and $g_\varphi^{[\mathrm{uv}]}$, and replace $e(k)$ in~(\ref{eqpropk}) by its first order Taylor expansion around $\omega p_F$, that is by $\omega k$. As long as $m_0$ is small enough, for all $m\le m_0$ the supports {of the two functions $\chi(2^{-2m}((k-\omega\pi/2)^2+k_0^2))$, $\omega=\pm1$}, which appear in the first of~(\ref{eqpropdcmp}) do not intersect, and approximating $e(k)$ by $\omega k$ is reasonable. We shall hereafter fix $m_0=0$ thus avoiding the introduction of a further length scale and keeping only two scales when no impurity is present.
@ -236,10 +237,10 @@ with $\psi_{\alpha}^{[m]}(0,t)$ and $\varphi_\alpha^{[m]}(t)$ being, respectivel
\int P_0(d\psi^{[m]})\psi_{\alpha}^{[m]-}(0,t)\psi_{\alpha'}^{[m]+}(0,t') \int P_0(d\psi^{[m]})\psi_{\alpha}^{[m]-}(0,t)\psi_{\alpha'}^{[m]+}(0,t')
=:&\delta_{\alpha,\alpha'}g_{\psi}^{[0]}(0,2^{m}(t-t'))\\ =:&\delta_{\alpha,\alpha'}g_{\psi}^{[0]}(0,2^{m}(t-t'))\\
\int P(d\varphi^{[m]})\varphi_{\alpha}^{[m]-}(t)\varphi_{\alpha'}^{[m]+}(t') \int P(d\varphi^{[m]})\varphi_{\alpha}^{[m]-}(t)\varphi_{\alpha'}^{[m]+}(t')
=:&\delta_{\alpha,\alpha'}g_{\varphi}^{[0]}(2^{m}(t-t')) =:&\delta_{\alpha,\alpha'}g_{\varphi}^{[0]}(2^{m}(t-t')).
\end{array}\label{eqfieldprop}\end{equation} \end{array}\label{eqfieldprop}\end{equation}
{\bf Remark:} by \label.(\ref{eqpropscale}) this is equivalent to stating that the propagators associated with the $\psi^{[m]},\varphi^{[m]}$ fields are $2^{-m}g^{[m]}$ and $g^{[m]}$, respectively. {\bf Remark:} by (\ref{eqpropscale}) this is equivalent to stating that the propagators associated with the $\psi^{[m]},\varphi^{[m]}$ fields are $2^{-m}g^{[m]}$ and $g^{[m]}$, respectively.
\medskip \medskip
\indent Finally, we define \indent Finally, we define
@ -331,10 +332,10 @@ V(\psi,\varphi)=&
in which $\psi^\pm_\alpha(0,t)$ and $\varphi^\pm_\alpha(t)$ are now defined in~(\ref{eqfieldhier}). in which $\psi^\pm_\alpha(0,t)$ and $\varphi^\pm_\alpha(t)$ are now defined in~(\ref{eqfieldhier}).
\medskip \medskip
\indent Note that since the model defined above only involves fields localized at the impurity site, that is at $x=0$, we only have to deal with $1$-dimensional fermionic fields. {\it This does not mean} that the lattice supporting the electrons plays no role: on the contrary it will show up, and in an essential way, because the ``dimension'' of the electron field will be different from that of the impurity, as made already manifest by the factor $2^m\mathop{\longrightarrow}_{m\to-\infty}0$ in~(\ref{eqprophiercmp}). \indent Note that since the model defined above only involves fields localized at the impurity site, that is at $x=0$, we only have to deal with $1$-dimensional fermionic fields. {\it This does not mean} that the lattice supporting the electrons plays no role: on the contrary it will show up, and in an essential way, because the ``dimension'' of the electron field will be different from that of the impurity, as made already manifest by the factor $2^m\displaystyle\mathop{\longrightarrow}_{m\to-\infty}0$ in~(\ref{eqprophiercmp}).
\medskip \medskip
\indent Clearly several properties of the non-hierarchical propagators,~(\ref{eqpropapprox}), are not reflected in~(\ref{eqprophiercmp}). However it will be seen that even so simplified the model exhibits a ``Kondo effect'' in the sense outlined in section~\ref{secintroduction}. \indent Clearly several properties of the non-hierarchical propagators,~(\ref{eqpropapprox}), are not reflected in~(\ref{eqprophiercmp}). However it will be seen that even so simplified the model exhibits a ``Kondo effect'' in the sense outlined in section~\ref{secintro}.
\section{Beta function for the partition function.} \label{secbetapart} \section{Beta function for the partition function.} \label{secbetapart}
\indent In this section, we show how to compute the partition function $Z$ of the hierarchical Kondo model (see~(\ref{eqhieravg})), and introduce the concept of a {\it renormalization group flow} in this context. We will first restrict the discussion to the $h=0$ case, in which $V=V_0$; the case $h\ne0$ is discussed in section~\ref{secbetakondo}. \indent In this section, we show how to compute the partition function $Z$ of the hierarchical Kondo model (see~(\ref{eqhieravg})), and introduce the concept of a {\it renormalization group flow} in this context. We will first restrict the discussion to the $h=0$ case, in which $V=V_0$; the case $h\ne0$ is discussed in section~\ref{secbetakondo}.
@ -351,8 +352,9 @@ and for $\Delta\in\mathcal Q_{-m},\,m<-N_\beta$,
\indent Notice that the fields $\psi_{\alpha}^{[\le m-1]\pm}(\Delta)$ and $\varphi_{\alpha}^{[\le m-1]\pm}(\Delta)$ play (temporarily) the role of {\it external fields} as they do not depend on the index $\eta$, and are therefore independent of the half box in which the {\it internal fields} $\psi_{\alpha}^{[\le m]\pm}(\Delta_\eta)$ and $\varphi_{\alpha}^{[\le m]\pm}(\Delta_\eta)$ are defined. In addition, by iterating~(\ref{eqhierfieldind}), we can rewrite~(\ref{eqfieldhier}) as \indent Notice that the fields $\psi_{\alpha}^{[\le m-1]\pm}(\Delta)$ and $\varphi_{\alpha}^{[\le m-1]\pm}(\Delta)$ play (temporarily) the role of {\it external fields} as they do not depend on the index $\eta$, and are therefore independent of the half box in which the {\it internal fields} $\psi_{\alpha}^{[\le m]\pm}(\Delta_\eta)$ and $\varphi_{\alpha}^{[\le m]\pm}(\Delta_\eta)$ are defined. In addition, by iterating~(\ref{eqhierfieldind}), we can rewrite~(\ref{eqfieldhier}) as
\begin{equation} \begin{equation}
\psi_\alpha^\pm(t)\equiv\psi_{\alpha}^{[\le0]\pm}(\Delta^{[1]}(t)),\quad \varphi_\alpha^\pm(t)\equiv\varphi_\alpha^{[\le0]\pm}(\Delta^{[1]}(t)) \psi_\alpha^\pm(t)\equiv\psi_{\alpha}^{[\le0]\pm}(\Delta^{[1]}(t)),\quad \varphi_\alpha^\pm(t)\equiv\varphi_\alpha^{[\le0]\pm}(\Delta^{[1]}(t)).
\label{eqhierfieldindinit}\end{equation} \label{eqhierfieldindinit}\end{equation}
\indent We then define, for $m\in\{0,-1,\cdots,-N_\beta\}$, \indent We then define, for $m\in\{0,-1,\cdots,-N_\beta\}$,
\begin{equation}\begin{array}{r@{\ }>{\displaystyle}l} \begin{equation}\begin{array}{r@{\ }>{\displaystyle}l}
\beta c^{[m]}+V^{[m-1]}(\psi^{[\le m-1]},\varphi^{[\le m-1]}) \beta c^{[m]}+V^{[m-1]}(\psi^{[\le m-1]},\varphi^{[\le m-1]})
@ -449,7 +451,7 @@ C^{[m]}=&1+ 3\ell_0^2+9\ell_2^2\\[0.3cm]
\ell_2^{[m-1]}=& \frac1{C^{[m]}}\Big(2\ell_2+ \ell_0^2\Big)\\ \ell_2^{[m-1]}=& \frac1{C^{[m]}}\Big(2\ell_2+ \ell_0^2\Big)\\
\end{array}\label{eqbetareduced}\end{equation} \end{array}\label{eqbetareduced}\end{equation}
which can be shown to have $4$ fixed points: which can be shown to have $4$ fixed points:
\begin{enumerate}[\ \ (1)\ \ ] \begin{enumerate}
\item$f_0=(0,0)$, unstable in the $\ell_2$ direction and marginal in the $\ell_0$ direction (repelling if $\ell_0<0, \ell_2=0$), this is the {\it trivial fixed point}; \item$f_0=(0,0)$, unstable in the $\ell_2$ direction and marginal in the $\ell_0$ direction (repelling if $\ell_0<0, \ell_2=0$), this is the {\it trivial fixed point};
\item $f_+=(0,\frac13)$, stable in the $\ell_2$ direction and marginal in the $\ell_0$ direction (repelling if $\ell_0<0, \ell_2=\frac13$), which we call the {\it ferromagnetic fixed-point} (because the flow converges to $f_+$ in the ferromagnetic case, see below); \item $f_+=(0,\frac13)$, stable in the $\ell_2$ direction and marginal in the $\ell_0$ direction (repelling if $\ell_0<0, \ell_2=\frac13$), which we call the {\it ferromagnetic fixed-point} (because the flow converges to $f_+$ in the ferromagnetic case, see below);
\item $f_-=(0,-\frac13)$ stable in both directions; \item $f_-=(0,-\frac13)$ stable in both directions;
@ -466,7 +468,7 @@ $f_+$ (see appendix~\ref{appfixed}-{\bf\ref{ptfixedreduced}}).
\indent We introduce a magnetic field of amplitude $h\in R$ and direction $\bm\omega\in\mathcal S_2$ (in which $\mathcal S_2$ denotes the $2$-sphere) acting on the impurity. As a consequence, the potential $V$ becomes \indent We introduce a magnetic field of amplitude $h\in R$ and direction $\bm\omega\in\mathcal S_2$ (in which $\mathcal S_2$ denotes the $2$-sphere) acting on the impurity. As a consequence, the potential $V$ becomes
\begin{equation} \begin{equation}
V(\psi,\varphi)=V_0(\psi,\varphi) V_h(\psi,\varphi)=V_0(\psi,\varphi)
-h\sum_{\displaystyle\mathop{\scriptstyle(\alpha,\alpha')\in\{\uparrow,\downarrow\}^2}_{j\in\{1,2,3\}}} \int dt(\varphi_{\alpha}^+(t)\sigma_{\alpha,\alpha'}^j\varphi_{\alpha'}^-(t))\, \omega_j -h\sum_{\displaystyle\mathop{\scriptstyle(\alpha,\alpha')\in\{\uparrow,\downarrow\}^2}_{j\in\{1,2,3\}}} \int dt(\varphi_{\alpha}^+(t)\sigma_{\alpha,\alpha'}^j\varphi_{\alpha'}^-(t))\, \omega_j
\label{eqpoth}\end{equation} \label{eqpoth}\end{equation}
@ -490,8 +492,8 @@ where $O_{n,\eta}^{[\le m]}(\Delta)$ for $n\in\{0,1,2,3\}$ was defined in~(\ref{
\begin{equation}\begin{array}{>{\displaystyle}c} \begin{equation}\begin{array}{>{\displaystyle}c}
O^{[\le m]}_{4,\eta}(\Delta):=\frac12\mathbf A^{[\le m]}_\eta(\Delta)\cdot\bm\omega,\quad O^{[\le m]}_{4,\eta}(\Delta):=\frac12\mathbf A^{[\le m]}_\eta(\Delta)\cdot\bm\omega,\quad
O^{[\le m]}_{5,\eta}(\Delta):=\frac12\mathbf B^{[\le m]}_\eta(\Delta)\cdot\bm\omega,\\[0.5cm] O^{[\le m]}_{5,\eta}(\Delta):=\frac12\mathbf B^{[\le m]}_\eta(\Delta)\cdot\bm\omega,\\[0.5cm]
O^{[\le m]}_{6,\eta}(\Delta):=\frac12\Big(\mathbf A^{[\le m]}_\eta(\Delta) \cdot\bm\omega\Big)\Big(\mathbf B^{[\le m]}_\eta(\Delta)\cdot\bm\omega\Big)\\[0.5cm] O^{[\le m]}_{6,\eta}(\Delta):=\frac12\Big(\mathbf A^{[\le m]}_\eta(\Delta) \cdot\bm\omega\Big)\Big(\mathbf B^{[\le m]}_\eta(\Delta)\cdot\bm\omega\Big),\\[0.5cm]
O^{[\le m]}_{7,\eta}(\Delta):= \frac12\Big(\mathbf A^{[\le m]}_\eta(\Delta) \cdot\mathbf A^{[\le m]}_\eta(\Delta)\Big)\Big(\mathbf B^{[\le m]}_\eta(\Delta) \cdot\bm\omega\Big)\\[0.5cm] O^{[\le m]}_{7,\eta}(\Delta):= \frac12\Big(\mathbf A^{[\le m]}_\eta(\Delta) \cdot\mathbf A^{[\le m]}_\eta(\Delta)\Big)\Big(\mathbf B^{[\le m]}_\eta(\Delta) \cdot\bm\omega\Big),\\[0.5cm]
O^{[\le m]}_{8,\eta}(\Delta):=\frac12\Big(\mathbf B^{[\le m]}_\eta(\Delta) \cdot\mathbf B^{[\le m]}_\eta(\Delta)\Big)\Big(\mathbf A^{[\le m]}_\eta(\Delta) \cdot\bm\omega\Big). O^{[\le m]}_{8,\eta}(\Delta):=\frac12\Big(\mathbf B^{[\le m]}_\eta(\Delta) \cdot\mathbf B^{[\le m]}_\eta(\Delta)\Big)\Big(\mathbf A^{[\le m]}_\eta(\Delta) \cdot\bm\omega\Big).
\end{array}\label{eqOrcch}\end{equation} \end{array}\label{eqOrcch}\end{equation}
@ -567,7 +569,7 @@ n_2(\lambda_0)=c_2|\log_2|\lambda_0||+O(1),\quad c_2\approx2.
\begin{figure} \begin{figure}
\hfil\includegraphics[width=280pt]{Figs/susc_beta_plot.pdf}\par\penalty10000 \hfil\includegraphics[width=280pt]{Figs/susc_beta_plot.pdf}\par\penalty10000
\caption{plot of $\frac{\bm\ell}{\bm\ell^*}$ as a function of the iteration step $N_\beta$ for $\lambda_0=-0.01$ and $h=2^{-40}$. Here $\ell_0^*$ through $\ell_3^*$ are the components of the non-trivial fixed point $\bm\ell^*$ and $\ell_4^*$ through $\ell_8^*$ are the values reached by $\ell_4$ through $\ell_8$ of largest absolute value. The flow behaves similarly to that at $h=0$ until $\ell_4$ through $\ell_8$ become large, at which point the couplings decay to 0, except for $\ell_5$ and $\ell_2$.} \caption{plot of $\frac{\bm\ell}{\bm\ell^*}$ as a function of the iteration step $N_\beta$ for $\lambda_0=-0.125$ and $h=2^{-40}$. Here $\ell_0^*$ through $\ell_3^*$ are the components of the non-trivial fixed point $\bm\ell^*$ and $\ell_4^*$ through $\ell_8^*$ are the values reached by $\ell_4$ through $\ell_8$ of largest absolute value. The flow behaves similarly to that at $h=0$ until $\ell_4$ through $\ell_8$ become large, at which point the couplings decay to 0, except for $\ell_5$ and $\ell_2$.}
\label{figbetasuscplot} \label{figbetasuscplot}
\end{figure} \end{figure}
@ -601,7 +603,7 @@ r_j(h)=c_r\log_2 h^{-1}+O(1),\quad c_r\approx2.6.
\section{Concluding remarks} \label{secconc} \section{Concluding remarks} \label{secconc}
\point The hierarchical Kondo model defined in section~\ref{sechierk} is a well defined statistical mechanics model, for which the partition function and correlation functions are unambiguously defined and finite as long as $\beta$ is finite. In addition, since the magnetic susceptibility of the impurity can be rewritten as a correlation function: \point The hierarchical Kondo model defined in section~\ref{sechierk} is a well defined statistical mechanics model, for which the partition function and correlation functions are unambiguously defined and finite as long as $\beta$ is finite. In addition, since the magnetic susceptibility of the impurity can be rewritten as a correlation function:
\begin{equation} \begin{equation}
\chi(\beta,0)=\int_0^\beta dt\, \left<\,(\varphi^+(0)\bm\sigma\varphi^-(0))(\varphi^+(t)\bm\sigma\varphi^-(t))\,\right>_{h=0}, \chi(\beta,0)=\int_0^\beta dt\, \left<\,((\varphi^+(0)\bm\sigma\varphi^-(0))\cdot\bm\omega)((\varphi^+(t)\bm\sigma\varphi^-(t))\cdot\bm\omega)\,\right>_{h=0},
\label{eqsuscavg}\end{equation} \label{eqsuscavg}\end{equation}
$\chi(\beta,0)$ is a thermodynamical quantity of the model. $\chi(\beta,0)$ is a thermodynamical quantity of the model.
\bigskip \bigskip
@ -856,12 +858,12 @@ is obtained. Does it exhibit a Kondo effect?
{\bf Remarks:}\listparpenalty {\bf Remarks:}\listparpenalty
\begin{enumerate}[\ \ (1)\ \ ] \begin{enumerate}
\item Finally an analysis essentially identical to the above can be performed to study the model in~(\ref{eqhamkondo}) {\it without impurity} (and with or without spin) to check that the magnetic susceptibility to a field $h$ acting only at a single site is finite: the result is the same as that of the XY model above: the single site susceptibility is finite and, up to a factor $2$, given by the same formula $\chi(\beta,0)=\frac{4\sinh \beta}{1+\cosh\beta}$. \item\label{rkfinitesusc} Finally an analysis essentially identical to the above can be performed to study the model in~(\ref{eqhamkondo}) {\it without impurity} (and with or without spin) to check that the magnetic susceptibility to a field $h$ acting only at a single site is finite: the result is the same as that of the XY model above: the single site susceptibility is finite and, up to a factor $2$, given by the same formula $\chi(\beta,0)=\frac{4\sinh \beta}{1+\cosh\beta}$.
\item The latter result makes clear both the essential roles for the Kondo effect of the spin and of the noncommutativity of the impurity spin components. \item The latter result makes clear both the essential roles for the Kondo effect of the spin and of the noncommutativity of the impurity spin components.
\end{enumerate}\unlistparpenalty \end{enumerate}\unlistparpenalty
\section{Some details on appendix \expandonce\appXY} \label{appXYcomp} \section{Some details on appendix \expandonce{\ref{appXY}}} \label{appXYcomp}
\indent The definition of $H_h$ has to be supplemented by a boundary condition to give a meaning to $\bm\sigma_{L+1}$. If $\sigma^\pm_n=(\sigma^x\pm i\sigma^y_n)/2$ define $\mathcal N_{<n}$ as $\sum_{i<n}\sigma^+_i\sigma^-_i=\sum_{i<n}\mathcal N_i$ and $\mathcal N=\mathcal N_{\le L}$. Then set as boundary condition \indent The definition of $H_h$ has to be supplemented by a boundary condition to give a meaning to $\bm\sigma_{L+1}$. If $\sigma^\pm_n=(\sigma^x\pm i\sigma^y_n)/2$ define $\mathcal N_{<n}$ as $\sum_{i<n}\sigma^+_i\sigma^-_i=\sum_{i<n}\mathcal N_i$ and $\mathcal N=\mathcal N_{\le L}$. Then set as boundary condition
\begin{equation} \begin{equation}
\sigma_{L+1}^\pm:= -(-1)^\mathcal N\sigma^\pm_{1} \sigma_{L+1}^\pm:= -(-1)^\mathcal N\sigma^\pm_{1}

2
README
View File

@ -13,7 +13,7 @@ In order to typeset the LaTeX document, run
bibliography.BBlog.tex : bibliography.BBlog.tex :
list of references. list of references.
bibliography.sty : BBlog.sty :
bibliography related commands. bibliography related commands.
Figs : Figs :

View File

@ -1,80 +1,20 @@
\hrefanchor \BBlogentry{ABe71}{ABe71}{D.B. Abraham, E. Barouch, G. Gallavotti, A. Martin-L\"of - {\it Dynamics of a local perturbation in the XY model - I.~Approach to equilibrium}, Studies in Applied Mathematics, Vol.~50, p.~121-131, 1971, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1002/sapm1971502121}{10.1002/sapm1971502121}}.}
\outdef{citeABe71}{ABe71} \BBlogentry{An61}{An61}{P.W. Anderson - {\it Localized magnetic states in metals}, Physical Review, Vol.~124, n.~1, p.~41-53, 1961, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1103/PhysRev.124.41}{10.1103/PhysRev.124.41}}.}
\hbox{\parbox[t]{\rw}{[\cite{ABe71}]}\parbox[t]{\colw}{D.B. Abraham, E. Barouch, G. Gallavotti, A. Martin-L\"of - {\it Dynamics of a local perturbation in the XY model - I.~Approach to equilibrium}, Studies in Applied Mathematics, Vol.~50, p.~121-131, 1971.}}\par \BBlogentry{AY69}{AY69}{P.W. Anderson, G. Yuval - {\it Exact results in the Kondo problem: equivalence to a classical one-dimensional Coulomb gas}, Physical Review Letters, Vol.~23, n.~2, p.~89-92, 1969, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1103/PhysRevLett.23.89}{10.1103/PhysRevLett.23.89}}.}
\bigskip \BBlogentry{An70}{An70}{P.W. Anderson - {\it A poor man's derivation of scaling laws for the Kondo problem}, Journal of Physics C: Solid State Physics, Vol.~3, p.~2436, 1970, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1088/0022-3719/3/12/008}{10.1088/0022-3719/3/12/008}}.}
\hrefanchor \BBlogentry{AYH70}{AYH70}{P.W. Anderson, G. Yuval, D.R. Hamann - {\it Exact results in the Kondo problem - II. Scaling theory, qualitatively correct solution, and some new results on one-dimensional classical statistical mechanics}, Physical Review B, Vol.~1, n.~11, p.~4464-4473, 1970, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1103/PhysRevB.1.4464}{10.1103/PhysRevB.1.4464}}.}
\outdef{citeAn61}{An61} \BBlogentry{An80}{An80}{N. Andrei - {\it Diagonalization of the Kondo Hamiltonian}, Physical Review Letters, Vol.~45, n.~5, 1980, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1103/PhysRevLett.45.379}{10.1103/PhysRevLett.45.379}}.}
\hbox{\parbox[t]{\rw}{[\cite{An61}]}\parbox[t]{\colw}{P.W. Anderson - {\it Localized magnetic states in metals}, Physical Review, Vol.~124, n.~1, p.~41-53, 1961.}}\par \BBlogentry{AFL83}{AFL83}{N. Andrei, K. Furuya, J.H. Lowenstein - {\it Solution of the Kondo problem}, Reviews of Modern Physics, Vol.~55, n.~2, p.~331-402, 1983, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1103/RevModPhys.55.331}{10.1103/RevModPhys.55.331}}.}
\bigskip \BBlogentry{BG90}{BG90}{G. Benfatto, G. Gallavotti - {\it Perturbation theory of the Fermi surface in a quantum liquid - a general quasiparticle formalism and one-dimensional systems}, Journal of Statistical Physics, Vol.~59, n.~3-4, p.~541-664, 1990, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1007/BF01025844}{10.1007/BF01025844}}.}
\hrefanchor \BBlogentry{BGe94}{BGe94}{G. Benfatto, G. Gallavotti, A.Procacci, B. Scoppola - {\it Beta function and Schwinger functions for a many Fermions system in one dimension - Anomaly of the Fermi surface}, Communications in Mathematical Physics, Vol.~160, p.~93-171, 1994, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1007/BF02099791}{10.1007/BF02099791}}.}
\outdef{citeAY69}{AY69} \BBlogentry{Do91}{Do91}{T.C. Dorlas - {\it Renormalization group analysis of a simple hierarchical fermion model}, Communications in Mathematical Physics, Vol.~136, p.~169-194, 1991, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1007/BF02096796}{10.1007/BF02096796}}.}
\hbox{\parbox[t]{\rw}{[\cite{AY69}]}\parbox[t]{\colw}{P.W. Anderson, G. Yuval - {\it Exact results in the Kondo problem: equivalence to a classical one-dimensional Coulomb gas}, Physical Review Letters, Vol.~23, n.~2, p.~89-92, 1969.}}\par \BBlogentry{Dy69}{Dy69}{F.J. Dyson - {\it Existence of a phase-transition in a one-dimensional Ising ferromagnet}, Communications in Mathematical Physics, Vol.~12, p.~91-107, 1969, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1007/BF01645907}{10.1007/BF01645907}}.}
\bigskip \BBlogentry{Ki76}{Ki76}{C. Kittel - {\it Introduction to solid state physics}, Wiley\&Sons, 1976.}
\hrefanchor \BBlogentry{Ko64}{Ko64}{J. Kondo - {\it Resistance minimum in dilute magnetic alloys}, Progress of Theoretical Physics, Vol.~32, n.~1, 1964, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1143/PTP.32.37}{10.1143/PTP.32.37}}.}
\outdef{citeAn70}{An70} \BBlogentry{Ko05}{Ko05}{J. Kondo - {\it Sticking to my bush}, Journal of the Physical Society of Japan, Vol.~74, n.~1, p.~1-3, 2005, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1143/JPSJ.74.1}{10.1143/JPSJ.74.1}}.}
\hbox{\parbox[t]{\rw}{[\cite{An70}]}\parbox[t]{\colw}{P.W. Anderson - {\it A poor man's derivation of scaling laws for the Kondo problem}, Journal of Physics C: Solid State Physics, Vol.~3, p.~2436, 1970.}}\par \BBlogentry{No74}{No74}{P. Nozi\`eres - {\it A ``Fermi-liquid'' description of the Kondo problem at low temperatures}, Journal of Low Temperature Physics, Vol.~17, n.~1-2, p.~31-42, 1974, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1007/BF00654541}{10.1007/BF00654541}}.}
\bigskip \BBlogentry{Ru99b}{Ru99}{D. Ruelle - {\it Statistical mechanics: rigorous results}, Imperial College Press, World Scientific, first edition: Benjamin, 1969, 1999.}
\hrefanchor \BBlogentry{Sh94}{Sh94}{R. Shankar - {\it Renormalization group approach to interacting fermions}, Reviews of Modern Physics, Vol.~66, n.~1, p.~129-192, 1994, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1103/RevModPhys.66.129}{10.1103/RevModPhys.66.129}}.}
\outdef{citeAYH70}{AYH70} \BBlogentry{Wi65}{Wi65}{K.G. Wilson - {\it Model Hamiltonians for Local Quantum Field Theory}, Physical Review, Vol.~140, n.~2B, p.~B445-B457, 1965, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1103/PhysRev.140.B445}{10.1103/PhysRev.140.B445}}.}
\hbox{\parbox[t]{\rw}{[\cite{AYH70}]}\parbox[t]{\colw}{P.W. Anderson, G. Yuval, D.R. Hamann - {\it Exact results in the Kondo problem - II. Scaling theory, qualitatively correct solution, and some new results on one-dimensional classical statistical mechanics}, Physical Review B, Vol.~1, n.~11, p.~4464-4473, 1970.}}\par \BBlogentry{Wi70}{Wi70}{K.G. Wilson - {\it Model of coupling-constant renormalization}, Physical Review D, Vol.~2, n.~8, p.~1438-1472, 1970, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1103/PhysRevD.2.1438}{10.1103/PhysRevD.2.1438}}.}
\bigskip \BBlogentry{Wi75}{Wi75}{K.G. Wilson - {\it The renormalization group: Critical phenomena and the Kondo problem}, Reviews of Modern Physics, Vol.~47, n.~4, 1975, doi:{\tt\color{blue}\href{http://dx.doi.org/10.1103/RevModPhys.47.773}{10.1103/RevModPhys.47.773}}.}
\hrefanchor
\outdef{citeAn80}{An80}
\hbox{\parbox[t]{\rw}{[\cite{An80}]}\parbox[t]{\colw}{N. Andrei - {\it Diagonalization of the Kondo Hamiltonian}, Physical Review Letters, Vol.~45, n.~5, 1980.}}\par
\bigskip
\hrefanchor
\outdef{citeAFL83}{AFL83}
\hbox{\parbox[t]{\rw}{[\cite{AFL83}]}\parbox[t]{\colw}{N. Andrei, K. Furuya, J.H. Lowenstein - {\it Solution of the Kondo problem}, Reviews of Modern Physics, Vol.~55, n.~2, p.~331-402, 1983.}}\par
\bigskip
\hrefanchor
\outdef{citeBG90b}{BG90}
\hbox{\parbox[t]{\rw}{[\cite{BG90b}]}\parbox[t]{\colw}{G. Benfatto, G. Gallavotti - {\it Perturbation theory of the Fermi surface in a quantum Liquid - a general quasiparticle formalism and one-dimensional systems}, Journal of Statistical Physics, Vol.~59, n.~2-3, p.~541-664, 1990.}}\par
\bigskip
\hrefanchor
\outdef{citeBGe94}{BGe94}
\hbox{\parbox[t]{\rw}{[\cite{BGe94}]}\parbox[t]{\colw}{G. Benfatto, G. Gallavotti, A.Procacci, B. Scoppola - {\it Beta function and Schwinger functions for a many Fermions system in one dimension - Anomaly of the Fermi surface}, Communications in Mathematical Physics, Vol.~160, p.~93-171, 1994.}}\par
\bigskip
\hrefanchor
\outdef{citeDo91}{Do91}
\hbox{\parbox[t]{\rw}{[\cite{Do91}]}\parbox[t]{\colw}{T.C. Dorlas - {\it Renormalization group analysis of a simple hierarchical fermion model}, Communications in Mathematical Physics, Vol.~136, p.~169-194, 1991.}}\par
\bigskip
\hrefanchor
\outdef{citeDy69}{Dy69}
\hbox{\parbox[t]{\rw}{[\cite{Dy69}]}\parbox[t]{\colw}{F.J. Dyson - {\it Existence of a phase-transition in a one-dimensional Ising ferromagnet}, Communications in Mathematical Physics, Vol.~12, p.~91-107, 1969.}}\par
\bigskip
\hrefanchor
\outdef{citeKi76}{Ki76}
\hbox{\parbox[t]{\rw}{[\cite{Ki76}]}\parbox[t]{\colw}{C. Kittel - {\it Introduction to solid state physics}, Wiley\&Sons, 1976.}}\par
\bigskip
\hrefanchor
\outdef{citeKo64}{Ko64}
\hbox{\parbox[t]{\rw}{[\cite{Ko64}]}\parbox[t]{\colw}{J. Kondo - {\it Resistance minimum in dilute magnetic alloys}, Progress of Theoretical Physics, Vol.~32, n.~1, 1964.}}\par
\bigskip
\hrefanchor
\outdef{citeKo05}{Ko05}
\hbox{\parbox[t]{\rw}{[\cite{Ko05}]}\parbox[t]{\colw}{J. Kondo - {\it Sticking to my bush}, Journal of the Physical Society of Japan, Vol.~74, n.~1, p.~1-3, 2005.}}\par
\bigskip
\hrefanchor
\outdef{citeNo74}{No74}
\hbox{\parbox[t]{\rw}{[\cite{No74}]}\parbox[t]{\colw}{P. Nozi\`eres - {\it A ``Fermi-liquid'' description of the Kondo problem at low temperatures}, Journal of Low Temperature Physics, Vol.~17, n.~1-2, p.~31-42, 1974.}}\par
\bigskip
\hrefanchor
\outdef{citeRu99b}{Ru99}
\hbox{\parbox[t]{\rw}{[\cite{Ru99b}]}\parbox[t]{\colw}{D. Ruelle - {\it Statistical mechanics: rigorous results}, Imperial College Press, World Scientific, first edition: Benjamin, 1969, 1999.}}\par
\bigskip
\hrefanchor
\outdef{citeSh94}{Sh94}
\hbox{\parbox[t]{\rw}{[\cite{Sh94}]}\parbox[t]{\colw}{R. Shankar - {\it Renormalization group approach to interacting fermions}, Reviews of Modern Physics, Vol.~66, n.~1, p.~129-192, 1994.}}\par
\bigskip
\hrefanchor
\outdef{citeWi65}{Wi65}
\hbox{\parbox[t]{\rw}{[\cite{Wi65}]}\parbox[t]{\colw}{K.G. Wilson - {\it Model Hamiltonians for local quantum field theory}, Physical Review, Vol.~140, n.~2B, p.~445-457, 1965.}}\par
\bigskip
\hrefanchor
\outdef{citeWi70}{Wi70}
\hbox{\parbox[t]{\rw}{[\cite{Wi70}]}\parbox[t]{\colw}{K.G. Wilson - {\it Model of coupling-constant renormalization}, Physical Review D, Vol.~2, n.~8, p.~1438-1472, 1970.}}\par
\bigskip
\hrefanchor
\outdef{citeWi75}{Wi75}
\hbox{\parbox[t]{\rw}{[\cite{Wi75}]}\parbox[t]{\colw}{K.G. Wilson - {\it The renormalization group: Critical phenomena and the Kondo problem}, Reviews of Modern Physics, Vol.~47, n.~4, 1975.}}\par
\bigskip

View File

@ -34,6 +34,22 @@
%% style for the equation number %% style for the equation number
\def\eqnumstyle{} \def\eqnumstyle{}
%% correct vertical alignment at the end of a document
\AtEndDocument{
\vfill
\eject
}
%% prevent page breaks
\newcount\prevpostdisplaypenalty
\def\nopagebreakaftereq{
\prevpostdisplaypenalty=\postdisplaypenalty
\postdisplaypenalty=10000
}
\def\restorepagebreakaftereq{
\postdisplaypenalty=\prevpostdisplaypenalty
}
%% hyperlinks %% hyperlinks
% hyperlinkcounter % hyperlinkcounter
\newcounter{lncount} \newcounter{lncount}
@ -58,14 +74,24 @@
%% define a label for the latest tag %% define a label for the latest tag
%% label defines a command containing the string stored in \tag %% label defines a command containing the string stored in \tag
\AtBeginDocument{ \AtBeginDocument{
\def\label#1{\expandafter\outdef{#1}{\safe\tag}} \def\label#1{\expandafter\outdef{label@#1}{\safe\tag}}
%% make a custom link at any given location in the document
\def\makelink#1#2{
\hrefanchor
\outdef{label@#1}{#2}
}
\def\ref#1{% \def\ref#1{%
% check whether the label is defined (hyperlink runs into errors if this check is ommitted) % check whether the label is defined (hyperlink runs into errors if this check is ommitted)
\ifcsname #1@hl\endcsname% \ifcsname label@#1@hl\endcsname%
\hyperlink{ln.\csname #1@hl\endcsname}{\safe\csname #1\endcsname}% \hyperlink{ln.\csname label@#1@hl\endcsname}{{\color{blue}\safe\csname label@#1\endcsname}}%
\else% \else%
\safe\csname #1\endcsname% \ifcsname label@#1\endcsname%
{\color{blue}\csname #1\endcsname}%
\else%
{\bf ??}%
\fi%
\fi% \fi%
} }
} }
@ -133,11 +159,9 @@
\ifsubseqcount% \ifsubseqcount%
\setcounter{seqcount}0% \setcounter{seqcount}0%
\fi% \fi%
% space before subsection (if not first) % space before subsection
\ifnum\thesubsectioncount>1%
\subseqskip% \subseqskip%
\penalty-500% \penalty-500%
\fi%
% hyperref anchor % hyperref anchor
\hrefanchor \hrefanchor
% define tag (for \label) % define tag (for \label)
@ -161,6 +185,64 @@
\medskip\penalty10000% \medskip\penalty10000%
} }
%% itemize
\newlength\itemizeskip
% left margin for items
\setlength\itemizeskip{20pt}
% item symbol
\def\itemizept{\textbullet}
\newlength\itemizeseparator
% space between the item symbol and the text
\setlength\itemizeseparator{5pt}
% penalty preceding an itemize
\def\itemizepenalty{0}
\newlength\current@itemizeskip
\setlength\current@itemizeskip{0pt}
\def\itemize{
\par\penalty\itemizepenalty\medskip\penalty\itemizepenalty
\addtolength\current@itemizeskip{\itemizeskip}
\leftskip\current@itemizeskip
}
\def\enditemize{
\addtolength\current@itemizeskip{-\itemizeskip}
\par\leftskip\current@itemizeskip
\medskip
}
\newlength\itempt@total
\def\item{
\settowidth\itempt@total{\itemizept}
\addtolength\itempt@total{\itemizeseparator}
\par
\medskip
\hskip-\itempt@total\itemizept\hskip\itemizeseparator
}
%% enumerate
\newcounter{enumerate@count}
\def\enumerate{
\setcounter{enumerate@count}0
\let\olditem\item
\let\olditemizept\itemizept
\def\item{
% counter
\stepcounter{enumerate@count}
% set header
\def\itemizept{\theenumerate@count.}
% hyperref anchor
\hrefanchor
% define tag (for \label)
\xdef\tag{\theenumerate@count}
\olditem
}
\itemize
}
\def\endenumerate{
\enditemize
\let\item\olditem
\let\itemizept\olditemizept
}
%% points %% points
\def\point{ \def\point{
\stepcounter{pointcount} \stepcounter{pointcount}
@ -188,6 +270,17 @@
% define tag (for \label) % define tag (for \label)
\xdef\tag{\thepointcount-\thesubpointcount-\thesubsubpointcount} \xdef\tag{\thepointcount-\thesubpointcount-\thesubsubpointcount}
} }
\def\pspoint{
\stepcounter{pointcount}
\stepcounter{subpointcount}
\setcounter{subsubpointcount}0
% hyperref anchor
\hrefanchor
\indent\hskip.5cm{\bf \thepointcount-\thesubpointcount\ - }
% define tag (for \label)
\xdef\tag{\thepointcount-\thesubpointcount}
}
% reset points % reset points
\def\resetpointcounter{ \def\resetpointcounter{
\setcounter{pointcount}{0} \setcounter{pointcount}{0}
@ -224,7 +317,7 @@
\setlength\figwidth\textwidth \setlength\figwidth\textwidth
\addtolength\figwidth{-2.5cm} \addtolength\figwidth{-2.5cm}
\def\figcount#1{% \def\caption#1{%
\stepcounter{figcount}% \stepcounter{figcount}%
% hyperref anchor % hyperref anchor
\hrefanchor% \hrefanchor%
@ -238,7 +331,25 @@
% define tag (for \label) % define tag (for \label)
\xdef\tag{\figformat}% \xdef\tag{\figformat}%
% write % write
\hfil fig \figformat: \parbox[t]{\figwidth}{\small#1}% \hfil fig \figformat: \parbox[t]{\figwidth}{\leavevmode\small#1}%
\par\bigskip%
}
%% short caption: centered
\def\captionshort#1{%
\stepcounter{figcount}%
% hyperref anchor
\hrefanchor%
% the number of the figure
\edef\figformat{\thefigcount}%
% add section number
\ifsections%
\let\tmp\figformat%
\edef\figformat{\sectionprefix\thesectioncount.\tmp}%
\fi%
% define tag (for \label)
\xdef\tag{\figformat}%
% write
\hfil fig \figformat: {\small#1}%
\par\bigskip% \par\bigskip%
} }
@ -249,10 +360,48 @@
\def\endfigure{ \def\endfigure{
\par\penalty-1000 \par\penalty-1000
} }
\let\caption\figcount
%% delimiters %% delimiters
\def\delimtitle#1{\par \leavevmode\raise.3em\hbox to\hsize{\lower0.3em\hbox{\vrule height0.3em}\hrulefill\ \lower.3em\hbox{#1}\ \hrulefill\lower0.3em\hbox{\vrule height0.3em}}\par\penalty10000} \def\delimtitle#1{\par%
\leavevmode%
\raise.3em\hbox to\hsize{%
\lower0.3em\hbox{\vrule height0.3em}%
\hrulefill%
\ \lower.3em\hbox{#1}\ %
\hrulefill%
\lower0.3em\hbox{\vrule height0.3em}%
}\par\penalty10000}
%% callable by ref
\def\delimtitleref#1{\par%
% hyperref anchor
\hrefanchor%
% define tag (for \label)
\xdef\tag{#1}%
\leavevmode%
\raise.3em\hbox to\hsize{%
\lower0.3em\hbox{\vrule height0.3em}%
\hrulefill%
\ \lower.3em\hbox{\bf #1}\ %
\hrulefill%
\lower0.3em\hbox{\vrule height0.3em}%
}\par\penalty10000}
%% no title
\def\delim{\par%
\leavevmode\raise.3em\hbox to\hsize{%
\lower0.3em\hbox{\vrule height0.3em}%
\hrulefill%
\lower0.3em\hbox{\vrule height0.3em}%
}\par\penalty10000}
%% end delim
\def\enddelim{\par\penalty10000%
\leavevmode%
\raise.3em\hbox to\hsize{%
\vrule height0.3em\hrulefill\vrule height0.3em%
}\par}
\def\delim{\par\leavevmode\raise.3em\hbox to\hsize{\vrule height0.3em\hrulefill\vrule height0.3em}\par\penalty10000} \def\delim{\par\leavevmode\raise.3em\hbox to\hsize{\vrule height0.3em\hrulefill\vrule height0.3em}\par\penalty10000}
\def\enddelim{\par\penalty10000\leavevmode\raise.3em\hbox to\hsize{\vrule height0.3em\hrulefill\vrule height0.3em}\par} \def\enddelim{\par\penalty10000\leavevmode\raise.3em\hbox to\hsize{\vrule height0.3em\hrulefill\vrule height0.3em}\par}
@ -276,6 +425,10 @@
\delimtitle{\bf #1 \formattheo} \delimtitle{\bf #1 \formattheo}
} }
\let\endtheo\enddelim \let\endtheo\enddelim
%% theorem headers with name
\def\theoname#1#2{
\theo{#1}\hfil({\it #2})\par\penalty10000\medskip%
}
%% start appendices %% start appendices
\def\appendix{% \def\appendix{%
@ -340,12 +493,12 @@
\stepcounter{tocsectioncount} \stepcounter{tocsectioncount}
\setcounter{tocsubsectioncount}{0} \setcounter{tocsubsectioncount}{0}
% write % write
\smallskip\hyperlink{ln.\csname toc@sec.\thetocsectioncount\endcsname}{{\bf \tocsectionprefix\thetocsectioncount}.\hskip5pt #1\leaderfill#2}\par \smallskip\hyperlink{ln.\csname toc@sec.\thetocsectioncount\endcsname}{{\bf \tocsectionprefix\thetocsectioncount}.\hskip5pt {\color{blue}#1}\leaderfill#2}\par
} }
\def\tocsubsection #1#2#3{ \def\tocsubsection #1#2{
\stepcounter{tocsubsectioncount} \stepcounter{tocsubsectioncount}
% write % write
{\hskip10pt\hyperlink{ln.\csname toc@subsec.\thetocsectioncount.\thetocsubsectioncount\endcsname}{{\bf \thetocsubsectioncount}.\hskip5pt {\small #1}\leaderfill#3}}\par {\hskip10pt\hyperlink{ln.\csname toc@subsec.\thetocsectioncount.\thetocsubsectioncount\endcsname}{{\bf \thetocsubsectioncount}.\hskip5pt {\color{blue}\small #1}\leaderfill#2}}\par
} }
\def\tocappendices{ \def\tocappendices{
\medskip \medskip
@ -356,6 +509,6 @@
} }
\def\tocreferences#1{ \def\tocreferences#1{
\medskip \medskip
{\hyperlink{ln.\csname toc@references\endcsname}{{\bf References}\leaderfill#1}}\par {\hyperlink{ln.\csname toc@references\endcsname}{{\color{blue}\bf References}\leaderfill#1}}\par
\smallskip \smallskip
} }

View File

@ -12,6 +12,12 @@
} }
%% larger skip
\newskip\hugeskipamount
\hugeskipamount=24pt plus8pt minus8pt
\def\hugeskip{\vskip\hugeskipamount}
%% penalty before large blocks %% penalty before large blocks
\def\preblock{ \def\preblock{
\penalty-500 \penalty-500
@ -28,8 +34,13 @@
\@beginparpenalty=\prevparpenalty \@beginparpenalty=\prevparpenalty
} }
%% stack relations in subscript or superscript
\def\mAthop#1{\displaystyle\mathop{\scriptstyle #1}}
%% array spanning the entire line %% array spanning the entire line
\def\largearray{\begin{array}{@{}>{\displaystyle}l@{}}\hphantom{\hspace{\textwidth}}\\[-.5cm]} \newlength\largearray@width
\setlength\largearray@width\textwidth
\addtolength\largearray@width{-10pt}
\def\largearray{\begin{array}{@{}>{\displaystyle}l@{}}\hphantom{\hspace{\largearray@width}}\\[-.5cm]}
\def\endlargearray{\end{array}} \def\endlargearray{\end{array}}