From 4461f4aa73c1f699444eff4464e08ce3cbab059d Mon Sep 17 00:00:00 2001 From: Ian Jauslin Date: Fri, 2 Oct 2015 21:15:04 +0000 Subject: [PATCH] Correct typos --- Benfatto_Gallavotti_Jauslin_2015.tex | 34 +++++++++++++-------------- Figs/susc_beta_cutoff.pdf | Bin 69164 -> 69074 bytes 2 files changed, 17 insertions(+), 17 deletions(-) diff --git a/Benfatto_Gallavotti_Jauslin_2015.tex b/Benfatto_Gallavotti_Jauslin_2015.tex index e5d1acf..8974097 100644 --- a/Benfatto_Gallavotti_Jauslin_2015.tex +++ b/Benfatto_Gallavotti_Jauslin_2015.tex @@ -55,7 +55,7 @@ \section{Kondo model and main results} \label{secmodel} -\indent Consider a {\it 1-dimensional} Fermi gas of spin-1/2 ``electrons'', and a spin-1/2 fermionic ``impurity'' with {\it no} interactions. It is well known that: +\indent Consider a {\it 1-dimensional} Fermi gas of spin-1/2 ``electrons'', and a spin-1/2 fermionic ``impurity'', with {\it no} interactions. It is well known that: \begin{enumerate}[\ \ (1)\ \ ] \item the magnetic susceptibility of the impurity diverges as $\beta=\frac1{k_B T}\to\infty$ while \item both the total susceptibility per particle of the electron gas ({\it i.e.}\ the response to a field acting on the whole sample) [\cite{Ki76}] and the susceptibility to a magnetic field acting on a single lattice site of the chain ({\it i.e.}\ the response to a field localized on a site, say at $0$) are finite at zero temperature (see remark (1) in appendix~\ref{appXY} for a discussion of the second claim). @@ -171,7 +171,7 @@ g_{\varphi,\alpha}(t-t'):=& \indent By a direct computation [\cite{BG90b},~(2.7)], we find that in the limit $L,\beta\to\infty$, if $e(k):=(1-\cos k) -1\equiv -\cos k$ (assuming the Fermi level is set to $1$, {\it i.e.}\ the Fermi momentum to $\pm\frac\pi2$) then \begin{equation} g_{\psi,\alpha}(\xi,\tau) =\int\frac{dk_0 dk}{(2\pi)^2}\,{e^{-ik_0(\tau+0^-)-ik\xi} \over-ik_0+e(k) },\quad -g_{\varphi,\alpha}(\xi,\tau) = \int\frac{dk_0}{2\pi}\,{e^{-ik_0(\tau+0^-)} \over-ik_0}.\label{eqpropk}\end{equation} +g_{\varphi,\alpha}(\tau) = \int\frac{dk_0}{2\pi}\,{e^{-ik_0(\tau+0^-)} \over-ik_0}.\label{eqpropk}\end{equation} If $\beta,L$ are finite, $\int\,\frac{dk_0 dk}{(2\pi)^2}$ in~(\ref{eqpropk}) has to be understood as $\frac1\beta \sum_{k_0} \frac1L \sum_k$, where $k_0$ is the ``Matsubara momentum'' $k_0= \frac\pi{\beta} +\frac{2\pi}\beta n_0$, $n_0\in\mathbb Z$, $|n_0|\le\frac12\beta$, and $k$ is the linear momentum $k=\frac{2\pi}L n$, $n\in [-L/2,L/2-1]\cap\mathbb Z$. \medskip @@ -248,7 +248,7 @@ with $\psi_{\alpha}^{[m]}(0,t)$ and $\varphi_\alpha^{[m]}(t)$ being, respectivel \varphi_{\alpha}^{[\le m]\pm}(t):=\sum_{m'=-N_\beta}^{m}\varphi_{\alpha}^{[m']\pm}(t). \label{eqfieldlem}\end{equation} -\indent Notice that the functions $g_\psi^{[m]}(\xi,\tau),g_\varphi^{[m]}(\tau)$ decay faster than any power as $\tau$ tends to $\infty$ (as a consequence of the smoothness of the cut-off function $\chi$), so that at any fixed scale $m\le 0$, fields $\psi^{[m]},\varphi^{[m]}$ that are separated in time by more than $2^{-m}$ can be regarded as (almost) independent. +\indent Notice that the functions $g_\psi^{[0]}(0,\tau),g_\varphi^{[0]}(\tau)$ decay faster than any power as $\tau$ tends to $\infty$ (as a consequence of the smoothness of the cut-off function $\chi$), so that at any fixed scale $m\le 0$, fields $\psi^{[m]},\varphi^{[m]}$ that are separated in time by more than $2^{-m}$ can be regarded as (almost) independent. \medskip \indent The decomposition into scales allows us to express the quantities in~(\ref{eqavggrass}) inductively (see~(\ref{eqeffpotrec})). For instance the partition function $Z$ is given by @@ -292,7 +292,7 @@ for $m< 0$ and similarly for $m=0$. Thus $\Delta_{-}$ is the lower half of $\Del :=\eta a\\[0.5cm] g^{[0]}_{\varphi}(\eta\delta)=&\eta\int\frac{dk_0}{2\pi} \frac{\sin(k_0\delta)}{k_0}\chi(k_0^2)\,:=\eta b \end{array} \label{eqpropcoarse}\end{equation} -in which $a$ and $b$ are constants, see [\cite{AYH70}, p.4465]. We define the hierarchical propagators, drawing inspiration from~(\ref{eqpropcoarse}). In an effort to make computations more explicit, we set $a=b\equiv1$ and define +in which $a$ and $b$ are constants. We define the hierarchical propagators, drawing inspiration from~(\ref{eqpropcoarse}). In an effort to make computations more explicit, we set $a=b\equiv1$ and define \begin{equation} \left<\psi_{\alpha}^{[m]-}(\Delta_{-\eta})\psi_{\alpha}^{[m]+}(\Delta_{\eta})\right >:= \eta,\quad \left<\varphi_{\alpha}^{[m]-}(\Delta_{-\eta})\varphi_{\alpha}^{[m]+}(\Delta_{\eta})\right> := \eta @@ -331,7 +331,7 @@ V(\psi,\varphi)=& in which $\psi^\pm_\alpha(0,t)$ and $\varphi^\pm_\alpha(t)$ are now defined in~(\ref{eqfieldhier}). \medskip -\indent Note that since the model defined above only involves field localized at the impurity site, that is at $x=0$, we only have to deal with $1$-dimensional fermionic fields. {\it This does not mean} that the lattice supporting the electrons plays no role: on the contrary it will show up, and in an essential way, because the ``dimension'' of the electron field will be different from that of the impurity, as made already manifest by the factor $2^m\mathop{\longrightarrow}_{m\to-\infty}0$ in~(\ref{eqprophiercmp}). +\indent Note that since the model defined above only involves fields localized at the impurity site, that is at $x=0$, we only have to deal with $1$-dimensional fermionic fields. {\it This does not mean} that the lattice supporting the electrons plays no role: on the contrary it will show up, and in an essential way, because the ``dimension'' of the electron field will be different from that of the impurity, as made already manifest by the factor $2^m\mathop{\longrightarrow}_{m\to-\infty}0$ in~(\ref{eqprophiercmp}). \medskip \indent Clearly several properties of the non-hierarchical propagators,~(\ref{eqpropapprox}), are not reflected in~(\ref{eqprophiercmp}). However it will be seen that even so simplified the model exhibits a ``Kondo effect'' in the sense outlined in section~\ref{secintroduction}. @@ -382,9 +382,9 @@ B^{[\le m]j}_\eta(\Delta):=&\sum_{(\alpha,\alpha')\in\{\uparrow,\downarrow\}^2} \indent For $m=0$, by injecting~(\ref{eqhierfieldindinit}) into~(\ref{eqpothier}), we find that $V^{[0]}$ can be written as in~(\ref{eqeffpotform}) with $\bm\alpha^{[0]}=(\lambda_0,0,0,0)$. As follows from~(\ref{eqhierbeta}) below, for all initial conditions, the running couplings $\alpha^{[m]}$ remain bounded, and are attracted by a sphere whose radius is independent of the initial data. -\indent We then compute $V^{[m-1]}$ using~(\ref{eqeffpothier}) and show it can be written as in~(\ref{eqeffpotform}). We first notice that the propagator in~(\ref{eqprophier}) is diagonal in $\Delta$, and does not depend on the value of $\Delta$, therefore, we can split the averaging over $\psi^{[m]}(\Delta_\pm)$ for different $\Delta$, as well as that over $\varphi^{[m]}(\Delta)$. We thereby find that +\indent We then compute $V^{[m-1]}$ using~(\ref{eqeffpothier}) and show that it can be written as in~(\ref{eqeffpotform}). We first notice that the propagator in~(\ref{eqprophier}) is diagonal in $\Delta$, and does not depend on the value of $\Delta$, therefore, we can split the averaging over $\psi^{[m]}(\Delta_\pm)$ for different $\Delta$, as well as that over $\varphi^{[m]}(\Delta)$. We thereby find that \begin{equation} -\left<\,e^{\sum_{\Delta} \sum_{n,\eta}\alpha_n^{[m]}O_{n,\Delta}^{[\le m]}}\,\right>_m =\prod_{\Delta}\left<\,e^{\sum_{n,\eta} \alpha_n^{[m]} O_{n,\eta}^{[\le m]}(\Delta)}\,\right>_m +\left<\,e^{\sum_{\Delta} \sum_{n,\eta}\alpha_n^{[m]}O_{n,\Delta}^{[\le m]}}\,\right>_m =\prod_{\Delta}\left<\,e^{\sum_{n,\eta} \alpha_n^{[m]} O_{n,\eta}^{[\le m]}(\Delta)}\,\right>_m. \label{eqhierfactDelta}\end{equation} \indent In addition, we rewrite @@ -427,7 +427,7 @@ c^{[m]}=-2^{N_\beta+m}\log(C^{[m]}) which is well defined: it follows from~(\ref{eqhierbeta}) that $C^{[m]}\ge1$. \medskip -\indent The dynamical system defined by the map $\mathcal R$ in~(\ref{eqhierbeta}) admits a few non trivial fixed points. A numerical analysis shows that if the initial data $\lambda_0\equiv\alpha_0$ is small and $<0$ the flow converges to a fixed point $\bm\ell^*$ +\indent The dynamical system defined by the map $\mathcal R$ in~(\ref{eqhierbeta}) admits a few non trivial fixed points. A numerical analysis shows that, if the initial data $\lambda_0\equiv\alpha_0$ is small and $<0$, then the flow converges to a fixed point $\bm\ell^*$ \begin{equation} \ell^*_0=-x_0\frac{1+5x_0}{1-4x_0},\quad \ell^*_1=\frac{x_0}3,\quad \ell^*_2=\frac{1}3, \quad \ell^*_3=\frac{x_0}{18} @@ -467,7 +467,7 @@ $f_+$ (see appendix~\ref{appfixed}-{\bf\ref{ptfixedreduced}}). \indent We introduce a magnetic field of amplitude $h\in R$ and direction $\bm\omega\in\mathcal S_2$ (in which $\mathcal S_2$ denotes the $2$-sphere) acting on the impurity. As a consequence, the potential $V$ becomes \begin{equation} V(\psi,\varphi)=V_0(\psi,\varphi) --h\sum_{j\in\{1,2,3\}} \int dt(\varphi_{\alpha}^+(t)\sigma_{\alpha,\alpha'}^j\varphi_{\alpha'}^-(t))\, \omega_j +-h\sum_{\displaystyle\mathop{\scriptstyle(\alpha,\alpha')\in\{\uparrow,\downarrow\}^2}_{j\in\{1,2,3\}}} \int dt(\varphi_{\alpha}^+(t)\sigma_{\alpha,\alpha'}^j\varphi_{\alpha'}^-(t))\, \omega_j \label{eqpoth}\end{equation} \indent The corresponding partition function is denoted by $Z_h:=\left<\,e^{-V_h}\,\right>$ and the free energy of the system by $f_h:=-\beta^{-1}\log Z_h$. The {\it impurity susceptibility} is then defined as @@ -510,7 +510,7 @@ and, using the lemma~\ref{lemmaO}, we rewrite where $\ell_{n,h}^{[m]}$ is related to $\alpha_{n,h}^{[m]}$ by~(\ref{eqalphaellexprh}). Inserting~(\ref{eqalphatoellh}) into~(\ref{eqexpdexph}) the average is evaluated, although the computation is even longer than that in section~\ref{secbetapart}, but can be performed easily using a computer (see appendix~\ref{appmeankondo}). The result of the computation is a map $\widetilde{\mathcal R}$ which maps $\ell_{n,h}^{[m]}$ to $\ell_{n,h}^{[m-1]}$, as well as the expression for the constant $C_h^{[m]}$. Their explicit expression is somewhat long, and is deferred to~(\ref{eqbetasusc}). \medskip -\indent By~(\ref{eqhiercst}), we rewrite~(\ref{eqsuscdef}) as +\indent By~(\ref{eqhiercst}) and~(\ref{eqfreeench}), we rewrite~(\ref{eqsuscdef}) as \begin{equation} \chi(h,\beta)=\sum_{m=-N_\beta}^02^m\Big(\frac{\partial_h^2 C_h^{[m]}}{C_h^{[m]}}-\frac{(\partial_h C_h^{[m]})^2}{(C_h^{[m]})^2}\Big). \label{eqhiersusc}\end{equation} @@ -555,7 +555,7 @@ n_2(\lambda_0)=c_2|\log_2|\lambda_0||+O(1),\quad c_2\approx2. \indent In addition, when $\lambda_0<0$ the flow escapes along the unstable direction towards the neighborhood of $\bm\ell^*_+$, which is reached after $n_2(\lambda_0)$ steps, but since it is marginally unstable for $\lambda_0<0$, it flows away towards $\bm\ell^*$ after $n_K(\lambda_0)$ steps. The susceptibility is therefore finite for $\lambda_0<0$ (see figure~\ref{figsuscbeta} (which may be compared to the exact solution [\cite{AFL83}, figure~3])). -\indent If $\lambda_0>0$, then the flow approaches $\bm\ell^*_+$ from the $\lambda_0>0$ side, which is marginally stable, so the flow never leaves the vicinity of $\ell_+^*$ and the susceptibility diverges as $\beta\to\infty$. +\indent If $\lambda_0>0$, then the flow approaches $\bm\ell^*_+$ from the $\lambda_0>0$ side, which is marginally stable, so the flow never leaves the vicinity of $\bm\ell_+^*$ and the susceptibility diverges as $\beta\to\infty$. \begin{figure} \hfil\includegraphics[width=250pt]{Figs/susc_plot_temp.pdf}\par\penalty10000 @@ -681,7 +681,7 @@ C^{[m]}=&1+ 2\ell_0^2+(\ell_0+\ell_6)^2 +9\ell_1^2 +9\ell_2^2 +324\ell_3^2 +\fra \preblock in which we dropped the $^{[m]}$ exponent on the right side. By considering the linearized flow equation (around $\ell_j=0$), we find that $\ell_0,\ell_4,\ell_6,\ell_8$ are {\it marginal}, $\ell_2,\ell_5$ {\it relevant} and $\ell_1,\ell_3,\ell_7$ {\it irrelevant}. The consequent linear flow is {\it very different} from the full flow discussed in section~\ref{secbetakondo}. -\indent The vector $\bm\ell$ is related to $\bm\alpha$ and via the following map: +\indent The vector $\bm\ell$ is related to $\bm\alpha$ via the following map: \preblock \begin{equation}\begin{array}{r@{\ }>{\displaystyle}l} \ell_0=&\alpha_0,\quad \ell_1=\alpha_1+\frac1{12}\alpha_4^2,\quad \ell_2=\alpha_2+\frac1{12}\alpha_5^2\\[0.3cm] @@ -762,7 +762,7 @@ which we inject into~(\ref{eqfixedltred}) to find that $\ell_0<0$ and \label{eqfixedlo}\end{equation} Finally, we notice that $\frac1{12}$ is a solution of~(\ref{eqfixedlo}), which implies that \begin{equation} -4-19(3\ell_1)-22(3\ell_1)^2-107(3\ell_1)^3 +4-19(3\ell_1)-22(3\ell_1)^2-107(3\ell_1)^3=0 \label{eqfixedlot}\end{equation} which has a unique real solution. Finally, we find that if $\ell_1$ satisfies~(\ref{eqfixedlot}), then \begin{equation} @@ -811,9 +811,9 @@ for all $m\le0$, which implies that the set $\{\bm\ell\ |\ \ell_0<0,\ \ell_2\ge0 \end{figure} \section{Kondo effect, XY-model, free fermions} \label{appXY} -\indent In [\cite{ABe71}], given $\nu\in [1,\ldots,L]$, the Hamiltonian $\mathcal H_h=\mathcal H_0 {-h} \,\sigma_\nu^z$, with +\indent In [\cite{ABe71}], given $\nu\in [1,\ldots,L]$, the Hamiltonian $H_h=H_0 -h\sigma_\nu^z$, with \begin{equation} -\mathcal H_0={- \frac 14} \sum_{n=1}^L (\sigma^x_n\sigma^x_{n+1}+\sigma^y_n\sigma^y_{n+1}). +H_0=- \frac 14 \sum_{n=1}^L (\sigma^x_n\sigma^x_{n+1}+\sigma^y_n\sigma^y_{n+1}). \label{eqhamXY}\end{equation} has been considered with suitable boundary conditions (see appendix~\ref{appXYcomp}), under which $H_0$ and ${\sigma^z_0} +1$ are unitarily equivalent to $\sum_{q}{(-\cos q)} \, a^+_qa^-_q$ and, respectively, to {$\frac2L \sum_{q,q'} a^+_q a^-_{q'} e^{i\nu(q-q')}$} in which $a^\pm_q$ are fermionic creation and annihilation operators and the sums run over $q$'s that are such that $e^{iq L}=-1$. It has been shown (see [\cite{ABe71},~(3.18)] which, after integration by parts is equivalent to what follows; since the scope of [\cite{ABe71}] was somewhat different we give here a complete self-contained account of the derivation of~(\ref{eqdiagFXY}) and the following ones, see appendix~\ref{appXYcomp}), that, by defining \begin{equation}\begin{array}{r@{\ }>{\displaystyle}l} @@ -825,9 +825,9 @@ the partition function is equal to $Z_L^0\zeta_L$ in which $Z_L^0$ is the partit \log {\zeta_L (\beta,h)}=-\beta h +\frac1{2\pi i}\oint_C \log (1+{e^{-\beta z}} ) \Big[\frac{\partial_zF_L(z)}{F_L(z)} \Big]\,dz \label{eqZXY}\end{equation} -where the contour $C$ is a closed curve which contains the zeros of $F_L(\zeta)$ ({\it e.g.}\ {for $L\to\infty$,} a curve around the real interval $[-1,\sqrt{1+4h^2}]$ if {$h<0$} and $[-\sqrt{1+4h^2},1]$ if {$h>0$}) but not around those of {$1+e^{-\beta\zeta}$} (which are on the imaginary axis and away from $0$ by at least $\frac\pi\beta$). In addition, it follows from a straightforward computation that $(F(z)-1)/h$ is equal to the analytical continuation of {$2 (z^2-1)^{-\frac12}$} from $(1,\infty)$ to $C\setminus[-1,1]$. +where the contour $C$ is a closed curve in the complex plane which contains the zeros of $F_L(\zeta)$ ({\it e.g.}\ {for $L\to\infty$,} a curve around the real interval $[-1,\sqrt{1+4h^2}]$ if {$h<0$} and $[-\sqrt{1+4h^2},1]$ if {$h>0$}) but not around those of {$1+e^{-\beta\zeta}$} (which are on the imaginary axis and away from $0$ by at least $\frac\pi\beta$). In addition, it follows from a straightforward computation that $(F(z)-1)/h$ is equal to the analytical continuation of {$2 (z^2-1)^{-\frac12}$} from $(1,\infty)$ to $C\setminus[-1,1]$. -\indent At fixed $\beta<\infty$ the partition function $\zeta_L(\beta,h)$ has a non extensive limit $\zeta(\beta,h)$ as $L\to\infty$; the $\zeta(\beta,h)$ and the susceptibility and magnetization values $m(\beta,h)$ and $\chi(\beta,h)$, are given {\it in the thermodynamic limit} by +\indent At fixed $\beta<\infty$ the partition function $\zeta_L(\beta,h)$ has a non extensive limit $\zeta(\beta,h)$ as $L\to\infty$; $\zeta(\beta,h)$ and the susceptibility and magnetization values $m(\beta,h)$ and $\chi(\beta,h)$, are given {\it in the thermodynamic limit} by \begin{equation}\begin{array}{r@{\ }>{\displaystyle}l} \log \zeta(\beta,h)=&-\beta h {+\frac\beta{2\pi i}} \oint_C\frac{dz}{1+{e^{\beta z}}} \log(1 {+} \frac{2h}{(z^2-1)^{\frac12}})\\ m(\beta,h)=&-1+\frac1{\pi i}\oint_C \frac1{1+{e^{\beta z}}} \frac{dz}{(z^2-1)^{\frac12}{+2h} }\\ diff --git a/Figs/susc_beta_cutoff.pdf b/Figs/susc_beta_cutoff.pdf index fa764ee44a75805a0c0865198631f417e0c9c3f5..c38efe6eacc6d2521f5f1192fb9c1aa445ceda94 100644 GIT binary patch delta 13467 zcmaibWmH_v^X3fh?mD;xcMA-zK@&W{Ai>>ra0w9HLU6a>?rsV0ZV47(kl?bsKl$&T z-4FX=&gs)t_vz~Dr}}nv-KqSBFq4T8PY=f>loaSdpPKcnN&DPt$<=ydw4D^-!|v zvFY$K`&d$aW9Z5vXngv!-S46839qknj)-zKp!4Zsb5z-r?@0S};~`VcGv}@L6mU=A zW%}jmv2A$_ir;gF)OVJP$3Y+J^>~=}^0;Z(*62GfKD?Uqd}F_FPw+ImctZUW@)GxQ zRRZm~I4SM8^z25w40(}~5OUkv=_Irah=0I-KF$dcu0)u-!A6eVe!hkOyBzU7ZnbkL zQEs!n9h+Z>`)J|?ki6BKGW8i~x(la1akHi$jT9LRMF$tH=VgW<{?mDRlicC>$*=DG z1WJ!0?)3hm6(|y&O`Us>T!K{kEcuoyS93E2$ok~$5!lAQZdSH|#a7E9Ccl65 z)`5Gqmt%pD`PLi70E_5z)f;v04S&|mW_7!dK}x?)ZMb%m?KVk@FI(FP&bYpIJLam! zZ012Lro=HnTnnMyT`VMYH zp#0V6fKlTP9CQ3@WE*rkt#0};=;GAqb^#&Z{-uij6ZyI)$z_Q{@q#m(YDVo*d z0v}`RI(?h`ZvY!Z3-DjVC$;VLOf-{XRubOHF~Z0$zL^ zA7cBP5GnReP@}wg!KQ|iXk0j1yh5{A*0(~~mp052d;uuCYXH+Y8-&&q3yhP`CuvYb z4{r~G-U_ct2L8+2!Iqg-h90_=a(@RqLrI(SE_>7k+Sq|1M0)I5Z4Lu2&L|R{c&XqX zM(Ad3*dihH>eDnhOk565QOF8IYh2T3z95GiDtnp82=*@3xMo;;@V{jY zx;{UX#g*gwI(MHfko39&c8Twd@^0oh1D?8}#hZL6HTu23lwS(ruqMDaP!z|C<=cR9 z#V}&j1@m8fP&?~PiKBOZ%r(U%E{$N7dF4bjbcgfGr>vSXFyXsS7 zun+h#{>6z4ZwHC|DlI4>!cYDL!a$XR!rKo7YK@bV|mEP$e-Lta7#tBuN=Cg=NDa#ThGXbdCw>V+Z;kxZ~ z4}UD`{>KBy4G%vk7EC0y=u3niFQ22Rxc>p>Qh{(zs%TfTZ`^>kNSB=M&kIjazp9#+ z1!$(m28hhbzN{Y77Q?&S#prbguw6T1^)Lx%S6FbcxEHI0fN%DFGltFjvzSO$;d)in{e8t| z6{y!8xI_L)JB=SEGx<@C~xTrV44v6{X$aaCgGh{_by%#Sm~U7?ulnC|zY zQR-+>qQJfm80N9#!s*I^nYeqk`V=aD&lv>Pjv~#vwo8_L=#KU1wL{|k7DBW=_j{|8 ze8B^%R@aZ{+oep=Be)fsZ^F!)jj;LjSvMp-?|(ZZD$75%SU4y~T(O z6nB`uq>{Mu2~#wgFO_6T(DN#hQ+G21aJt z=7y0eDgeff9qQ%GLqYw6`jZ_Lm;u-t16U}(t%N9dbSG85+irJt^hdRmi#hwEL3Elu=Hjd zLH3z_PO3_1W>4sRd>{vQ+7~IJ^CohfHr$K|t*?v(Ac>q`lDE_yq+dpe{1fM*4-IcT za7Ud?piVektAC6R>NqaSytFKHP{HrG*2eng~)UOU8VAJLPO`W>u#r7WjAHLtI*fFidjk#vwyb{r2FC5?f!`$$%K za&_d&PYvx@eOP*swEfQN5+gI%k$!0Dh?L~xI*1kL7>(dTQ2k9~Vl0EqNx&bi0TkZs zVRBN-!1zQU{x`(n+jcO5N)sW)MU^wr5uLA@m#({8(-IMsQ3QqNa|Cz;APGB3fb!TY zbNL(*zPf!Bi5f1HJq{qPH;wO*Gzsp->fZi|4v*-(jr8f43F_xZgVHd4=kIVnB@T24 zgmjE!Y73}M`Qm+2wh6FOfrXv_aVPz8qSF_Qf|7wYE&?)@S@FV}kaDlX0sdMJ$wMG3 zRDIvJ2v4D9lrlP*XTdit?1=#4?^-kNo>{NJH3KRqzGVPiI3y4q(MNGDk&1vR`Q)3l zDVR?wAb8JoO-&I>Bg-CR|6Muyl89-;Xn%E2Oz-_ z{gro$@1$aC8WY;o7lOrdU7==ZapOvTEqc<3KORk=gR7L)_co>2=alLyVN!x(6L&n? zdmZ+N?~M_ER7SK!*mz+igy^Q_j&z6Vm!{Ci^uKLM@OwYxhs`jkl>!GKcH*>;-+G7I zD=fePOz@0uP-jy0+ilFYuk#rV|Fhv&E{6jjK9e7IShn{r=8e#7;~-Snn0j>G*J}ns zkCjYFWn8*F_qT2CRM=weCn%?i{< z2+%%K?yaMOIC{ZI4<+cuJyC&3TPRT)50SOSAl>)!kP$jZ{{X4JEDDc&2^3MKaPNMK zpz;t6`i_%WtY<5}@|YgHn4GZ}cY8B*EZN8sR_-$d5>xXpWw-rbQw0vH}7}U}{fnHP?(Um{ZX`S;WE&XAU zi%foM%QzJUOzlpKY1}2btyGDnAs+2Q#l#jrg)#!Z8XG!5M`(XaksM~wp=5xtltjr; znZ`|!)?C&~rtlaecbOs(P2)q+xsx<}IEL3hQm}l4lpY`ub@W2g=A~SOuo`ZjZHC$x z%Fw8b9&B%>K2?Q1^^q3AWpbtu+ka)*kdDpKM($uDwcWhN4=J{MXQKbdIVXQU9br;n zMwMEU+s0r+-~2WtNj7L>!!yiCQ~^UES%~@|ebsa$;$8 z74pBUtZg%BL=Z%V%dSLbh&A2Nts{_7|HfWc`EsHkC=wCo##gj74KmO$p_U>8L+{t?D`oQo9hx%#u+s; zMx73YS!k%+LbFWGN|8NdXz1r+k06$oj!kkYwZV9aN>wUGO{?vtX>2KjO_*IeQ9p8p zmBT07-w)3_w$0HYCZa2hJKpXji@`%hpf+~%*w-_=al~HPs9=Q5*KUKv5)mC?F}hZT zY~s;NT5luz$!_t{S##TB%-=59wlFl|*&ZBWEhv+}>Q0SqY`uEUVmp$^cF5u*2nG-v<99bpICs^#6r@QKDB{+9(JXWTh*~ z2oA>NvXeAoNu8eXPm94%Xn%|!OKO>wT+5NRn z<2I_Cji!UiM^3Cf1Xn#lL?BT;J)^ADPY3>w!phQ)vLw&f#LLATtL&D|Gf8=RYh?p9 z-~1T@Dzq&c_V12Qjme4Td<=*CIbPXQ*tgb{5y8^dGh%O5`_m^Tgt2V`3Fr%0grQFx zI{kd2$w#Y6C%9Blk%uHWUGfeacDcQx-|Q-H={OYSv=RfJqmK1>0xwVm&l4@{^)d>a>lF{O9zkOByw?e|73=_peXhsGS`u>P{U*aCjgpG#ZCR?sF z-@MU+sYm|1rF*U8XUIyXuK)^pvtfeE%3|NBN^aupC-j*~378nV-EaR%D&+JNvS~5t zfmU1=?1^SY?{wK^tIs?=$X}T*rq&jkEoqWPF1--@RF_IjixfW@ey;mK{A&|h=)DtQ zYp$b}2`#`vmN`%V7?w63mXNPyF={i8*C+qgG7P09!lN~8^xKKNXw|ik;GP8r7E0Q` zmXKOEt;T9lNQ;*LCkD@t0pPN=e-6oS-sJpQE9IFpiQ5nc^rpN{c^(-m-i-QfPxhe< zxp&qsHic|@_IgscBbPsFQr?7g@$l+TSx^;01A)tqN$UAZiSwzH-7g~-cFuAmG-1nK zNaRgFv5C|+j_h)h|2=GEwwEw%lYp*`HJ6m%3!2_#$X3!SD7LKb)m^CDbkn><@9PJf z?V{;!!pe(lzPVp$DB0IEzt^bynt$~WCpMXAsD{&nCfJ;H%U!^ZDc7*7`K?1U35kFZ zYS;F0GB{PW@pk?{L+NIhM(9aR#@O-4nV?!{hag7M(Kzg`YyQVQ*_M5eTn^7@l?x&C zOE>HG=0{}d$Uv2`*EukR#)+vJTDJ|O#1-I7<6qOa`u?!yxqAN}Qg}xNpBhk-uL&gP zDg2eWPtC0Sjaw#D_U{!(hGI$>2bVYp#Ctq+mAcj=g%ArMTioydhY$Hoe*}+~EQ;?? z&}~fGoyCEZmKbk8Bv&^5LAY(|PI@9xNunmChTb_UZG_TbJaq+0FTIV6s~yi#V{x@f zM8h9<+eyFEwYeOXDPC%v3fcCM^W@}@;m^L~tvM^lRU;#4#s@&CNNjnN1e_==1&amq zL_u^o#mhFMS+@vBVg{P>r(W+#7*Vw*%05)hZGZ2Vr?}ZuU4nusulFV}CtrpsiYK-N zpcq=$aLYAl(!WA}dF1o>6v<6Zqma11<1{uN##G3hO*7vHZvOlr<+7;0yn+<>p21Hr zFhUS2fAS|t`>&`C6JMTeH}S)|6DirgLgLS(F&Ldpq6$ti!gj1e>MH8O%qL8t^W03| z)Rm~&n;5L+1(*e_M71?Cw#+0wTCwSp8Tv=JpKUIDll%Se8wc3@Qu=wuoEAOVZwMJE zA5!<q?- z(qTzd45TGuB>!*1^llX>LAisxn^JOdi5w}@&&MUxZ@%kI;hzs3{U=pQVR9S2NnlL) zRcfLHBghHWOGk>-O}8@ynC_Fkp8PukOgZW?>Ug!pD9bA!2=R);A$W}BI#zkJ&5*F{ z@7VHy4jC(s{k|kiwAXRbe)qu*fPL6_rp6K^hPi(3~;-dj*CXv&bn18Z-6Hm=qM3%X}sfj*w zzDb>X6rs{HJG)z+cE?K}{M*Q;r_+9=Tg58Z%T^~Yb^>Rv<+cF~hL=>*HuX0fO5xA% z$}^^uF&RVKdmU|MRM7b|UcHwep6J_;`LPt=@pG@gqD3OiyaJ>8YBYdWpcs)>fYBf= zGOJ&%y~sWLd%~YTkm03pBRgSOc`GlZu9mwFQkcW1{FUC=k-0;AF~#? ze2ub>Pmda1U9_bSoS?^T*OoJ2}&l@G;?sV5Xn z6|l|nPf4<fy+>i6K6HVYA#o#Z#!9*u2s{jW~$e|2&} z(xZXg{;QMKDw}y&efR^eOE{jncvA($U<+-Pxd_6?}FSAig+ejlafN8 zNJ8O!jhI@3z^t6L-0XAaW_8X{i;Ab1)vkG}E`aF_&rACEURkGDG%B{rb}HzyZm*`| zijH<$cyP=qVQD$>6sr@vL%$l<;GS#v7+1pvbNAjhV(-V|(pGB)VZ|fUQY_-5n$6icXXs zW2&KF_~E-3bh+55yIdQoP-FNzHdw1h2aWAz_*^R7i=5HZ?bz9b*Jow(7F_w{aA}^N zZSMPN)T`~olTGmqg;r#M!xro*!o2s^_DfKt*^yJN8cpk6}yuQ%M^UvhpM(Gj8Q29h>bT&||G=1)+ z&QSnwLaWa8-eQ8u8XWQn02kScCgnae>PM#&m@ot7gNzyKn-wRda7FNbl2B;>cm4?} zeUnx``iI7{zvotXcf1FC=Q-!Sw@i-;JJGt zVY3W?M?nRkDaaN8{o1#7{O(J&bZZO4eO!>~eOw#s1wQ|8BaR|J%CbTBS|}e*0(5U^ zd=f9+w^R4h9YowL^T-WWdD6J?2uK`SJ3ax8(*!qrjyuHOn&pN{7k;PC+JAjyoJPNN zeq5HRpC%ZqVwLuM7=#*e;Kx=hB(t~a5=ms^?i|U1H9ZKWX%mtmjyOOTlJQ%-I#zh& z5Ore~pMFztTKCKs)S4z*Z;Y(z{HB3Aq`!mOo$kgG^+%`Cz=dVwTxt1iux>kA&gO|7y~I&_c)` z#>R`Jl28KqJTeCzoQJ%2#Qmq^8wdvyTK5-WgA9NlNz2IFJs9l!+P5u@;%@LAh#Ps& zjpndP1f4{n6~5#5Enxu`(q~-ex6D zY=1BVYU7LKz|2<;`A_qCYLL3^R+<=ku!H@POePI!I_Zg$1bTH-CAp{JQu@M+BJ()h z?fo1tQsDRY?c-nA+R0+UZn-hGn)fs1Y=m3aAqe~G7;>?<*dNnh9ntGM**V((&~$FSU#Owqa`4jqT!P2 zFw5+%LDeHC78SyHYG!R~8!5vSa0@53A~6UwB1c+eXlQT3rC#r1qDD1yT%Nv27p8CQ z3(FvVR+KUSXo~yFF51`2oPjh{iIi`TUt|jvj`#ImrF#E|bbgSwO;?6E`oI+TBU^s7 z?3L#jE!<0H&gYL2I;|74uLD76BS+d~=xAS3<=wipS%VOKy#?E!VA?C*R0)!%RJeL+ zUNW|>vh;0{ zGQ3zD!T7%#$0h+$=roFg^c8e9(wQb9XJYqw==+yPCKuH9WeooSZ0s^T0Y!TVkWb3N7K+1&c}N5ptt}#sRKeMf|=nT@CofVDLBU8jKK^-R!pZ>Fjg zmJZ6i5-=XO8A8f9tqp^uCGaz28kq_6(vR0u(>oYwg{9vp37MNXsttZQS*>u(WLB9- zL|c26Vu-wEq_eBERcOi!nrY?+tDF%E@zk!C{081QwMfw+U}>eX6a7kMo7C9Wc*`Ppf>-LVEFVE>%iBRm zzIz9mEY^<-wzgwt18~N>;@00f>;Y))o*kh_LP;vR-uq`PF^6emxH)=xwbnlVHXFQH z_~}0VvAtZR@Kzs$Ewo-(=2Z#bW70MF8(8L0qKbDE$nOfveTOjl_AG?Yg4>19&Ls?? zyb!WL9VN>6#6#iRmHE4Lw_e3X-MUaicf90Y9! zZy9|RY5$`xyF*F0wjIJY$XGh4WZQvGo-L%}y+?&oDy>7vmFq73shne^!#x~7Nq+#d zx3l^$TI>$+m-ZlLd4Qq1zNA%kRgr@)jY+^kQ@C26W!|R%(l@^u$wcgKaoY2|m$KL9 z^f)qnPSEj$}X2VejY+2w1<`iND51dJGH1|Aa7K7aX+1AN+)VmT1Qfq5SVzR@tX2Lo*;|yM?#GGE|t!# zR(7<_YINbB4K>!>c*!>H)%WMkk0gqY%7V+SL$7C6mhB^qx4bU`;F6n4cX^fC2(aV5b=Ti*KFyJ&JhYvn$u9Jb*RWsV%WdiuiCBJVo}4-t#Z(FkSS zJC=ErgBm4!JNZ1WSGLpqH$Gm1O?5dY0ye{Ay_`bi!Cr3bZOkI+WF5EL#j5qAp?`Abc2V27#@sPK4oy z!Yyb80p%cmm8t7@S#Ld<^Dj=n7z9UhOlE%0XOPnNYb4iHn%;wkP$y-sn$Tz^!~YZ8 zKt(y;uip?4sj{TBbdJMUOIn?f9|i*NOoOCZHaX_!Yk+zF8@NUU&Z1#-dLBvg7ML`Ei2|Q9}77KQKEeb zWh{9UPQ$G-=`2~-NJ>8ud_S=#Gh4iUZOx%GV;$dfo{+F@i-G@~dh}`^9mz>!<112% z`NqfoQ10#hw<-+feGB2uyuH|8Uzxs#SP2$XhITrcslhoS*HyV_4BlolOJ`IRtna&e z=DDGhz@d{ll=y{D@bbmK&f)%gOi_6Kd(`#H`=ffg*sq@c3yvLM&UsGz{Yl?^59IFG zIzsoRu)fpwrA(jTX79WvHGOV1`#SjhmoB0#k;~njrxoNp;vMakfb@Ce3S~9IyGe~z z4JiMIc(U9rBmLJc=&#b&14sXCOQK-+gByVXP5H8qD8x3k4%_VJfc4KG3~BT9?A>R_ zb;B=hAm|71)?5Tq_-09~D2A5Hem6RWF;kOY3Yc=3@I7J~DcWgKXZtjZZKzdK$<{6Yr(JD;H>@4p zaKp`|{Ft9~UpGphateN_yv_y>kJV|*u8sA|q06@CgCEG%BcEApJ6z*ZFV&@;!x5I(zqDvfV2G#b`>yV0_}h%xIr=Q;Q9-8_x9X+m7| zF>tBiCrdsz}7^VE@! zx717y*Zj!W_zcgoneYZDb_ehSqCRobr5l`N`cAYrXigY&!e9{ijqOmooW4UVC-UYq zJgS`8JNIg#+|$PLP>Mvz#UsvV`fo}(=`*j1xyb7~rfLuH-KOT3gPaSX`}4=6abjh> z1&cA15h^+M^=1-}&+xdertYrooT<#ZgtDebi-Q%aE8&(`Bu12q@ zwZu&bUCh5Pm+1M9_0*dmJQPbH%}I+Fiflbn3AzA-{}xYitmfi1YneJ)a5}^JYXR_s zra*M+0m#2A3Je$tpU36dv^@d&kaU+211cWcVJW}d0~pkC?gW}eQMPOSPJp8t0{dxQErefn+cgt;7BV_zck^`fMyzM zg|-`Df#uBqBR*w~dL_aC2G3M#WdIG$je0}gF@xa~R0C0vvxjIl$t?54>p11Aa@z38 zb<+=I=)k~Qxt<#K-h(ooKq4C`eWq_Du0RKz=`SRk{lP{4SO6vi8PNP=FzpMGO`i6* zlE96!RU-#LevC__CqU5~q3UlG4iM|f1qS8|$2=k%1{Q6v z5`zpfY}21l4PD=@5lEO9P(a6c1b5Bq=#7bX&MnBqE2{ROO=-pHDn$e0}{JoH-o!1};VUSZAs>NdACl!muGg?@L^j^}`hee1Rvs&La zSL^D*y9BO(w|?dGwGtz{AV_;2CD_;cSk)2i-n(1B7Wi%c^^C=~Uo*gmO99q$b*C3U z_?D)k?*b;I=LRA&FWP)&|9!7P5oEkCqq3h$yUyVx63{VD$u4{d!F?lW3w> zsiAZDYj&U-1a5vf*9#8BzHLMRQgsUHqRIvXKJi3mc0|I(ODf_xk63nK1U|W+{~w2Hp!l3JL+XDZg*`oVztbM!w`GQl94VQf-%KLiCNc1ciCaa$lDA!v;SH8@nT=c5K50xIW* z4ig@N-PG%EE|yfG`e!{JLfd@YBp!ka{tO<%fw+{#T_3cMH+w7b0Io)s9;FZ`3Y`m! zd?Yg!q#!hGrl0Ku6}w_nu^J=QYd{Gi*tOxEQa<+J`4Yz8-jXGnjXY5 zzWrnhKxPbD5Uaut9NL$6vlX~Bft|`Lrl?AxfH)W|Jjz3vkxn`nO_L76esQi7Bj_l2 z7?lvNIGL0*m}=s0ZanAxjT6>#>XBQLihejah0Yro1|4E_v2{a%O|WbX6H^Ay)!XSm z1hUD6fj>K=BODc#`4YmdBgf(MAgHuFtmql2XpG{RBqyz;rqI8df)T_jgouQofWHm~a5ppmm~t92j7kbuOh-lFH1yN~SZuibyqMl|II)89n$1f-`q&NyecHM>0e~M3!A9a5Z@WI#%*yHs1oJkU$v= zWlmY^h83X=o67P%$`vWGfu5Y|cj#UH!Z#64?XPZ?$`_a#VM}fnnPe9sx{U@M|WENuAR!+Qc%XW%^a0p`(E=V0w z&mnMnNy;b|0Q@v7DE3#w1<9*v-}gBXdtlTY0p-1Kflcj^E4VIO?-(nEP|wjOdowy@OaCMo!niZid-<5aPJe! znzFAkAIf`qv580=9KAIY|=exTrn7ur)(jm?kH#+lINei;MYw*ptO)g($eSE286+x~u^tR|VawC2~c!oTUN+InQ+Og613( z2-qb6oN>pCg8Z$J^q9xMWV1V7ss=yj!lkSN)otV1Hj)M0W-$q+}F9pikG zOF0Dpq_N8PJjk^^V{K%A+*r;pH)8a*Qr0gwmk43(gB9Ztm);$aMWGHZnDI4;uaMiQ zxIeWLQVbY3f&muZH0yjbtcbSow>70H7NowTa_n?(Lg? z^F8EO_9GVj!+!sNvH!jY+F@uth-`B0Q94&TfXowcRb_JytkXRQvJ5N12M-k=&Rbz$ z#l739Etk67LihZ$lfowF3r^V;Kw0Uk@;w9|z7p;iu*=&f1sNo_VmLJhe~Y!PI#XlF zYA-D74IZn#0EE!WagKP8l^sp>>r%Rw z$Lr=z!IXuX`XL?JV&Hn_Q6m zZ#{|t&oqJ%7YA3GI5Lo)ft!nqhnt5_h=*IBh4Y=GxeUb30>msM!o$VQ|39*{2xOoX z^*;}RnBQCIf>f+MUhm^xHCRB*E*2gjejZ*SmS$`eARMB)5RZVMv@{o&46huQtR%0n zkR%`1KLZHKO3Crc2=R-9#Qwi3A30Sl94y_eK-@e+X%I{x3ltX!BthK18RAKW40Yin z1}XHt1DVnQ-?xtUri6f|y2o|=trhR-H50(7V}|EIy$L2nlj?qcJeZs>z}KFNSI+ApigX delta 13480 zcmaiaWmH^C(=LO%yAJL!xceZ%0|bYl!6CS_ad#)dodkje4elXGu;32Cg9V4coxJCK z@BP;ObAQZQd%C)+pQ^6zU9zX&BUa}kCNsbbLeicD7*dq^fyprs{v)*15eBl}D2*@6 z$j_%6z>}#;t3-Fu9nkW+dHM9528aY!gd#VOkS$M4~1cUsno?QG3T=Z#RoiKKsZA;MRu zCynQu-$!rQ0S&lr3e@f}<jTu>lWY<=Sk{m zrr-%Q+EQ{cvHpj64Ce{s&&Fg(+>LJToy>{UZ7p#BvkqT#U5b)F@?jfi)`sSbr1K5A z3VGn^iRA3YK&99-f@Ua+o-8|ZbOMI7$hx}&CplOU;DXEWigLy#{yR9nu6@y!b3QWE zg3#FP?<6HC-TQK64|$)%FDUqsCYQYM9_7j>SUC^}x$<&&5p>w>kyPd`Vqli9B^C#&+pPMSjHQ9PkB({w9kG=8Q4S|-~6MKhR9sRaXT_K`8 zK~cab*#~}|#ch_AD6IvYGLxcJGyEvyqnZ9HNAH%VNk^B@o@Ff#tuC~^R*r=WU*Lb> zd!%Eu^YqLiv2_3NuR;2vC>P_2^sU|BlXf{qqxv-K&HM@1pN*yCKY_oQN%jnM6Dl-5 zetsHk`)Tmp2UrGXiqddSPP5x6RxeT3V^I$QkvP{zNj-b*4tKj35)r2Xhy+{SnwzbG zeuz6R>AzM#|7su3T=c~8-zEq4^A}EN+qOJ!>Np+igm2w;J3~kScd|M5i2i1z+~(dA z*D8C;X3h;^6cweh_aOXjbgkf!{oLN1a*h6B-)ud(yP|VB(miBce;xX-PTZEZdXC)y zN8RY>5>(Scf3B*WVeX-fH7*eKl}hM}YxyvGku8y@^%b#=v=0&>+SPspOy16s^u9+k4BwU6w3J_PA__B<2t!U)fM z5O|2F6nU9>z0jQ>pMoSg6d{;6Edltk2$N`rx7_LK_`shG?`Zp$?}45^1~P%gcwIT9 z?ZqeS$z@?E?-Y>B*n!hn0_VhTHo4+a{yH9lDT8h(Usa$~DJ$eJ@faghxI8!It zgs4)RGi`J5vekQ~drU2}cKueqOK)G|D(?03X~BUImY{yk#zh&R1wyeY1pLEWejs+O zyJ>C8hYA>o+|d{4IIvNqr43Id{57>Gw!d4Tt>{rYL(iw2S*ke*dN~a8ohK1$ReQsP}Ty zc;xKV5OjH+CAHplE(ARO0a^<18^1DU3)s|rsp#&Yk}SGRynvh{zP=i|daofEnr2*` z_8kG0{PoHwdzwhi(5UE#k-QR~NS0CbZm!|(Pjxe&rJgiC4?A3U%C%@&_5?)=bR=*| zJ$>{J#HOFHX_?+5+v{L;1@`V2 zBp<1R@15V1o)1k5ws z(VsTVv0kRqEU{YB_@W#l0PphCPeCf&@R>v)khx{ zioDZjbLXJIwwuqI;Q5yHwCgmS1@B^Ma_EySXoT6kJyYRC+REzNwoP$t7+`XAt81>U z)zz~7hxo*<+sl1;yK?9$uX7v-m>&!ZTa`9AFh6|^jB8I&4g%I4qmg<>FEA59iu&(+ zHbYig9#@TsR$|^fCyd7ybSm?qKA$_GAZT%_wByszLgNOn-`-80L_25RFiQ583syU+ zisx?yJmW^17@j|^TNOu+OJ43yI}c>lL{XR59z|gXAJo2TS(z{Eb#`|ZmJ8pIhI z0qB=PRt>Js8G*Gs!Uur>BX5kUC?65&j@BQmmA8aEmeWI)eq`I-Ue4U4X6m-1aaO@S zI3-gVT{sYifZI9Kv-h1O;AD0I%By^d5Y3sfBeVfjI}r}*dcL8es;HtM#3I66!)=wV>5?*2}f@C8+gl4bI85=_LKX<7v4UN zC$bS!X=Y00PPz4BD4Q%g?JM}lwk^8~2Bf5IcS|KdI4d|Y**i$;^kQ0e-lovJVC@N~ zc0RM;cm(vcsZh_}4Hy@3*1LRSh8K-NqegW`FrS|_3U2>2Zpna}r~5~6=_f>#1KW_$ zAC5RmDB#>O;uRX@Mvoc7*eGPp@B3jRj0bhXiuyabdN7q5pO6^`?M zp&dlB)giK=V%~|+rDS^rK}C0L!u%BF{1!6r=>UW>UH9uHiJ<6@QW=8Qun=z%F5z1f z&nPX&`YA5$F^ps_`*QG|$TYYyI@-SC2CMH=MQYotwt?85N_T{-udwCd@6oEs6c))W zLNT?XP3#r8hO?S=ebj66EhZ87>2oo#@HrZ*6iBBmOr$MNk?o4qAG=H% z`hnvv4JC*ILjD8=!@`c7lr;|*T#R=@qZV_%Q1Yba?~RJOdd3C$T{m=8)25n8`w+Gc zGiU964C!NI1kTxL8z~=<@z<{T=mer>7qs0nK56V60VTE>X|lEJIl_B*T(Nm+41r=1 zO1%huWQ=gfvs1#Qs;C0jS_FrzkeE819)Mape$REGX~>`whg5ol6 zyI}CX2TwCmDlLK?><3$oSX-aYq5pU$%g~ILy!gi*0cN$hZ~Z4^R9r0h2z zf9lkL!$Zs^tV z=*N7hPkVDgvUHfLZ;4T_*O9z>tc-eT*U4>)B=ITw`#+R?9&Cn8^%58REPSN^F9i6H zrK>ID$LISY!K{kE(T{9CY8h5ky^q$v!>5V6Db#UlQE2wMHN-$fKa}p7*uF?N_hax{ z)$+n+EFRG8@zW{~On8MyY#0|_@fGj$j-$!Hvr;`@2rEWTXT`MXIAjRDhbn651T%GBIk%2UnE9rx##aRUZYySk4gw~XKm=M>^Yh8RdR zCRHJ}8>;&*aC1q9=^uql?QQPvi+6PJr}jJ2n*^OD?5e#~ z^DFBk{B%cPglPIsbi_P1N+4imUPnPc!bChK{j`p;nz*X3x#P3v*H%R68s~JBXm5ci z0;hvDhDYfsw3;J#0-7p>Tpx`%*0k-#m$E!qRdN;^0r#X)(C1kPtCeo!L zZqhP9HjWv-?$3(&fa3jv?t~jcc-7+je$0+w;twjPd7J)7f3$w?ll;B}5vx?!N#gAC zS!6e)Qjq8_B0td@KTSd?ciU`&51?cOYd-j|izTdgFC`rX`sW%(?ry>h=I`q0ZE&|8 zC0uVU z_#W=f3(1Cp#d)WG{aMN#m2y%S;_$3T*B+hAC<^cK-d!ID2sj6Gk}n(50|w)W#lkT= z)0@7|NgKuz1XM(Q7K*B{QkTNLYZ`M3Q~6m`{ncFNaj58M3ZY{x2f>60zc4q0t<{v8 z@!qiS&sw=Be|^VNkWVXluwzWLEC2mNZzU?$8c+XlGA1}5rJv5>cc@aX?W6&X_*NOw zy0+lJ;r<9${5|h3A^*G_zUQPf$?#=yH5v1a#%~N>SHQiO0Ub}lZ}%&`1PQT<3jL-P z*;ueq;sc>!AEN8yPF)W*!=~(*ReJuY%(qRY19Ulg=DH0m?DlHiius4fUK-v7vj@G1 zr0G9R{uJ{3RsTf-753-oNtVZLFdC%8Kp0=?#)HP8W zYCrxDxPQBiyC$9m+?B zOCJ~!4k*7yW?6Q59pLLrH*2VQ)ZI!qb@+x>a>8L~DU0Q&e0y<5&wm$3@Ew=Cqa2Qc z&7A#e!J}Qyv7K?$d^!eR-we5`pNYs!@y7h>7so1qCK0W=P z(a+eOhS*GhEQM<^_HDIa0J_+>R3VofJ<-&}A}s?VkB3G(;(;PXar8(Yz3iSJ2#WhJ z)@f=iJgYY5?!+^Rc>HdK#K&;f%v@4UlH{Yw<`6_yUa7yyIUDpCGq9r*IJb+8xtz%! zA*!7M_-XU5l2LWr8^^ZCSR40jzMF?jkj_%Zo zs_m|SzLmf2@2CxY`1(RdY^ZDrh5qJ|-9!Ei`kv`a&+VCoFm$KA1U)wj2XVi z?f9mMbEodTF4(ba5SYs(e{ViJhY98Tm}*A26xQGq)~s@k zDOc&?u^9Eo^tbjiAG34FUu5U7*|?I&{-LPMFf{qUK;$nvl=4YNe$)AyGJNmGA0g=T zpH)+oIONyX#D$YXg?B*L5=C$%^>flOXjp0pKg-`o^HgU6JmVL+=f8nfp^wwbVO2P+ zd0{cPA6Y3P3M#+h_xTsw43vnHf{3at>Cqx`a$@_u1*DRh~t<}6GB8!2kK)YmUJk|!_Eoq86IRY^hH z?diU=HWJCsi{(duS_>XE@LDLFuxDxGl>-kQw}6ZJA(`t7-gl{&zcq}%r=C+#{?Y#s z|EjG>nX5yTtVw;9bk;aI;RE>j7U2iqmNzk^Au5LGS}>(DAA&I$9PrXd)iOoLdc=Md zzYpaTGY5CmZp!#!dsu#W0wlsOI|EeKw@qHLtCd;Z%t0H#;LoJ51^B%w@9h)e&8cG$ z5hqnqN_ba+_kqR0X%X!#<;cL~ScXT{pYKhW({?7imimLCa1NS|+mfTq{T)iaO^Dgr z&9Q6n;wQXuK4>mQ%Ed;&`}8P-^n`L2gn&X{I-GGQ32}^~*_>hax?kbKMC@u?CtB$> zUs#@>=*J1RYf?(K1QvXF>t>sWpdu!_5h@yh%isVC^hK0mxjXtH}aZ#r0#e2 zNG?`46Ym7Sy>gm1{Xce5%(scu{DgV`ZOm3C>rNjKZCGb2f@Uy$W#Ik=O8=ce@7)Pc-!=>MGCZ5XJ4r+>GM`OF*C-QL62fgR@zID1 z^vdKswf^f4`)KD1 zR4?DWOR6gjZKl{GI13n>)Ru=in|iRzLwnj9p{WFjHoWqh86X?OhJd9 z7?jnO&$H^eU3(|VPFSyzfy4B;g>3Z5wrnf0q&^@~U`*EOmP*b#=oI;NLIPRA3kmsR zbLw&s9XS&PN$`IzLA>vTpmh}~x6h8@m32^nZDg236#>ejD#!&_?~c`|NuPfvn>C-9 zIf2G*j{R$PQ{poO3%4G!*a|l=Api?6ZI`fb4{)VOYsE7Pq@)?h%R^{k!oP3t6Q}`y z)1zAPB9*Qr{umBLB<;|OTZXYde(8ZetL=Z2tgR~o_Z;iwyqv8AP3zU#WQYJ}8cet> zMqU>d`=v*q4@!?p_^un5xNo@`Ik?!2i$fZ-beImIhVt&WB-2I(ru|}y2+yQDlcR)8 zU!!JP_{b0ugI8^e?%@Ch&@lO#QcRF}2;4>74ejMu8t7rzM#uFRQeyYqN?>gLURNKV zIT~~BBk2uKhp37nkEq(rH6=UJT^7ML8+-G0Lu&WV6|TuWa=#+ia+3FX8qD*YTBA}u zd9ao$`+Yv<=Khu@;b;I)8Y;D?R159qS5ob^Iznem?=Vu{m(3FfY(X~@Gm5?p=^?E& zbR&%eJ&l^sUaKQ~_Vh<1!+qHr;io1gb{%+C$WiLoopj)6@GV!3O1oQyDZO)cKg zHGf|8%y=m>KESUuHUI-C1p^rL7vL)Va+(gQg*}B2km$!(l}#K~neAw@;h{dCIqlme znVT}eDG?v@#nQu1ReAmkw4Yy7wI9Y`lJ;n%um|IBLw`ETJop-;{mEzP$00e^j4U2j zT8&D)`h^Qw9xVS9ugA95xxRhm=TL>&Uv(^^G7U_|1^8e#!~2^uw}vF>m|9pGR*no= zZR6Lbtx%Zm$>#0A74x0$zNkDCU8QP<)Nt1Ga1u`OEPjC=GdyQ5wrR49sP>Lzi<-3N zodmgcS<04!EM%FCvRd={+pWF2YEqsqL;*sIwe6*LpQi`z=cCz{**%-U`JnN2`QbW# zA5{x(?LYb59@Gy-7z5Z2-Frz{meWmwEsy^9V39Y^T2g-u?j-^(#T90QzgnN~J^p8$Qx6cV$d)?*IWJ-Aa+8L`VyA4`Olj$e2t01~oG( z^cGikHPb;Fu{bC`6xdweI?a&|S6rsJz#s-?OJ8*P>s#;E&eJm6zEfT_^?rmJw@*7|5ln@JiJcBHK=+1gWG^~*GFdANr&W6On}ZHvkb|y) zt3LW`w>2K;?4bpo2}g09yhnXB7xB~}-MyGKUdZ#f#^9&^kAU%>9TYj%4r*mmjF$q8 z(u=-k&yWt)UmJIp>d5fQSF}pbR)o$mQcrof*g^M>U?r*r_MMt$syHQ+TCwkRyqaTl zbVvAcFwZB3c|Jo0%2Uh!4F{d4_8CXQS2&)8=xPjpx(g>?D6GCW%fRuD;m|)|^ISYd zNe(R~x>^N*(p|X3Krx!WL_kLL$GH5!|CTWb@*h5w>3JEb;%!N}Fo5dgQW-Cc4+Ac7! zmK1I`rGRavYb+b|@`u!t&eg9&;bP|EM2HxO`Vb(aL{!UO*m}yGz^F&699^*c)vI`6 z1NcD>&WqdG*_tJs{`8eSbmkwgKG7GaD;tuTJLCDG(da>TW0Bb8JY;>pvT@eIVugP8!QOv#I@ihVEA8Ku?Bl=$$YF z##1tIG&tCLg4yJcK%vXowB+TzY zr9uvaWv#o2m(yKSYKk;WzWoXwbuk=ML1kf%!5gl7q3p7lWz4&l9&lWW?pD3Z^f>T~ zN{)nW0-^YSg(+K)B1NLe@r-DxqmEo03s4cIS$sZ;znt!wQi)m@@$LVz@^%PS7eJDZ zXR(fI4_<=ION4hS56Q7h9?U{kk8dbrbB4+M|W-f?0_B*Hzb4o8Vxu2 zw*fubnT-y!pj#)|L6h(2EbK;{H4l8ZR@q8j^x$~XNb786o8o5>-a5=3InQF;f0FM;e_Mw?8lUYeH)rKBxZeI1RCm*0zG`@~M1hB9c6 zXA#Tmz1_kxNIB0+qr{DBvSoD?ldSx!%wvh$}`YUX_wIsT5vwQc-zTkDnzv#_vT*ytijWFRw4EgX@rPXQ33aUa)b zU72#~U>^%;lg@Bw&`W-nwVb)UpY5=rWP)5pQiPfFB2RvB`&Ry>{UML7l3c;|p?N}5 z3_rj}F=@y>-nd`=I=BX_BE-vmZ5wEPdeg@bSDP*hW}I<9Yx?+`=O8q#kJHQwT%aL; zIV6XP!uLb1u&1&2sgJ$D@eq(I`&JdY0w3aUcX-?&M-<~7|27Jzf$)7HF?-E9m!r=X zLRRI6p<_li!aP;-E4V8UhP9KnQiUrY0>eJgkfiJ4E;%?GwS;Hcb-T)|)IUC_vnZAe=rgL}IS;$Z zR)h}Z#lx&f*{eU}vsLwhXmTy8VW>``fI3ow+RnAzfMyDNtc*~}`6{xfsoG!j<+D}3 zQ?TW($y@chMauWqV*+@^$9Mmn$niT41{e40Y=E;vQy>%5;`!(w!uITZ6WK`xhRI*? zlpQJSJJMBrU;Tx(AR-J9@OMoXVfT*A0xC_~NL5(qCuQ}Y=drtwf1kWV!S8o-y?zjM z90;Qjhwm#nnvcZL``9*=v_MPsGFzso9^`A*d1gMj5DpMLZC)I@{ zOiU$9PVOb6)#?c74Jku^rfdF2-1gUF%j9XPhiu_-0NAnN289;PRqxq`$LXrGye6>4 z?k%Rn?#62`-t6J9CkK%6zWl-IyuYv zdGpflB!5#zbI82UwpGFjwCmjeinM%hgDw8ADIqe;LY~(PMbY2d#hlT+Jbc%52s!Z@ zwmz-`$y%{YG>_RUE65l*#gxehF;ZAcyzkma43bZ#SouAhoLd9mVR+**Bae|_P-=yU zpDbX3EVA=UzI6tDpcGP@G&L0a@=HJO=jvbwD(4HMRo3)mq81^v&&t%6pAU;E((oPg zT_VRIs^4Ap>TYZH-8}p?i>fdp`hU$B^Ff>GfHzZQHED0nPW|}?V$Bbw$_`d%+<2Dv4W5L!+QRB_sYbeIZi{qyD1Fh$L9DqF=8U^>vZIqTzKu+vja#wZ%-aY4 zEcOF_rH$LKU(W<0(Eybz?Vqi9@z+aBi%wC>yr-Yc`?Ak|Q+p0jf79GOw7t1oF=1JScMd_q>Srw|`i+TY1=G5#(@jgg z#i6)UFysDMsbtrr;EJNwvLpWCE$pPTn~j~N-^)@f8g~6KMJabzRjCb(lz5KMepBx& zqAQaUVJvw?WvKs1s}#QWhNVlleLJHNI1sTH`%sRqg#hzS6`QP1Q?!6}YaepGi(T)6 zL<{y~`{p%u)N!qAb7;~hSt}b-y8cVb8{lZyZ5HY7BRqVCBtPU)a(vZ1J5}u2WaCz} z{^v);L*Y+_Y)a#rZ@GWvQF-4AeDZEdCy<=n@un%)nnO+_!1RfpFyn~ltBv;uX5W|R zV~)C?y=-o5s~nwDvyCWM?f>O|^8-o$<}{K zhM>tHFm{?di##W~-v$l@ZY!Ee(aI`Xh*EYlFeu#a3)tkGg#T(0H_;}Z5H3<8bg(F8 z6V4SgZI^``SYf{}!s$`Gf)Kl%O|W2FS@C7MninLQ=g5~3qG)x|>w(D!LD~Is&$6c@BjUQn+?J5_w$2Vz%Y`B0}aj5rn&d7)=UgWB}=_qqO9EQ9F=)cWg*}|7{%D*Hw2P0M;^a(H^njFM+XEKzL7SG7`Wx9R1 zRjmO77M>_(LYUglZyoGGo6;G3;eZ5&P>|I> z-#nD5;}2}etv9@)R;rYCRgZ_x!t>+CA*sSjSpW3Ml{h?e>g?rF%W*gS#RLg(NCV`c{$|9I z3R93_C6I!6Q>VCah8~?kQJF{bdY&JiKiw8F*%K}H(WnwuEy{=Yt8n&j11(smr+MNh zz$Gw{!`A$__03(tTyKv6iJEukHS1o?QXs_jZBg1g@;LLw|0n?0k2qI(k=D&mr@6B( z3rj_=elzGg!x47{XRQaFWGNv2T>*$Nd?AbD?Vg5HS?wdwP|&Wc%mzY^eg!ky|FpBY zV~)E8FNnXP$JvUuglUn(Y|0NKBg#K<&cd>eLG)7(cI|DM>b8Qpd4U8tgu(v>FqISg zW%LQ>=-9b9w=m?yr;X;s3OuI#0Y8 z5Xj(KYa?3Uw~cYNqQi9oha9^DBHmS%p}YC}b&4DOrYnh{$3*(o<&$0v0x1JA3ixlM z`ky}ai`eccR)(^8w5<<5_%Tf&!qjL4)ouL0)}c8pjX=J1EnPT^l|hYt4Mdh}eY*`O zr?N_Yp@LNzI&i7=)`Hx$X->Lg|K_(kQsl5r6Va~>RYPa#>JNB`H`8-@Yr%)1!!~Uo zk&l0Pb@eCAW9;aJgUfdhl>#P3xN{nJg4vWT;L+7pcl17Do3ZgI9K$2+nK?SI*>zh@ zZy|grbtq}xWSx;A=0ra&2XUef|2*c z;7X;7%dTiR8F?n#apiLuHCQ^JcI^@LG44MSmK09XuP<|~E=zai7Fp7AF|h8
    UFa`nRT zlmu*8WS@X+!uOswrCG=)45%LcGzE;P*~BG`sG3yW(&0?_h-e}~Uu`$(rFmhnSOtC{ zAx2~FsK3Bv=m4F>rh=7x&bvfYz-D2YV6zhEF=;=i{0#79O;7;r|GVT&u=EWc+bGEs zLH;>n7L+8IlTHR4p=2EFx*)yQh$z!1LOpWN69aJ3|d=kyKj_*tpP(cG+c5#d>c<|zV{S-_~ zoH_BBA#6$sxQ!;-H@t`+FsPYzP_wn(SfSo~eR4s+D+bmlXqUC}oKs(n;#Rsba07*t z3sC0-Y|xs>;KOaPT(V!LngdPpU?r{+k8_B0C%d05z%74=f(@5!?-tBNq z&4U-YU2M!JDW~KmX4o}qr6%%n8OjJk6FpF>% zPU^czvktPdvwn*y@14xmMwzcxsX)Z9#1&G0Yr1q-ELAAF;i>=xM|bH0a4$7&Lbz|4 zcc`6xe(FvXj#weWb|;g@e)fTFg+KP|LZPaY6HQQmkb2|Dw%@zEq6^I z9$0hr3=pQ5mR7a>C=K^;GG62r&VnnwYy$m-Dssk@_6nRF${_@P>qytF5L!q>XO3^w zYaK83{-q>1Ed{KJ)J6t>GrdNF1^)vtiH{BuO8mTJVD#EB9Tg-#$ zf(?1sfLUu84rhdIUONr$nV-FyO}u4Dn}W#z+R);!r)Npf;D4YbeaA-}D;2^=RKl0_ zYDfj|U#`97L%CSBU_@;tRl$X1W`C_n0q@7yEg-PKj`Q)mVb+yogvb#kTqPN2_>#^> z4{n*lc9^e(26H3oqrpdWXbIpWB6-28YhAa=1suAe(%QVH|8SwxxT77v)){)G||>|7b}D;_d&uEiUN z3l792H?KtfMKAtGvW2p)y0(Oh-3`7}HtEWnqZyvABR!l}ge z$xWu&7!}hE0$&+1$dBUmjBejwsi`@WGSN$cf9eNG|K|)nO3ycOio`v_QLEoizPnb2 z5ew1X=n-LIqyHUf6)TD00^wd>cTVIv`W|llWhA6GEk_HW*$Cxe>oK!<`8l>e@j$U? ziotq;Lj3)UtI}Ni1*pH%k!irjiX)TI#oa{~9?kx;Rlppbq^2eY{7*K10?X{`$6!JR z1CR^>L7Tumf=LqT=M{A9>(@;^$loqxzq~lYQ4+C3Ea`0as+B5i-~8*g&cgN&9RJd+dKrUb^|){JV++Bm zehWb>F#{PfL2c&a6!kvM`vJ>W5xc!43TbcoDFL&j#Z#n-GF@N*G+5dj!F$>3;kQ%!pC=Mk(w^n#+S6!R+`(5JyP;xW!jI&H zg3aIN*AWi8N;6HnQJ+mu%^q!jJ%f(Y;snS*F==H2bXe6K+*&XB!V&Fb}T~ zIO`k*#0W5sju7?2k;-r0sG`Z@e;$~OK=&xbiKvt(%KTF2g)IucX}OzNHGXm5Tw09e zv>z;!>GqPS+6+U$(F{vvzi&eQ;~O!Z`YUh<;XNdn)(R5Jvon4jTT`cQtz(y$^pfD{ zBIcdpy!Y(bm*=Fms{kmcnG18%@o_m#Q$9`@x^-4H7KjpE7{ZIr$SAL&fc}2~s3Q<~